/* * Copyright 2012 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "SkIntersections.h" #include "SkPathOpsCubic.h" #include "SkPathOpsLine.h" #include "SkPathOpsPoint.h" #include "SkPathOpsQuad.h" #include "SkPathOpsRect.h" #include "SkReduceOrder.h" #include "SkTSort.h" #if ONE_OFF_DEBUG static const double tLimits1[2][2] = {{0.3, 0.4}, {0.8, 0.9}}; static const double tLimits2[2][2] = {{-0.8, -0.9}, {-0.8, -0.9}}; #endif #define DEBUG_QUAD_PART ONE_OFF_DEBUG && 1 #define DEBUG_QUAD_PART_SHOW_SIMPLE DEBUG_QUAD_PART && 0 #define SWAP_TOP_DEBUG 0 static const int kCubicToQuadSubdivisionDepth = 8; // slots reserved for cubic to quads subdivision static int quadPart(const SkDCubic& cubic, double tStart, double tEnd, SkReduceOrder* reducer) { SkDCubic part = cubic.subDivide(tStart, tEnd); SkDQuad quad = part.toQuad(); // FIXME: should reduceOrder be looser in this use case if quartic is going to blow up on an // extremely shallow quadratic? int order = reducer->reduce(quad); #if DEBUG_QUAD_PART SkDebugf("%s cubic=(%1.9g,%1.9g %1.9g,%1.9g %1.9g,%1.9g %1.9g,%1.9g)" " t=(%1.9g,%1.9g)\n", __FUNCTION__, cubic[0].fX, cubic[0].fY, cubic[1].fX, cubic[1].fY, cubic[2].fX, cubic[2].fY, cubic[3].fX, cubic[3].fY, tStart, tEnd); SkDebugf(" {{%1.9g,%1.9g}, {%1.9g,%1.9g}, {%1.9g,%1.9g}, {%1.9g,%1.9g}},\n" " {{%1.9g,%1.9g}, {%1.9g,%1.9g}, {%1.9g,%1.9g}},\n", part[0].fX, part[0].fY, part[1].fX, part[1].fY, part[2].fX, part[2].fY, part[3].fX, part[3].fY, quad[0].fX, quad[0].fY, quad[1].fX, quad[1].fY, quad[2].fX, quad[2].fY); #if DEBUG_QUAD_PART_SHOW_SIMPLE SkDebugf("%s simple=(%1.9g,%1.9g", __FUNCTION__, reducer->fQuad[0].fX, reducer->fQuad[0].fY); if (order > 1) { SkDebugf(" %1.9g,%1.9g", reducer->fQuad[1].fX, reducer->fQuad[1].fY); } if (order > 2) { SkDebugf(" %1.9g,%1.9g", reducer->fQuad[2].fX, reducer->fQuad[2].fY); } SkDebugf(")\n"); SkASSERT(order < 4 && order > 0); #endif #endif return order; } static void intersectWithOrder(const SkDQuad& simple1, int order1, const SkDQuad& simple2, int order2, SkIntersections& i) { if (order1 == 3 && order2 == 3) { i.intersect(simple1, simple2); } else if (order1 <= 2 && order2 <= 2) { i.intersect((const SkDLine&) simple1, (const SkDLine&) simple2); } else if (order1 == 3 && order2 <= 2) { i.intersect(simple1, (const SkDLine&) simple2); } else { SkASSERT(order1 <= 2 && order2 == 3); i.intersect(simple2, (const SkDLine&) simple1); i.swapPts(); } } // this flavor centers potential intersections recursively. In contrast, '2' may inadvertently // chase intersections near quadratic ends, requiring odd hacks to find them. static void intersect(const SkDCubic& cubic1, double t1s, double t1e, const SkDCubic& cubic2, double t2s, double t2e, double precisionScale, SkIntersections& i) { i.upDepth(); SkDCubic c1 = cubic1.subDivide(t1s, t1e); SkDCubic c2 = cubic2.subDivide(t2s, t2e); SkSTArray ts1; // OPTIMIZE: if c1 == c2, call once (happens when detecting self-intersection) c1.toQuadraticTs(c1.calcPrecision() * precisionScale, &ts1); SkSTArray