/* * Copyright 2012 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "SkIntersections.h" int (SkIntersections::*CurveVertical[])(const SkPoint[], SkScalar, SkScalar, SkScalar, bool) = { NULL, &SkIntersections::verticalLine, &SkIntersections::verticalQuad, &SkIntersections::verticalCubic }; int (SkIntersections::*CurveRay[])(const SkPoint[], const SkDLine&) = { NULL, NULL, &SkIntersections::quadRay, &SkIntersections::cubicRay }; int SkIntersections::coincidentUsed() const { if (!fIsCoincident[0]) { SkASSERT(!fIsCoincident[1]); return 0; } int count = 0; SkDEBUGCODE(int count2 = 0;) for (int index = 0; index < fUsed; ++index) { if (fIsCoincident[0] & (1 << index)) { ++count; } #ifdef SK_DEBUG if (fIsCoincident[1] & (1 << index)) { ++count2; } #endif } SkASSERT(count == count2); return count; } int SkIntersections::cubicRay(const SkPoint pts[4], const SkDLine& line) { SkDCubic cubic; cubic.set(pts); fMax = 3; return intersectRay(cubic, line); } void SkIntersections::flip() { for (int index = 0; index < fUsed; ++index) { fT[1][index] = 1 - fT[1][index]; } } int SkIntersections::insert(double one, double two, const SkDPoint& pt) { if (fIsCoincident[0] == 3 && between(fT[0][0], one, fT[0][1])) { // For now, don't allow a mix of coincident and non-coincident intersections return -1; } SkASSERT(fUsed <= 1 || fT[0][0] <= fT[0][1]); int index; for (index = 0; index < fUsed; ++index) { double oldOne = fT[0][index]; double oldTwo = fT[1][index]; if (one == oldOne && two == oldTwo) { return -1; } if (more_roughly_equal(oldOne, one) && more_roughly_equal(oldTwo, two)) { if ((precisely_zero(one) && !precisely_zero(oldOne)) || (precisely_equal(one, 1) && !precisely_equal(oldOne, 1)) || (precisely_zero(two) && !precisely_zero(oldTwo)) || (precisely_equal(two, 1) && !precisely_equal(oldTwo, 1))) { fT[0][index] = one; fT[1][index] = two; fPt[index] = pt; } return -1; } #if ONE_OFF_DEBUG if (pt.roughlyEqual(fPt[index])) { SkDebugf("%s t=%1.9g pts roughly equal\n", __FUNCTION__, one); } #endif if (fT[0][index] > one) { break; } } if (fUsed >= fMax) { SkASSERT(0); // FIXME : this error, if it is to be handled at runtime in release, must // be propagated all the way back down to the caller, and return failure. fUsed = 0; return 0; } int remaining = fUsed - index; if (remaining > 0) { memmove(&fPt[index + 1], &fPt[index], sizeof(fPt[0]) * remaining); memmove(&fT[0][index + 1], &fT[0][index], sizeof(fT[0][0]) * remaining); memmove(&fT[1][index + 1], &fT[1][index], sizeof(fT[1][0]) * remaining); int clearMask = ~((1 << index) - 1); fIsCoincident[0] += fIsCoincident[0] & clearMask; fIsCoincident[1] += fIsCoincident[1] & clearMask; fIsNear += fIsNear & clearMask; } fPt[index] = pt; fT[0][index] = one; fT[1][index] = two; ++fUsed; return index; } void SkIntersections::insertNear(double one, double two, const SkDPoint& pt) { int index = insert(one, two, pt); if (index < 0) { return; } fIsNear |= 1 << index; } void SkIntersections::insertCoincident(double one, double two, const SkDPoint& pt) { int index = insertSwap(one, two, pt); int bit = 1 << index; fIsCoincident[0] |= bit; fIsCoincident[1] |= bit; } void SkIntersections::offset(int base, double start, double end) { for (int index = base; index < fUsed; ++index) { double val = fT[fSwap][index]; val *= end - start; val += start; fT[fSwap][index] = val; } } int SkIntersections::quadRay(const SkPoint pts[3], const SkDLine& line) { SkDQuad quad; quad.set(pts); fMax = 2; return intersectRay(quad, line); } void SkIntersections::quickRemoveOne(int index, int replace) { if (index < replace) { fT[0][index] = fT[0][replace]; } } #if 0 void SkIntersections::remove(double one, double two, const SkDPoint& startPt, const SkDPoint& endPt) { for (int index = fUsed - 1; index >= 0; --index) { if (!(fIsCoincident[0] & (1 << index)) && (between(one, fT[fSwap][index], two) || startPt.approximatelyEqual(fPt[index]) || endPt.approximatelyEqual(fPt[index]))) { SkASSERT(fUsed > 0); removeOne(index); } } } #endif void SkIntersections::removeOne(int index) { int remaining = --fUsed - index; if (remaining <= 0) { return; } memmove(&fPt[index], &fPt[index + 1], sizeof(fPt[0]) * remaining); memmove(&fT[0][index], &fT[0][index + 1], sizeof(fT[0][0]) * remaining); memmove(&fT[1][index], &fT[1][index + 1], sizeof(fT[1][0]) * remaining); SkASSERT(fIsCoincident[0] == 0); int coBit = fIsCoincident[0] & (1 << index); fIsCoincident[0] -= ((fIsCoincident[0] >> 1) & ~((1 << index) - 1)) + coBit; SkASSERT(!(coBit ^ (fIsCoincident[1] & (1 << index)))); fIsCoincident[1] -= ((fIsCoincident[1] >> 1) & ~((1 << index) - 1)) + coBit; fIsNear -= ((fIsNear >> 1) & ~((1 << index) - 1)) + (fIsNear & (1 << index)); } void SkIntersections::swapPts() { int index; for (index = 0; index < fUsed; ++index) { SkTSwap(fT[0][index], fT[1][index]); } } int SkIntersections::verticalLine(const SkPoint a[2], SkScalar top, SkScalar bottom, SkScalar x, bool flipped) { SkDLine line; line.set(a); return vertical(line, top, bottom, x, flipped); } int SkIntersections::verticalQuad(const SkPoint a[3], SkScalar top, SkScalar bottom, SkScalar x, bool flipped) { SkDQuad quad; quad.set(a); return vertical(quad, top, bottom, x, flipped); } int SkIntersections::verticalCubic(const SkPoint a[4], SkScalar top, SkScalar bottom, SkScalar x, bool flipped) { SkDCubic cubic; cubic.set(a); return vertical(cubic, top, bottom, x, flipped); }