/* * Copyright 2012 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "SkIntersections.h" #include "SkPathOpsCubic.h" #include "SkPathOpsLine.h" #include "SkPathOpsPoint.h" #include "SkPathOpsQuad.h" #include "SkPathOpsRect.h" #include "SkReduceOrder.h" #include "SkTDArray.h" #include "SkTSort.h" #if ONE_OFF_DEBUG static const double tLimits1[2][2] = {{0.36, 0.37}, {0.63, 0.64}}; static const double tLimits2[2][2] = {{-0.865211397, -0.865215212}, {-0.865207696, -0.865208078}}; #endif #define DEBUG_QUAD_PART 0 #define SWAP_TOP_DEBUG 0 static int quadPart(const SkDCubic& cubic, double tStart, double tEnd, SkReduceOrder* reducer) { SkDCubic part = cubic.subDivide(tStart, tEnd); SkDQuad quad = part.toQuad(); // FIXME: should reduceOrder be looser in this use case if quartic is going to blow up on an // extremely shallow quadratic? int order = reducer->reduce(quad, SkReduceOrder::kFill_Style); #if DEBUG_QUAD_PART SkDebugf("%s cubic=(%1.17g,%1.17g %1.17g,%1.17g %1.17g,%1.17g %1.17g,%1.17g)" " t=(%1.17g,%1.17g)\n", __FUNCTION__, cubic[0].fX, cubic[0].fY, cubic[1].fX, cubic[1].fY, cubic[2].fX, cubic[2].fY, cubic[3].fX, cubic[3].fY, tStart, tEnd); SkDebugf("%s part=(%1.17g,%1.17g %1.17g,%1.17g %1.17g,%1.17g %1.17g,%1.17g)" " quad=(%1.17g,%1.17g %1.17g,%1.17g %1.17g,%1.17g)\n", __FUNCTION__, part[0].fX, part[0].fY, part[1].fX, part[1].fY, part[2].fX, part[2].fY, part[3].fX, part[3].fY, quad[0].fX, quad[0].fY, quad[1].fX, quad[1].fY, quad[2].fX, quad[2].fY); SkDebugf("%s simple=(%1.17g,%1.17g", __FUNCTION__, reducer->fQuad[0].fX, reducer->fQuad[0].fY); if (order > 1) { SkDebugf(" %1.17g,%1.17g", reducer->fQuad[1].fX, reducer->fQuad[1].fY); } if (order > 2) { SkDebugf(" %1.17g,%1.17g", reducer->fQuad[2].fX, reducer->fQuad[2].fY); } SkDebugf(")\n"); SkASSERT(order < 4 && order > 0); #endif return order; } static void intersectWithOrder(const SkDQuad& simple1, int order1, const SkDQuad& simple2, int order2, SkIntersections& i) { if (order1 == 3 && order2 == 3) { i.intersect(simple1, simple2); } else if (order1 <= 2 && order2 <= 2) { i.intersect((const SkDLine&) simple1, (const SkDLine&) simple2); } else if (order1 == 3 && order2 <= 2) { i.intersect(simple1, (const SkDLine&) simple2); } else { SkASSERT(order1 <= 2 && order2 == 3); i.intersect(simple2, (const SkDLine&) simple1); i.swapPts(); } } // this flavor centers potential intersections recursively. In contrast, '2' may inadvertently // chase intersections near quadratic ends, requiring odd hacks to find them. static void intersect(const SkDCubic& cubic1, double t1s, double t1e, const SkDCubic& cubic2, double t2s, double t2e, double precisionScale, SkIntersections& i) { i.upDepth(); SkDCubic c1 = cubic1.subDivide(t1s, t1e); SkDCubic c2 = cubic2.subDivide(t2s, t2e); SkTDArray ts1; // OPTIMIZE: if c1 == c2, call once (happens when detecting self-intersection) c1.toQuadraticTs(c1.calcPrecision() * precisionScale, &ts1); SkTDArray ts2; c2.toQuadraticTs(c2.calcPrecision() * precisionScale, &ts2); double t1Start = t1s; int ts1Count = ts1.count(); for (int i1 = 0; i1 <= ts1Count; ++i1) { const double tEnd1 = i1 < ts1Count ? ts1[i1] : 1; const double t1 = t1s + (t1e - t1s) * tEnd1; SkReduceOrder s1; int o1 = quadPart(cubic1, t1Start, t1, &s1); double t2Start = t2s; int ts2Count = ts2.count(); for (int i2 = 0; i2 <= ts2Count; ++i2) { const double tEnd2 = i2 < ts2Count ? ts2[i2] : 1; const double t2 = t2s + (t2e - t2s) * tEnd2; if (&cubic1 == &cubic2 && t1Start >= t2Start) { t2Start = t2; continue; } SkReduceOrder s2; int o2 = quadPart(cubic2, t2Start, t2, &s2); #if ONE_OFF_DEBUG char tab[] = " "; if (tLimits1[0][0] >= t1Start && tLimits1[0][1] <= t1 && tLimits1[1][0] >= t2Start && tLimits1[1][1] <= t2) { SkDebugf("%.