/* * Copyright 2012 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "SkIntersections.h" #include "SkPathOpsCubic.h" #include "SkPathOpsLine.h" /* Find the interection of a line and cubic by solving for valid t values. Analogous to line-quadratic intersection, solve line-cubic intersection by representing the cubic as: x = a(1-t)^3 + 2b(1-t)^2t + c(1-t)t^2 + dt^3 y = e(1-t)^3 + 2f(1-t)^2t + g(1-t)t^2 + ht^3 and the line as: y = i*x + j (if the line is more horizontal) or: x = i*y + j (if the line is more vertical) Then using Mathematica, solve for the values of t where the cubic intersects the line: (in) Resultant[ a*(1 - t)^3 + 3*b*(1 - t)^2*t + 3*c*(1 - t)*t^2 + d*t^3 - x, e*(1 - t)^3 + 3*f*(1 - t)^2*t + 3*g*(1 - t)*t^2 + h*t^3 - i*x - j, x] (out) -e + j + 3 e t - 3 f t - 3 e t^2 + 6 f t^2 - 3 g t^2 + e t^3 - 3 f t^3 + 3 g t^3 - h t^3 + i ( a - 3 a t + 3 b t + 3 a t^2 - 6 b t^2 + 3 c t^2 - a t^3 + 3 b t^3 - 3 c t^3 + d t^3 ) if i goes to infinity, we can rewrite the line in terms of x. Mathematica: (in) Resultant[ a*(1 - t)^3 + 3*b*(1 - t)^2*t + 3*c*(1 - t)*t^2 + d*t^3 - i*y - j, e*(1 - t)^3 + 3*f*(1 - t)^2*t + 3*g*(1 - t)*t^2 + h*t^3 - y, y] (out) a - j - 3 a t + 3 b t + 3 a t^2 - 6 b t^2 + 3 c t^2 - a t^3 + 3 b t^3 - 3 c t^3 + d t^3 - i ( e - 3 e t + 3 f t + 3 e t^2 - 6 f t^2 + 3 g t^2 - e t^3 + 3 f t^3 - 3 g t^3 + h t^3 ) Solving this with Mathematica produces an expression with hundreds of terms; instead, use Numeric Solutions recipe to solve the cubic. The near-horizontal case, in terms of: Ax^3 + Bx^2 + Cx + D == 0 A = (-(-e + 3*f - 3*g + h) + i*(-a + 3*b - 3*c + d) ) B = 3*(-( e - 2*f + g ) + i*( a - 2*b + c ) ) C = 3*(-(-e + f ) + i*(-a + b ) ) D = (-( e ) + i*( a ) + j ) The near-vertical case, in terms of: Ax^3 + Bx^2 + Cx + D == 0 A = ( (-a + 3*b - 3*c + d) - i*(-e + 3*f - 3*g + h) ) B = 3*( ( a - 2*b + c ) - i*( e - 2*f + g ) ) C = 3*( (-a + b ) - i*(-e + f ) ) D = ( ( a ) - i*( e ) - j ) For horizontal lines: (in) Resultant[ a*(1 - t)^3 + 3*b*(1 - t)^2*t + 3*c*(1 - t)*t^2 + d*t^3 - j, e*(1 - t)^3 + 3*f*(1 - t)^2*t + 3*g*(1 - t)*t^2 + h*t^3 - y, y] (out) e - j - 3 e t + 3 f t + 3 e t^2 - 6 f t^2 + 3 g t^2 - e t^3 + 3 f t^3 - 3 g t^3 + h t^3 */ class LineCubicIntersections { public: LineCubicIntersections(const SkDCubic& c, const SkDLine& l, SkIntersections& i) : cubic(c) , line(l) , intersections(i) , fAllowNear(true) { } void allowNear(bool allow) { fAllowNear = allow; } // see parallel routine in line quadratic intersections int intersectRay(double roots[3]) { double adj = line[1].fX - line[0].fX; double opp = line[1].fY - line[0].fY; SkDCubic r; for (int n = 0; n < 4; ++n) { r[n].fX = (cubic[n].fY - line[0].fY) * adj - (cubic[n].fX - line[0].fX) * opp; } double A, B, C, D; SkDCubic::Coefficients(&r[0].fX, &A, &B, &C, &D); return SkDCubic::RootsValidT(A, B, C, D, roots); } int intersect() { addExactEndPoints(); double rootVals[3]; int roots = intersectRay(rootVals); for (int index = 0; index < roots; ++index) { double cubicT = rootVals[index]; double lineT = findLineT(cubicT); if (pinTs(&cubicT, &lineT)) { SkDPoint pt = line.xyAtT(lineT); #if ONE_OFF_DEBUG SkDPoint cPt = cubic.xyAtT(cubicT); SkDebugf("%s pt=(%1.9g,%1.9g) cPt=(%1.9g,%1.9g)\n", __FUNCTION__, pt.fX, pt.fY, cPt.fX, cPt.fY); #endif intersections.insert(cubicT, lineT, pt); } } if (fAllowNear) { addNearEndPoints(); } return intersections.used(); } int horizontalIntersect(double axisIntercept, double roots[3]) { double A, B, C, D; SkDCubic::Coefficients(&cubic[0].fY, &A, &B, &C, &D); D -= axisIntercept; return SkDCubic::RootsValidT(A, B, C, D, roots); } int horizontalIntersect(double axisIntercept, double left, double right, bool flipped) { addExactHorizontalEndPoints(left, right, axisIntercept); double rootVals[3]; int roots = horizontalIntersect(axisIntercept, rootVals); for (int index = 0; index < roots; ++index) { double cubicT = rootVals[index]; SkDPoint pt = cubic.xyAtT(cubicT); double lineT = (pt.fX - left) / (right - left); if (pinTs(&cubicT, &lineT)) { intersections.insert(cubicT, lineT, pt); } } if (fAllowNear) { addNearHorizontalEndPoints(left, right, axisIntercept); } if (flipped) { intersections.flip(); } return intersections.used(); } int verticalIntersect(double axisIntercept, double roots[3]) { double