// Another approach is to start with the implicit form of one curve and solve // (seek implicit coefficients in QuadraticParameter.cpp // by substituting in the parametric form of the other. // The downside of this approach is that early rejects are difficult to come by. // http://planetmath.org/encyclopedia/GaloisTheoreticDerivationOfTheQuarticFormula.html#step #include "SkDQuadImplicit.h" #include "SkIntersections.h" #include "SkPathOpsLine.h" #include "SkQuarticRoot.h" #include "SkTDArray.h" #include "TSearch.h" /* given the implicit form 0 = Ax^2 + Bxy + Cy^2 + Dx + Ey + F * and given x = at^2 + bt + c (the parameterized form) * y = dt^2 + et + f * then * 0 = A(at^2+bt+c)(at^2+bt+c)+B(at^2+bt+c)(dt^2+et+f)+C(dt^2+et+f)(dt^2+et+f)+D(at^2+bt+c)+E(dt^2+et+f)+F */ static int findRoots(const SkDQuadImplicit& i, const SkDQuad& q2, double roots[4], bool oneHint, int firstCubicRoot) { double a, b, c; SkDQuad::SetABC(&q2[0].fX, &a, &b, &c); double d, e, f; SkDQuad::SetABC(&q2[0].fY, &d, &e, &f); const double t4 = i.x2() * a * a + i.xy() * a * d + i.y2() * d * d; const double t3 = 2 * i.x2() * a * b + i.xy() * (a * e + b * d) + 2 * i.y2() * d * e; const double t2 = i.x2() * (b * b + 2 * a * c) + i.xy() * (c * d + b * e + a * f) + i.y2() * (e * e + 2 * d * f) + i.x() * a + i.y() * d; const double t1 = 2 * i.x2() * b * c + i.xy() * (c * e + b * f) + 2 * i.y2() * e * f + i.x() * b + i.y() * e; const double t0 = i.x2() * c * c + i.xy() * c * f + i.y2() * f * f + i.x() * c + i.y() * f + i.c(); int rootCount = SkReducedQuarticRoots(t4, t3, t2, t1, t0, oneHint, roots); if (rootCount >= 0) { return rootCount; } return SkQuarticRootsReal(firstCubicRoot, t4, t3, t2, t1, t0, roots); } static int addValidRoots(const double roots[4], const int count, double valid[4]) { int result = 0; int index; for (index = 0; index < count; ++index) { if (!approximately_zero_or_more(roots[index]) || !approximately_one_or_less(roots[index])) { continue; } double t = 1 - roots[index]; if (approximately_less_than_zero(t)) { t = 0; } else if (approximately_greater_than_one(t)) { t = 1; } valid[result++] = t; } return result; } static bool only_end_pts_in_common(const SkDQuad& q1, const SkDQuad& q2, SkIntersections* i) { // the idea here is to see at minimum do a quick reject by rotating all points // to either side of the line formed by connecting the endpoints // if the opposite curves points are on the line or on the other side, the // curves at most intersect at the endpoints for (int oddMan = 0; oddMan < 3; ++oddMan) { const SkDPoint* endPt[2]; for (int opp = 1; opp < 3; ++opp) { int end = oddMan ^ opp; if (end == 3) { end = opp; } endPt[opp - 1] = &q1[end]; } double origX = endPt[0]->fX; double origY = endPt[0]->fY; double adj = endPt[1]->fX - origX; double opp = endPt[1]->fY - origY; double sign = (q1[oddMan].fY - origY) * adj - (q1[oddMan].fX - origX) * opp; if (approximately_zero(sign)) { goto tryNextHalfPlane; } for (int n = 0; n < 3; ++n) { double test = (q2[n].fY - origY) * adj - (q2[n].fX - origX) * opp; if (test * sign > 0) { goto tryNextHalfPlane; } } for (int i1 = 0; i1 < 3; i1 += 2) { for (int i2 = 0; i2 < 3; i2 += 2) { if (q1[i1] == q2[i2]) { i->insert(i1 >> 1, i2 >> 1, q1[i1]); } } } SkASSERT(i->used() < 3); return true; tryNextHalfPlane: ; } return false; } // returns false if there's more than one intercept or the intercept doesn't match the point // returns true if the intercept was successfully added or if the // original quads