*s %s t1=(%1.9g,%1.9g) t2=(%1.9g,%1.9g)", i.depth()*2, tab, __FUNCTION__, t1Start, t1, t2Start, t2); SkIntersections xlocals; intersectWithOrder(s1.fQuad, o1, s2.fQuad, o2, xlocals); SkDebugf(" xlocals.fUsed=%d\n", xlocals.used()); } #endif SkIntersections locals; intersectWithOrder(s1.fQuad, o1, s2.fQuad, o2, locals); double coStart[2] = { -1 }; SkDPoint coPoint; int tCount = locals.used(); for (int tIdx = 0; tIdx < tCount; ++tIdx) { double to1 = t1Start + (t1 - t1Start) * locals[0][tIdx]; double to2 = t2Start + (t2 - t2Start) * locals[1][tIdx]; // if the computed t is not sufficiently precise, iterate SkDPoint p1 = cubic1.xyAtT(to1); SkDPoint p2 = cubic2.xyAtT(to2); if (p1.approximatelyEqual(p2)) { if (locals.isCoincident(tIdx)) { if (coStart[0] < 0) { coStart[0] = to1; coStart[1] = to2; coPoint = p1; } else { i.insertCoincidentPair(coStart[0], to1, coStart[1], to2, coPoint, p1); coStart[0] = -1; } } else if (&cubic1 != &cubic2 || !approximately_equal(to1, to2)) { if (i.swapped()) { // FIXME: insert should respect swap i.insert(to2, to1, p1); } else { i.insert(to1, to2, p1); } } } else { double offset = precisionScale / 16; // FIME: const is arbitrary: test, refine double c1Bottom = tIdx == 0 ? 0 : (t1Start + (t1 - t1Start) * locals[0][tIdx - 1] + to1) / 2; double c1Min = SkTMax(c1Bottom, to1 - offset); double c1Top = tIdx == tCount - 1 ? 1 : (t1Start + (t1 - t1Start) * locals[0][tIdx + 1] + to1) / 2; double c1Max = SkTMin(c1Top, to1 + offset); double c2Min = SkTMax(0., to2 - offset); double c2Max = SkTMin(1., to2 + offset); #if ONE_OFF_DEBUG SkDebugf("%.*s %s 1 contains1=%d/%d contains2=%d/%d\n", i.depth()*2, tab, __FUNCTION__, c1Min <= tLimits1[0][1] && tLimits1[0][0] <= c1Max && c2Min <= tLimits1[1][1] && tLimits1[1][0] <= c2Max, to1 - offset <= tLimits1[0][1] && tLimits1[0][0] <= to1 + offset && to2 - offset <= tLimits1[1][1] && tLimits1[1][0] <= to2 + offset, c1Min <= tLimits2[0][1] && tLimits2[0][0] <= c1Max && c2Min <= tLimits2[1][1] && tLimits2[1][0] <= c2Max, to1 - offset <= tLimits2[0][1] && tLimits2[0][0] <= to1 + offset && to2 - offset <= tLimits2[1][1] && tLimits2[1][0] <= to2 + offset); SkDebugf("%.*s %s 1 c1Bottom=%1.9g c1Top=%1.9g c2Bottom=%1.9g c2Top=%1.9g" " 1-o=%1.9g 1+o=%1.9g 2-o=%1.9g 2+o=%1.9g offset=%1.9g\n", i.depth()*2, tab, __FUNCTION__, c1Bottom, c1Top, 0., 1., to1 - offset, to1 + offset, to2 - offset, to2 + offset, offset); SkDebugf("%.*s %s 1 to1=%1.9g to2=%1.9g c1Min=%1.9g c1Max=%1.9g c2Min=%1.9g" " c2Max=%1.9g\n", i.depth()*2, tab, __FUNCTION__, to1, to2, c1Min, c1Max, c2Min, c2Max); #endif intersect(cubic1, c1Min, c1Max, cubic2, c2Min, c2Max, offset, i); #if ONE_OFF_DEBUG SkDebugf("%.