A, B, C, D; SkDCubic::Coefficients(&cubic[0].fX, &A, &B, &C, &D); D -= axisIntercept; return SkDCubic::RootsValidT(A, B, C, D, roots); } int verticalIntersect(double axisIntercept, double top, double bottom, bool flipped) { addExactVerticalEndPoints(top, bottom, axisIntercept); double rootVals[3]; int roots = verticalIntersect(axisIntercept, rootVals); for (int index = 0; index < roots; ++index) { double cubicT = rootVals[index]; SkDPoint pt = cubic.xyAtT(cubicT); double lineT = (pt.fY - top) / (bottom - top); if (pinTs(&cubicT, &lineT)) { intersections.insert(cubicT, lineT, pt); } } if (fAllowNear) { addNearVerticalEndPoints(top, bottom, axisIntercept); } if (flipped) { intersections.flip(); } return intersections.used(); } protected: void addExactEndPoints() { for (int cIndex = 0; cIndex < 4; cIndex += 3) { double lineT = line.exactPoint(cubic[cIndex]); if (lineT < 0) { continue; } double cubicT = (double) (cIndex >> 1); intersections.insert(cubicT, lineT, cubic[cIndex]); } } void addNearEndPoints() { for (int cIndex = 0; cIndex < 4; cIndex += 3) { double cubicT = (double) (cIndex >> 1); if (intersections.hasT(cubicT)) { continue; } double lineT = line.nearPoint(cubic[cIndex]); if (lineT < 0) { continue; } intersections.insert(cubicT, lineT, cubic[cIndex]); } } void addExactHorizontalEndPoints(double left, double right, double y) { for (int cIndex = 0; cIndex < 4; cIndex += 3) { double lineT = SkDLine::ExactPointH(cubic[cIndex], left, right, y); if (lineT < 0) { continue; } double cubicT = (double) (cIndex >> 1); intersections.insert(cubicT, lineT, cubic[cIndex]); } } void addNearHorizontalEndPoints(double left, double right, double y) { for (int cIndex = 0; cIndex < 4; cIndex += 3) { double cubicT = (double) (cIndex >> 1); if (intersections.hasT(cubicT)) { continue; } double lineT = SkDLine::NearPointH(cubic[cIndex], left, right, y); if (lineT < 0) { continue; } intersections.insert(cubicT, lineT, cubic[cIndex]); } // FIXME: see if line end is nearly on cubic } void addExactVerticalEndPoints(double top, double bottom, double x) { for (int cIndex = 0; cIndex < 4; cIndex += 3) { double lineT = SkDLine::ExactPointV(cubic[cIndex], top, bottom, x); if (lineT < 0) { continue; } double cubicT = (double) (cIndex >> 1); intersections.insert(cubicT, lineT, cubic[cIndex]); } } void addNearVerticalEndPoints(double top, double bottom, double x) { for (int cIndex = 0; cIndex < 4; cIndex += 3) { double cubicT = (double) (cIndex >> 1); if (intersections.hasT(cubicT)) { continue; } double lineT = SkDLine::NearPointV(cubic[cIndex], top, bottom, x); if (lineT < 0) { continue; } intersections.insert(cubicT, lineT, cubic[cIndex]); } // FIXME: see if line end is nearly on cubic } double findLineT(double t) { SkDPoint xy = cubic.xyAtT(t); double dx = line[1].fX - line[0].fX; double dy = line[1].fY - line[0].fY; if (fabs(dx) > fabs(dy)) { return (xy.fX - line[0].fX) / dx; } return (xy.fY - line[0].fY) / dy; } static bool pinTs(double* cubicT, double* lineT) { if (!approximately_one_or_less(*lineT)) { return false; } if (!approximately_zero_or_more(*lineT)) { return false; } if (precisely_less_than_zero(*cubicT)) { *cubicT = 0; } else if (precisely_greater_than_one(*cubicT)) { *cubicT = 1; } if (precisely_less_than_zero(*lineT)) { *lineT = 0; } else if (precisely_greater_than_one(*lineT)) { *lineT = 1; } return true; } private: const SkDCubic& cubic; const SkDLine& line; SkIntersections& intersections; bool fAllowNear; }; int SkIntersections::horizontal(const SkDCubic& cubic, double left, double right, double y, bool flipped) { LineCubicIntersections c(cubic, *(static_cast(0)), *this); return c.horizontalIntersect(y, left, right, flipped); } int SkIntersections::vertical(const SkDCubic& cubic, double top, double bottom, double x, bool flipped) { LineCubicIntersections c(cubic, *(static_cast(0)), *this); return c.verticalIntersect(x, top, bottom, flipped); } int SkIntersections::intersect(const SkDCubic& cubic, const SkDLine& line) { LineCubicIntersections c(cubic, line, *this); c.allowNear(fAllowNear); return c.intersect(); } int SkIntersections::intersectRay(const SkDCubic& cubic, const SkDLine& line) { LineCubicIntersections c(cubic, line, *this); fUsed = c.intersectRay(fT[0]); for (int index = 0; index < fUsed; ++index) { fPt[index] = cubic.xyAtT(fT[0][index]); } return fUsed; }