need to be subdivided static bool add_intercept(const SkDQuad& q1, const SkDQuad& q2, double tMin, double tMax, SkIntersections* i, bool* subDivide) { double tMid = (tMin + tMax) / 2; SkDPoint mid = q2.xyAtT(tMid); SkDLine line; line[0] = line[1] = mid; SkDVector dxdy = q2.dxdyAtT(tMid); line[0] -= dxdy; line[1] += dxdy; SkIntersections rootTs; int roots = rootTs.intersect(q1, line); if (roots == 0) { if (subDivide) { *subDivide = true; } return true; } if (roots == 2) { return false; } SkDPoint pt2 = q1.xyAtT(rootTs[0][0]); if (!pt2.approximatelyEqualHalf(mid)) { return false; } i->insertSwap(rootTs[0][0], tMid, pt2); return true; } static bool is_linear_inner(const SkDQuad& q1, double t1s, double t1e, const SkDQuad& q2, double t2s, double t2e, SkIntersections* i, bool* subDivide) { SkDQuad hull = q1.subDivide(t1s, t1e); SkDLine line = {{hull[2], hull[0]}}; const SkDLine* testLines[] = { &line, (const SkDLine*) &hull[0], (const SkDLine*) &hull[1] }; size_t testCount = sizeof(testLines) / sizeof(testLines[0]); SkTDArray tsFound; for (size_t index = 0; index < testCount; ++index) { SkIntersections rootTs; int roots = rootTs.intersect(q2, *testLines[index]); for (int idx2 = 0; idx2 < roots; ++idx2) { double t = rootTs[0][idx2]; #ifdef SK_DEBUG SkDPoint qPt = q2.xyAtT(t); SkDPoint lPt = testLines[index]->xyAtT(rootTs[1][idx2]); SkASSERT(qPt.approximatelyEqual(lPt)); #endif if (approximately_negative(t - t2s) || approximately_positive(t - t2e)) { continue; } *tsFound.append() = rootTs[0][idx2]; } } int tCount = tsFound.count(); if (tCount <= 0) { return true; } double tMin, tMax; if (tCount == 1) { tMin = tMax = tsFound[0]; } else if (tCount > 1) { QSort(tsFound.begin(), tsFound.end() - 1); tMin = tsFound[0]; tMax = tsFound[tsFound.count() - 1]; } SkDPoint end = q2.xyAtT(t2s); bool startInTriangle = hull.pointInHull(end); if (startInTriangle) { tMin = t2s; } end = q2.xyAtT(t2e); bool endInTriangle = hull.pointInHull(end); if (endInTriangle) { tMax = t2e; } int split = 0; SkDVector dxy1, dxy2; if (tMin != tMax || tCount > 2) { dxy2 = q2.dxdyAtT(tMin); for (int index = 1; index < tCount; ++index) { dxy1 = dxy2; dxy2 = q2.dxdyAtT(tsFound[index]); double dot = dxy1.dot(dxy2); if (dot < 0) { split = index - 1; break; } } } if (split == 0) { // there's one point if (add_intercept(q1, q2, tMin, tMax, i, subDivide)) { return true; } i->swap(); return is_linear_inner(q2, tMin, tMax, q1, t1s, t1e, i, subDivide); } // At this point, we have two ranges of t values -- treat each separately at the split bool result; if (add_intercept(q1, q2, tMin, tsFound[split - 1], i, subDivide)) { result = true; } else { i->swap(); result = is_linear_inner(q2, tMin, tsFound[split - 1], q1, t1s, t1e, i, subDivide); } if (add_intercept(q1, q2, tsFound[split], tMax, i, subDivide)) { result = true; } else { i->swap(); result |= is_linear_inner(q2, tsFound[split], tMax, q1, t1s, t1e, i, subDivide); } return result; } static double flat_measure(const SkDQuad& q) { SkDVector mid = q[1] - q[0]; SkDVector dxy = q[2] - q[0]; double length = dxy.length(); // OPTIMIZE: get rid of sqrt return fabs(mid.cross(dxy) / length); } // FIXME ? should this measure both and then use the quad that is the flattest as the line? static bool is_linear(const SkDQuad& q1, const SkDQuad& q2, SkIntersections* i) { double measure = flat_measure(q1); // OPTIMIZE: (get rid of sqrt) use approximately_zero if (!approximately_zero_sqrt(measure)) { return false; } return