*s %s 1 i.used=%d t=%1.9g\n", i.depth()*2, tab, __FUNCTION__, i.used(), i.used() > 0 ? i[0][i.used() - 1] : -1); #endif if (tCount > 1) { c1Min = SkTMax(0., to1 - offset); c1Max = SkTMin(1., to1 + offset); double c2Bottom = tIdx == 0 ? to2 : (t2Start + (t2 - t2Start) * locals[1][tIdx - 1] + to2) / 2; double c2Top = tIdx == tCount - 1 ? to2 : (t2Start + (t2 - t2Start) * locals[1][tIdx + 1] + to2) / 2; if (c2Bottom > c2Top) { SkTSwap(c2Bottom, c2Top); } if (c2Bottom == to2) { c2Bottom = 0; } if (c2Top == to2) { c2Top = 1; } c2Min = SkTMax(c2Bottom, to2 - offset); c2Max = SkTMin(c2Top, to2 + offset); #if ONE_OFF_DEBUG SkDebugf("%.*s %s 2 contains1=%d/%d contains2=%d/%d\n", i.depth()*2, tab, __FUNCTION__, c1Min <= tLimits1[0][1] && tLimits1[0][0] <= c1Max && c2Min <= tLimits1[1][1] && tLimits1[1][0] <= c2Max, to1 - offset <= tLimits1[0][1] && tLimits1[0][0] <= to1 + offset && to2 - offset <= tLimits1[1][1] && tLimits1[1][0] <= to2 + offset, c1Min <= tLimits2[0][1] && tLimits2[0][0] <= c1Max && c2Min <= tLimits2[1][1] && tLimits2[1][0] <= c2Max, to1 - offset <= tLimits2[0][1] && tLimits2[0][0] <= to1 + offset && to2 - offset <= tLimits2[1][1] && tLimits2[1][0] <= to2 + offset); SkDebugf("%.*s %s 2 c1Bottom=%1.9g c1Top=%1.9g c2Bottom=%1.9g c2Top=%1.9g" " 1-o=%1.9g 1+o=%1.9g 2-o=%1.9g 2+o=%1.9g offset=%1.9g\n", i.depth()*2, tab, __FUNCTION__, 0., 1., c2Bottom, c2Top, to1 - offset, to1 + offset, to2 - offset, to2 + offset, offset); SkDebugf("%.*s %s 2 to1=%1.9g to2=%1.9g c1Min=%1.9g c1Max=%1.9g c2Min=%1.9g" " c2Max=%1.9g\n", i.depth()*2, tab, __FUNCTION__, to1, to2, c1Min, c1Max, c2Min, c2Max); #endif intersect(cubic1, c1Min, c1Max, cubic2, c2Min, c2Max, offset, i); #if ONE_OFF_DEBUG SkDebugf("%.*s %s 2 i.used=%d t=%1.9g\n", i.depth()*2, tab, __FUNCTION__, i.used(), i.used() > 0 ? i[0][i.used() - 1] : -1); #endif c1Min = SkTMax(c1Bottom, to1 - offset); c1Max = SkTMin(c1Top, to1 + offset); #if ONE_OFF_DEBUG SkDebugf("%.*s %s 3 contains1=%d/%d contains2=%d/%d\n", i.depth()*2, tab, __FUNCTION__, c1Min <= tLimits1[0][1] && tLimits1[0][0] <= c1Max && c2Min <= tLimits1[1][1] && tLimits1[1][0] <= c2Max, to1 - offset <= tLimits1[0][1] && tLimits1[0][0] <= to1 + offset && to2 - offset <= tLimits1[1][1] && tLimits1[1][0] <= to2 + offset, c1Min <= tLimits2[0][1] && tLimits2[0][0] <= c1Max && c2Min <= tLimits2[1][1] && tLimits2[1][0] <= c2Max, to1 - offset <= tLimits2[0][1] && tLimits2[0][0] <= to1 + offset && to2 - offset <= tLimits2[1][1] && tLimits2[1][0] <= to2 + offset); SkDebugf("%.*s %s 3 c1Bottom=%1.9g c1Top=%1.9g c2Bottom=%1.9g c2Top=%1.9g" " 1-o=%1.9g 1+o=%1.9g 2-o=%1.9g 2+o=%1.9g offset=%1.9g\n", i.depth()*2, tab, __FUNCTION__, 0., 1., c2Bottom, c2Top, to1 - offset, to1 + offset, to2 - offset, to2 + offset, offset); SkDebugf("%.*s %s 3 to1=%1.9g to2=%1.9g c1Min=%1.9g c1Max=%1.9g c2Min=%1.9g" " c2Max=%1.9g\n", i.depth()*2, tab, __FUNCTION__, to1, to2, c1Min, c1Max, c2Min, c2Max); #endif intersect(cubic1, c1Min, c1Max, cubic2, c2Min, c2Max, offset, i); #if ONE_OFF_DEBUG SkDebugf("%.*s %s 3 i.used=%d t=%1.9g\n", i.depth()*2, tab, __FUNCTION__, i.used(), i.used() > 0 ? i[0][i.used() - 1] : -1); #endif } intersect(cubic1, c1Min, c1Max, cubic2, c2Min, c2Max, offset, i); // FIXME: if no intersection is found, either quadratics intersected where // cubics did not, or the intersection was missed. In the former case, expect // the quadratics to be nearly parallel at the point of intersection, and check // for that. } } SkASSERT(coStart[0] == -1); t2Start = t2; } t1Start = t1; } i.downDepth(); } #define LINE_FRACTION 0.1 // intersect the end of the cubic with the other. Try lines from the end to control and opposite // end to determine range of t on opposite cubic. static void intersectEnd(const SkDCubic& cubic1, bool start, const SkDCubic& cubic2, const SkDRect& bounds2, SkIntersections& i) { SkDLine line; int t1Index = start ? 