ts2; c2.toQuadraticTs(c2.calcPrecision() * precisionScale, &ts2); double t1Start = t1s; int ts1Count = ts1.count(); for (int i1 = 0; i1 <= ts1Count; ++i1) { const double tEnd1 = i1 < ts1Count ? ts1[i1] : 1; const double t1 = t1s + (t1e - t1s) * tEnd1; SkReduceOrder s1; int o1 = quadPart(cubic1, t1Start, t1, &s1); double t2Start = t2s; int ts2Count = ts2.count(); for (int i2 = 0; i2 <= ts2Count; ++i2) { const double tEnd2 = i2 < ts2Count ? ts2[i2] : 1; const double t2 = t2s + (t2e - t2s) * tEnd2; if (&cubic1 == &cubic2 && t1Start >= t2Start) { t2Start = t2; continue; } SkReduceOrder s2; int o2 = quadPart(cubic2, t2Start, t2, &s2); #if ONE_OFF_DEBUG char tab[] = " "; if (tLimits1[0][0] >= t1Start && tLimits1[0][1] <= t1 && tLimits1[1][0] >= t2Start && tLimits1[1][1] <= t2) { SkDebugf("%.*s %s t1=(%1.9g,%1.9g) t2=(%1.9g,%1.9g)", i.depth()*2, tab, __FUNCTION__, t1Start, t1, t2Start, t2); SkIntersections xlocals; xlocals.allowNear(false); intersectWithOrder(s1.fQuad, o1, s2.fQuad, o2, xlocals); SkDebugf(" xlocals.fUsed=%d\n", xlocals.used()); } #endif SkIntersections locals; locals.allowNear(false); intersectWithOrder(s1.fQuad, o1, s2.fQuad, o2, locals); int tCount = locals.used(); for (int tIdx = 0; tIdx < tCount; ++tIdx) { double to1 = t1Start + (t1 - t1Start) * locals[0][tIdx]; double to2 = t2Start + (t2 - t2Start) * locals[1][tIdx]; // if the computed t is not sufficiently precise, iterate SkDPoint p1 = cubic1.ptAtT(to1); SkDPoint p2 = cubic2.ptAtT(to2); if (p1.approximatelyEqual(p2)) { // FIXME: local edge may be coincident -- experiment with not propagating coincidence to caller // SkASSERT(!locals.isCoincident(tIdx)); if (&cubic1 != &cubic2 || !approximately_equal(to1, to2)) { if (i.swapped()) { // FIXME: insert should respect swap i.insert(to2, to1, p1); } else { i.insert(to1, to2, p1); } } } else { /*for random cubics, 16 below catches 99.997% of the intersections. To test for the remaining 0.003% look for nearly coincident curves. and check each 1/16th section. */ double offset = precisionScale / 16; // FIXME: const is arbitrary: test, refine double c1Bottom = tIdx == 0 ? 0 : (t1Start + (t1 - t1Start) * locals[0][tIdx - 1] + to1) / 2; double c1Min = SkTMax(c1Bottom, to1 - offset); double c1Top = tIdx == tCount - 1 ? 1 : (t1Start + (t1 - t1Start) * locals[0][tIdx + 1] + to1) / 2; double c1Max = SkTMin(c1Top, to1 + offset); double c2Min = SkTMax(0., to2 - offset); double c2Max = SkTMin(1., to2 + offset); #if ONE_OFF_DEBUG SkDebugf("%.*s %s 1 contains1=%d/%d contains2=%d/%d\n", i.depth()*2, tab, __FUNCTION__, c1Min <= tLimits1[0][1] && tLimits1[0][0] <= c1Max && c2Min <= tLimits1[1][1] && tLimits1[1][0] <= c2Max, to1 - offset <= tLimits1[0][1] && tLimits1[0][0] <= to1 + offset && to2 - offset <= tLimits1[1][1] && tLimits1[1][0] <= to2 + offset, c1Min <= tLimits2[0][1] && tLimits2[0][0] <= c1Max && c2Min <= tLimits2[1][1] && tLimits2[1][0] <= c2Max, to1 - offset <= tLimits2[0][1] && tLimits2[0][0] <= to1 + offset && to2 - offset <= tLimits2[1][1] && tLimits2[1][0] <= to2 + offset); SkDebugf("%.