is_linear_inner(q1, 0, 1, q2, 0, 1, i, NULL); } // FIXME: if flat measure is sufficiently large, then probably the quartic solution failed static void relaxed_is_linear(const SkDQuad& q1, const SkDQuad& q2, SkIntersections* i) { double m1 = flat_measure(q1); double m2 = flat_measure(q2); #if DEBUG_FLAT_QUADS double min = SkTMin(m1, m2); if (min > 5) { SkDebugf("%s maybe not flat enough.. %1.9g\n", __FUNCTION__, min); } #endif i->reset(); const SkDQuad& rounder = m2 < m1 ? q1 : q2; const SkDQuad& flatter = m2 < m1 ? q2 : q1; bool subDivide = false; is_linear_inner(flatter, 0, 1, rounder, 0, 1, i, &subDivide); if (subDivide) { SkDQuadPair pair = flatter.chopAt(0.5); SkIntersections firstI, secondI; relaxed_is_linear(pair.first(), rounder, &firstI); for (int index = 0; index < firstI.used(); ++index) { i->insert(firstI[0][index] * 0.5, firstI[1][index], firstI.pt(index)); } relaxed_is_linear(pair.second(), rounder, &secondI); for (int index = 0; index < secondI.used(); ++index) { i->insert(0.5 + secondI[0][index] * 0.5, secondI[1][index], secondI.pt(index)); } } if (m2 < m1) { i->swapPts(); } } // each time through the loop, this computes values it had from the last loop // if i == j == 1, the center values are still good // otherwise, for i != 1 or j != 1, four of the values are still good // and if i == 1 ^ j == 1, an additional value is good static bool binary_search(const SkDQuad& quad1, const SkDQuad& quad2, double* t1Seed, double* t2Seed, SkDPoint* pt) { double tStep = ROUGH_EPSILON; SkDPoint t1[3], t2[3]; int calcMask = ~0; do { if (calcMask & (1 << 1)) t1[1] = quad1.xyAtT(*t1Seed); if (calcMask & (1 << 4)) t2[1] = quad2.xyAtT(*t2Seed); if (t1[1].approximatelyEqual(t2[1])) { *pt = t1[1]; #if ONE_OFF_DEBUG SkDebugf("%s t1=%1.9g t2=%1.9g (%1.9g,%1.9g) == (%1.9g,%1.9g)\n", __FUNCTION__, t1Seed, t2Seed, t1[1].fX, t1[1].fY, t1[2].fX, t1[2].fY); #endif return true; } if (calcMask & (1 << 0)) t1[0] = quad1.xyAtT(*t1Seed - tStep); if (calcMask & (1 << 2)) t1[2] = quad1.xyAtT(*t1Seed + tStep); if (calcMask & (1 << 3)) t2[0] = quad2.xyAtT(*t2Seed - tStep); if (calcMask & (1 << 5)) t2[2] = quad2.xyAtT(*t2Seed + tStep); double dist[3][3]; // OPTIMIZE: using calcMask value permits skipping some distance calcuations // if prior loop's results are moved to correct slot for reuse dist[1][1] = t1[1].distanceSquared(t2[1]); int best_i = 1, best_j = 1; for (int i = 0; i < 3; ++i) { for (int j = 0; j < 3; ++j) { if (i == 1 && j == 1) { continue; } dist[i][j] = t1[i].distanceSquared(t2[j]); if (dist[best_i][best_j] > dist[i][j]) { best_i = i; best_j = j; } } } if (best_i == 1 && best_j == 1) { tStep /= 2; if (tStep < FLT_EPSILON_HALF) { break; } calcMask = (1 << 0) | (1 << 2) | (1 << 3) | (1 << 5); continue; } if (best_i == 0) { *t1Seed -= tStep; t1[2] = t1[1]; t1[1] = t1[0]; calcMask = 1 << 0; } else if (best_i == 2) { *t1Seed += tStep; t1[0] = t1[1]; t1[1] = t1[2]; calcMask = 1 << 2; } else { calcMask = 0; } if (best_j == 0) { *t2Seed -= tStep; t2[2] = t2[1]; t2[1] = t2[0]; calcMask |= 1 << 3; } else if (best_j == 2) { *t2Seed += tStep; t2[0] = t2[1]; t2[1] = t2[2]; calcMask |= 1 << 5; } } while (true); #if ONE_OFF_DEBUG SkDebugf("%s t1=%1.9g t2=%1.9g (%1.9g,%1.9g) != (%1.9g,%1.9g) %s\n", __FUNCTION__, t1Seed, t2Seed, t1[1].fX, t1[1].fY, t1[2].fX, t1[2].fY); #endif return false; } int SkIntersections::intersect(const SkDQuad& q1, const SkDQuad& q2) { // if the quads share an end point, check to see if they overlap if (only_end_pts_in_common(q1, q2, this)) { return fUsed; } if (only_end_pts_in_common(q2, q1, this)) { swapPts(); return fUsed; } // see if either quad is really a line if (is_linear(q1, q2, this)) { return fUsed; } if (is_linear(q2, q1, this)) { swapPts(); return fUsed; } SkDQuadImplicit i1(q1); SkDQuadImplicit i2(q2); if (i1.match(i2)) { // FIXME: compute T values // compute the intersections of the ends to find the coincident span bool useVertical = fabs(q1[0].fX - q1[2].fX) < fabs(q1[0].fY - q1[2].fY); double t; if ((t = SkIntersections::Axial(q1, q2[0], useVertical)) >= 0) { insertCoincident(t, 0, q2[0]); } if ((t = SkIntersections::Axial(q1, q2[2], useVertical)) >= 0) { insertCoincident(t, 1, q2[2]); } useVertical = fabs(q2[0].fX - q2[2].fX) < fabs(q2[0].fY - q2[2].fY); if ((t = SkIntersections::Axial(q2, q1[0], useVertical)) >= 0) { insertCoincident(0, t, q1[0]); } if ((t = SkIntersections::Axial(q2, q1[2], useVertical)) >= 0) { insertCoincident(1, t, q1[2]); } SkASSERT(coincidentUsed() <= 2); return fUsed; } int index; bool useCubic = q1[0] == q2[0] || q1[0] == q2[2] || q1[2] == q2[0]; double roots1[4]; int rootCount = findRoots(i2, q1, roots1, useCubic, 0); // OPTIMIZATION: could short circuit here if all roots are < 0 or > 1 double roots1Copy[4]; int r1Count = addValidRoots(roots1, rootCount, roots1Copy); SkDPoint pts1[4]; for (index = 0; index < r1Count; ++index) { pts1[index] = q1.xyAtT(roots1Copy[index]); } double roots2[4]; int rootCount2 = findRoots(i1, q2, roots2, useCubic, 0); double roots2Copy[4]; int r2Count = addValidRoots(roots2, rootCount2, roots2Copy); SkDPoint pts2[4]; for (index = 0; index < r2Count; ++index) { pts2[index] = q2.xyAtT(roots2Copy[index]); } if (r1Count == r2Count && r1Count <= 1) { if (r1Count == 1) { if (pts1[0].approximatelyEqualHalf(pts2[0])) { insert(roots1Copy[0], roots2Copy[0], pts1[0]); } else if (pts1[0].moreRoughlyEqual(pts2[0])) { // experiment: try to find intersection by chasing t rootCount = findRoots(i2, q1, roots1, useCubic, 0); (void) addValidRoots(roots1, rootCount, roots1Copy); rootCount2 = findRoots(i1, q2, roots2, useCubic, 0); (void) addValidRoots(roots2, rootCount2, roots2Copy); if (binary_search(q1, q2, roots1Copy, roots2Copy, pts1)) { insert(roots1Copy[0], roots2Copy[0], pts1[0]); } } } return fUsed; } int closest[4]; double dist[4]; bool foundSomething = false; for (index = 0; index < r1Count; ++index) { dist[index] = DBL_MAX; closest[index] = -1; for (int ndex2 = 0; ndex2 < r2Count; ++ndex2) { if (!pts2[ndex2].approximatelyEqualHalf(pts1[index])) { continue; } double dx = pts2[ndex2].fX - pts1[index].fX; double dy = pts2[ndex2].fY - pts1[index].fY; double distance = dx * dx + dy * dy; if (dist[index] <= distance) { continue; } for (int outer = 0; outer < index; ++outer) { if (closest[outer] != ndex2) { continue; } if (dist[outer] < distance) { goto next; } closest[outer] = -1; } dist[index] = distance; closest[index] = ndex2; foundSomething = true; next: ; } } if (r1Count && r2Count && !foundSomething) { relaxed_is_linear(q1, q2, this); return fUsed; } int used = 0; do { double lowest = DBL_MAX; int lowestIndex = -1; for (index = 0; index < r1Count; ++index) { if (closest[index] < 0) { continue; } if (roots1Copy[index] < lowest) { lowestIndex = index; lowest = roots1Copy[index]; } } if (lowestIndex < 0) { break; } insert(roots1Copy[lowestIndex], roots2Copy[closest[lowestIndex]], pts1[lowestIndex]); closest[lowestIndex] = -1; } while (++used < r1Count); return fUsed; }