0 : 3; // don't bother if the two cubics are connnected #if 1 SkTDArray tVals; // OPTIMIZE: replace with hard-sized array line[0] = cubic1[t1Index]; // this variant looks for intersections with the end point and lines parallel to other points for (int index = 0; index < 4; ++index) { if (index == t1Index) { continue; } SkDVector dxy1 = cubic1[index] - line[0]; dxy1 /= SkDCubic::gPrecisionUnit; line[1] = line[0] + dxy1; SkDRect lineBounds; lineBounds.setBounds(line); if (!bounds2.intersects(&lineBounds)) { continue; } SkIntersections local; if (!local.intersect(cubic2, line)) { continue; } for (int idx2 = 0; idx2 < local.used(); ++idx2) { double foundT = local[0][idx2]; if (approximately_less_than_zero(foundT) || approximately_greater_than_one(foundT)) { continue; } if (local.pt(idx2).approximatelyEqual(line[0])) { if (i.swapped()) { // FIXME: insert should respect swap i.insert(foundT, start ? 0 : 1, line[0]); } else { i.insert(start ? 0 : 1, foundT, line[0]); } } else { *tVals.append() = foundT; } } } if (tVals.count() == 0) { return; } SkTQSort(tVals.begin(), tVals.end() - 1); double tMin1 = start ? 0 : 1 - LINE_FRACTION; double tMax1 = start ? LINE_FRACTION : 1; int tIdx = 0; do { int tLast = tIdx; while (tLast + 1 < tVals.count() && roughly_equal(tVals[tLast + 1], tVals[tIdx])) { ++tLast; } double tMin2 = SkTMax(tVals[tIdx] - LINE_FRACTION, 0.0); double tMax2 = SkTMin(tVals[tLast] + LINE_FRACTION, 1.0); int lastUsed = i.used(); intersect(cubic1, tMin1, tMax1, cubic2, tMin2, tMax2, 1, i); if (lastUsed == i.used()) { tMin2 = SkTMax(tVals[tIdx] - (1.0 / SkDCubic::gPrecisionUnit), 0.0); tMax2 = SkTMin(tVals[tLast] + (1.0 / SkDCubic::gPrecisionUnit), 1.0); intersect(cubic1, tMin1, tMax1, cubic2, tMin2, tMax2, 1, i); } tIdx = tLast + 1; } while (tIdx < tVals.count()); #else const SkDPoint& endPt = cubic1[t1Index]; if (!bounds2.contains(endPt)) { return; } // this variant looks for intersections within an 'x' of the endpoint double delta = SkTMax(bounds2.width(), bounds2.height()); for (int index = 0; index < 2; ++index) { if (index == 0) { line[0].fY = line[1].fY = endPt.fY; line[0].fX = endPt.fX - delta; line[1].fX = endPt.fX + delta; } else { line[0].fX = line[1].fX = cubic1[t1Index].fX; line[0].fY = endPt.fY - delta; line[1].fY = endPt.fY + delta; } SkIntersections local; local.intersectRay(cubic2, line); // OPTIMIZE: special for horizontal/vertical lines int used = local.used(); for (int index = 0; index < used; ++index) { double foundT = local[0][index]; if (approximately_less_than_zero(foundT) || approximately_greater_than_one(foundT)) { continue; } if (!local.pt(index).approximatelyEqual(endPt)) { continue; } if (i.swapped()) { // FIXME: insert should respect swap i.insert(foundT, start ? 0 : 1, endPt); } else { i.insert(start ? 0 : 1, foundT, endPt); } return; } } // the above doesn't catch when the end of the cubic missed the other cubic because the quad // approximation moved too far away, so something like the below is still needed. The enabled // code above tries to avoid this heavy lifting unless the convex hull intersected the cubic. double tMin1 = start ? 