/* * Copyright 2012 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "SkIntersections.h" #include "SkPathOpsLine.h" /* Determine the intersection point of two lines. This assumes the lines are not parallel, and that that the lines are infinite. From http://en.wikipedia.org/wiki/Line-line_intersection */ SkDPoint SkIntersections::Line(const SkDLine& a, const SkDLine& b) { double axLen = a[1].fX - a[0].fX; double ayLen = a[1].fY - a[0].fY; double bxLen = b[1].fX - b[0].fX; double byLen = b[1].fY - b[0].fY; double denom = byLen * axLen - ayLen * bxLen; SkASSERT(denom); double term1 = a[1].fX * a[0].fY - a[1].fY * a[0].fX; double term2 = b[1].fX * b[0].fY - b[1].fY * b[0].fX; SkDPoint p; p.fX = (term1 * bxLen - axLen * term2) / denom; p.fY = (term1 * byLen - ayLen * term2) / denom; return p; } int SkIntersections::computePoints(const SkDLine& line, int used) { fPt[0] = line.xyAtT(fT[0][0]); if ((fUsed = used) == 2) { fPt[1] = line.xyAtT(fT[0][1]); } return fUsed; } /* Determine the intersection point of two line segments Return FALSE if the lines don't intersect from: http://paulbourke.net/geometry/lineline2d/ */ int SkIntersections::intersect(const SkDLine& a, const SkDLine& b) { double axLen = a[1].fX - a[0].fX; double ayLen = a[1].fY - a[0].fY; double bxLen = b[1].fX - b[0].fX; double byLen = b[1].fY - b[0].fY; /* Slopes match when denom goes to zero: axLen / ayLen == bxLen / byLen (ayLen * byLen) * axLen / ayLen == (ayLen * byLen) * bxLen / byLen byLen * axLen == ayLen * bxLen byLen * axLen - ayLen * bxLen == 0 ( == denom ) */ double denom = byLen * axLen - ayLen * bxLen; double ab0y = a[0].fY - b[0].fY; double ab0x = a[0].fX - b[0].fX; double numerA = ab0y * bxLen - byLen * ab0x; double numerB = ab0y * axLen - ayLen * ab0x; bool mayNotOverlap = (numerA < 0 && denom > numerA) || (numerA > 0 && denom < numerA) || (numerB < 0 && denom > numerB) || (numerB > 0 && denom < numerB); numerA /= denom; numerB /= denom; if ((!approximately_zero(denom) || (!approximately_zero_inverse(numerA) && !approximately_zero_inverse(numerB))) && !sk_double_isnan(numerA) && !sk_double_isnan(numerB)) { if (mayNotOverlap) { return fUsed = 0; } fT[0][0] = numerA; fT[1][0] = numerB; fPt[0] = a.xyAtT(numerA); return computePoints(a, 1); } /* See if the axis intercepts match: ay - ax * ayLen / axLen == by - bx * ayLen / axLen axLen * (ay - ax * ayLen / axLen) == axLen * (by - bx * ayLen / axLen) axLen * ay - ax * ayLen == axLen * by - bx * ayLen */ if (!AlmostEqualUlps(axLen * a[0].fY - ayLen * a[0].fX, axLen * b[0].fY - ayLen * b[0].fX)) { return fUsed = 0; } const double* aPtr; const double* bPtr; if (fabs(axLen) > fabs(ayLen) || fabs(bxLen) > fabs(byLen)) { aPtr = &a[0].fX; bPtr = &b[0].fX; } else { aPtr = &a[0].fY; bPtr = &b[0].fY; } double a0 = aPtr[0]; double a1 = aPtr[2]; double b0 = bPtr[0]; double b1 = bPtr[2]; // OPTIMIZATION: restructure to reject before the divide // e.g., if ((a0 - b0) * (a0 - a1) < 0 || abs(a0 - b0) > abs(a0 - a1)) // (except efficient) double aDenom = a0 - a1; if (approximately_zero(aDenom)) { if (!between(b0, a0, b1)) { return fUsed = 0; } fT[0][0] = fT[0][1] = 0; } else { double at0 = (a0 - b0) / aDenom; double at1 = (a0 - b1) / aDenom; if ((at0 < 0 && at1 < 0) || (at0 > 1 && at1 > 1)) { return fUsed = 0; } fT[0][0] = SkTMax(SkTMin(at0, 1.0), 0.0); fT[0][1] = SkTMax(SkTMin(at1, 1.0), 0.0); } double bDenom = b0 - b1; if (approximately_zero(bDenom)) { fT[1][0] = fT[1][1] = 0; } else { int bIn = aDenom * bDenom < 0; fT[1][bIn] = SkTMax(SkTMin((b0 - a0) / bDenom, 1.0), 0.0); fT[1][!bIn] = SkTMax(SkTMin((b0 - a1) / bDenom, 1.0), 0.0); } bool second = fabs(fT[0][0] - fT[0][1]) > FLT_EPSILON; SkASSERT((fabs(fT[1][0] - fT[1][1]) <= FLT_EPSILON) ^ second); return computePoints(a, 1 + second); } int