0 : 1 - LINE_FRACTION; double tMax1 = start ? LINE_FRACTION : 1; double tMin2 = SkTMax(foundT - LINE_FRACTION, 0.0); double tMax2 = SkTMin(foundT + LINE_FRACTION, 1.0); int lastUsed = i.used(); intersect(cubic1, tMin1, tMax1, cubic2, tMin2, tMax2, 1, i); if (lastUsed == i.used()) { tMin2 = SkTMax(foundT - (1.0 / SkDCubic::gPrecisionUnit), 0.0); tMax2 = SkTMin(foundT + (1.0 / SkDCubic::gPrecisionUnit), 1.0); intersect(cubic1, tMin1, tMax1, cubic2, tMin2, tMax2, 1, i); } #endif return; } const double CLOSE_ENOUGH = 0.001; static bool closeStart(const SkDCubic& cubic, int cubicIndex, SkIntersections& i, SkDPoint& pt) { if (i[cubicIndex][0] != 0 || i[cubicIndex][1] > CLOSE_ENOUGH) { return false; } pt = cubic.xyAtT((i[cubicIndex][0] + i[cubicIndex][1]) / 2); return true; } static bool closeEnd(const SkDCubic& cubic, int cubicIndex, SkIntersections& i, SkDPoint& pt) { int last = i.used() - 1; if (i[cubicIndex][last] != 1 || i[cubicIndex][last - 1] < 1 - CLOSE_ENOUGH) { return false; } pt = cubic.xyAtT((i[cubicIndex][last] + i[cubicIndex][last - 1]) / 2); return true; } int SkIntersections::intersect(const SkDCubic& c1, const SkDCubic& c2) { ::intersect(c1, 0, 1, c2, 0, 1, 1, *this); // FIXME: pass in cached bounds from caller SkDRect c1Bounds, c2Bounds; c1Bounds.setBounds(c1); // OPTIMIZE use setRawBounds ? c2Bounds.setBounds(c2); intersectEnd(c1, false, c2, c2Bounds, *this); intersectEnd(c1, true, c2, c2Bounds, *this); bool selfIntersect = &c1 == &c2; if (!selfIntersect) { swap(); intersectEnd(c2, false, c1, c1Bounds, *this); intersectEnd(c2, true, c1, c1Bounds, *this); swap(); } // If an end point and a second point very close to the end is returned, the second // point may have been detected because the approximate quads // intersected at the end and close to it. Verify that the second point is valid. if (fUsed <= 1 || coincidentUsed()) { return fUsed; } SkDPoint pt[2]; if (closeStart(c1, 0, *this, pt[0]) && closeStart(c2, 1, *this, pt[1]) && pt[0].approximatelyEqual(pt[1])) { removeOne(1); } if (closeEnd(c1, 0, *this, pt[0]) && closeEnd(c2, 1, *this, pt[1]) && pt[0].approximatelyEqual(pt[1])) { removeOne(used() - 2); } return fUsed; } // Up promote the quad to a cubic. // OPTIMIZATION If this is a common use case, optimize by duplicating // the intersect 3 loop to avoid the promotion / demotion code int SkIntersections::intersect(const SkDCubic& cubic, const SkDQuad& quad) { SkDCubic up = quad.toCubic(); (void) intersect(cubic, up); return used(); } /* http://www.ag.jku.at/compass/compasssample.pdf ( Self-Intersection Problems and Approximate Implicitization by Jan B. Thomassen Centre of Mathematics for Applications, University of Oslo http://www.cma.uio.no janbth@math.uio.no SINTEF Applied Mathematics http://www.sintef.no ) describes a method to find the self intersection of a cubic by taking the gradient of the implicit form dotted with the normal, and solving for the roots. My math foo is too poor to implement this.*/ int SkIntersections::intersect(const SkDCubic& c) { // check to see if x or y end points are the extrema. Are other quick rejects possible? if (c.endsAreExtremaInXOrY()) { return false; } (void) intersect(c, c); if (used() > 0) { SkASSERT(used() == 1); if (fT[0][0] > fT[1][0]) { swapPts(); } } return used(); }