SkIntersections::horizontal(const SkDLine& line, double y) { double min = line[0].fY; double max = line[1].fY; if (min > max) { SkTSwap(min, max); } if (min > y || max < y) { return fUsed = 0; } if (AlmostEqualUlps(min, max)) { fT[0][0] = 0; fT[0][1] = 1; return fUsed = 2; } fT[0][0] = (y - line[0].fY) / (line[1].fY - line[0].fY); return fUsed = 1; } int SkIntersections::horizontal(const SkDLine& line, double left, double right, double y, bool flipped) { int result = horizontal(line, y); switch (result) { case 0: break; case 1: { double xIntercept = line[0].fX + fT[0][0] * (line[1].fX - line[0].fX); if (!precisely_between(left, xIntercept, right)) { return fUsed = 0; } fT[1][0] = (xIntercept - left) / (right - left); break; } case 2: double a0 = line[0].fX; double a1 = line[1].fX; double b0 = flipped ? right : left; double b1 = flipped ? left : right; // FIXME: share common code below double at0 = (a0 - b0) / (a0 - a1); double at1 = (a0 - b1) / (a0 - a1); if ((at0 < 0 && at1 < 0) || (at0 > 1 && at1 > 1)) { return fUsed = 0; } fT[0][0] = SkTMax(SkTMin(at0, 1.0), 0.0); fT[0][1] = SkTMax(SkTMin(at1, 1.0), 0.0); int bIn = (a0 - a1) * (b0 - b1) < 0; fT[1][bIn] = SkTMax(SkTMin((b0 - a0) / (b0 - b1), 1.0), 0.0); fT[1][!bIn] = SkTMax(SkTMin((b0 - a1) / (b0 - b1), 1.0), 0.0); bool second = fabs(fT[0][0] - fT[0][1]) > FLT_EPSILON; SkASSERT((fabs(fT[1][0] - fT[1][1]) <= FLT_EPSILON) ^ second); return computePoints(line, 1 + second); } if (flipped) { // OPTIMIZATION: instead of swapping, pass original line, use [1].fX - [0].fX for (int index = 0; index < result; ++index) { fT[1][index] = 1 - fT[1][index]; } } return computePoints(line, result); } int SkIntersections::vertical(const SkDLine& line, double x) { double min = line[0].fX; double max = line[1].fX; if (min > max) { SkTSwap(min, max); } if (!precisely_between(min, x, max)) { return fUsed = 0; } if (AlmostEqualUlps(min, max)) { fT[0][0] = 0; fT[0][1] = 1; return fUsed = 2; } fT[0][0] = (x - line[0].fX) / (line[1].fX - line[0].fX); return fUsed = 1; } int SkIntersections::vertical(const SkDLine& line, double top, double bottom, double x, bool flipped) { int result = vertical(line, x); switch (result) { case 0: break; case 1: { double yIntercept = line[0].fY + fT[0][0] * (line[1].fY - line[0].fY); if (!precisely_between(top, yIntercept, bottom)) { return fUsed = 0; } fT[1][0] = (yIntercept - top) / (bottom - top); break; } case 2: double a0 = line[0].fY; double a1 = line[1].fY; double b0 = flipped ? bottom : top; double b1 = flipped ? top : bottom; // FIXME: share common code above double at0 = (a0 - b0) / (a0 - a1); double at1 = (a0 - b1) / (a0 - a1); if ((at0 < 0 && at1 < 0) || (at0 > 1 && at1 > 1)) { return fUsed = 0; } fT[0][0] = SkTMax(SkTMin(at0, 1.0), 0.0); fT[0][1] = SkTMax(SkTMin(at1, 1.0), 0.0); int bIn = (a0 - a1) * (b0 - b1) < 0; fT[1][bIn] = SkTMax(SkTMin((b0 - a0) / (b0 - b1), 1.0), 0.0); fT[1][!bIn] = SkTMax(SkTMin((b0 - a1) / (b0 - b1), 1.0), 0.0); bool second = fabs(fT[0][0] - fT[0][1]) > FLT_EPSILON; SkASSERT((fabs(fT[1][0] - fT[1][1]) <= FLT_EPSILON) ^ second); return computePoints(line, 1 + second); } if (flipped) { // OPTIMIZATION: instead of swapping, pass original line, use [1].fY - [0].fY for (int index = 0; index < result; ++index) { fT[1][index] = 1 - fT[1][index]; } } return computePoints(line, result); } // from http://www.bryceboe.com/wordpress/wp-content/uploads/2006/10/intersect.py // 4 subs, 2 muls, 1 cmp static bool ccw(const SkDPoint& A, const SkDPoint& B, const SkDPoint& C) { return (C.fY - A.fY) * (B.fX - A.fX) > (B.fY - A.fY) * (C.fX - A.fX); } // 16 subs, 8 muls, 6 cmps bool SkIntersections::Test(const SkDLine& a, const SkDLine& b) { return ccw(a[0], b[0], b[1]) != ccw(a[1], b[0], b[1]) && ccw(a[0], a[1], b[0]) != ccw(a[0], a[1], b[1]); }