*s %s 1 c1Bottom=%1.9g c1Top=%1.9g c2Bottom=%1.9g c2Top=%1.9g" " 1-o=%1.9g 1+o=%1.9g 2-o=%1.9g 2+o=%1.9g offset=%1.9g\n", i.depth()*2, tab, __FUNCTION__, c1Bottom, c1Top, 0., 1., to1 - offset, to1 + offset, to2 - offset, to2 + offset, offset); SkDebugf("%.*s %s 1 to1=%1.9g to2=%1.9g c1Min=%1.9g c1Max=%1.9g c2Min=%1.9g" " c2Max=%1.9g\n", i.depth()*2, tab, __FUNCTION__, to1, to2, c1Min, c1Max, c2Min, c2Max); #endif intersect(cubic1, c1Min, c1Max, cubic2, c2Min, c2Max, offset, i); #if ONE_OFF_DEBUG SkDebugf("%.*s %s 1 i.used=%d t=%1.9g\n", i.depth()*2, tab, __FUNCTION__, i.used(), i.used() > 0 ? i[0][i.used() - 1] : -1); #endif if (tCount > 1) { c1Min = SkTMax(0., to1 - offset); c1Max = SkTMin(1., to1 + offset); double c2Bottom = tIdx == 0 ? to2 : (t2Start + (t2 - t2Start) * locals[1][tIdx - 1] + to2) / 2; double c2Top = tIdx == tCount - 1 ? to2 : (t2Start + (t2 - t2Start) * locals[1][tIdx + 1] + to2) / 2; if (c2Bottom > c2Top) { SkTSwap(c2Bottom, c2Top); } if (c2Bottom == to2) { c2Bottom = 0; } if (c2Top == to2) { c2Top = 1; } c2Min = SkTMax(c2Bottom, to2 - offset); c2Max = SkTMin(c2Top, to2 + offset); #if ONE_OFF_DEBUG SkDebugf("%.*s %s 2 contains1=%d/%d contains2=%d/%d\n", i.depth()*2, tab, __FUNCTION__, c1Min <= tLimits1[0][1] && tLimits1[0][0] <= c1Max && c2Min <= tLimits1[1][1] && tLimits1[1][0] <= c2Max, to1 - offset <= tLimits1[0][1] && tLimits1[0][0] <= to1 + offset && to2 - offset <= tLimits1[1][1] && tLimits1[1][0] <= to2 + offset, c1Min <= tLimits2[0][1] && tLimits2[0][0] <= c1Max && c2Min <= tLimits2[1][1] && tLimits2[1][0] <= c2Max, to1 - offset <= tLimits2[0][1] && tLimits2[0][0] <= to1 + offset && to2 - offset <= tLimits2[1][1] && tLimits2[1][0] <= to2 + offset); SkDebugf("%.*s %s 2 c1Bottom=%1.9g c1Top=%1.9g c2Bottom=%1.9g c2Top=%1.9g" " 1-o=%1.9g 1+o=%1.9g 2-o=%1.9g 2+o=%1.9g offset=%1.9g\n", i.depth()*2, tab, __FUNCTION__, 0., 1., c2Bottom, c2Top, to1 - offset, to1 + offset, to2 - offset, to2 + offset, offset); SkDebugf("%.*s %s 2 to1=%1.9g to2=%1.9g c1Min=%1.9g c1Max=%1.9g c2Min=%1.9g" " c2Max=%1.9g\n", i.depth()*2, tab, __FUNCTION__, to1, to2, c1Min, c1Max, c2Min, c2Max); #endif intersect(cubic1, c1Min, c1Max, cubic2, c2Min, c2Max, offset, i); #if ONE_OFF_DEBUG SkDebugf("%.*s %s 2 i.used=%d t=%1.9g\n", i.depth()*2, tab, __FUNCTION__, i.used(), i.used() > 0 ? i[0][i.used() - 1] : -1); #endif c1Min = SkTMax(c1Bottom, to1 - offset); c1Max = SkTMin(c1Top, to1 + offset); #if ONE_OFF_DEBUG SkDebugf("%.*s %s 3 contains1=%d/%d contains2=%d/%d\n", i.depth()*2, tab, __FUNCTION__, c1Min <= tLimits1[0][1] && tLimits1[0][0] <= c1Max && c2Min <= tLimits1[1][1] && tLimits1[1][0] <= c2Max, to1 - offset <= tLimits1[0][1] && tLimits1[0][0] <= to1 + offset && to2 - offset <= tLimits1[1][1] && tLimits1[1][0] <= to2 + offset, c1Min <= tLimits2[0][1] && tLimits2[0][0] <= c1Max && c2Min <= tLimits2[1][1] && tLimits2[1][0] <= c2Max, to1 - offset <= tLimits2[0][1] && tLimits2[0][0] <= to1 + offset && to2 - offset <= tLimits2[1][1] && tLimits2[1][0] <= to2 + offset); SkDebugf("%.*s %s 3 c1Bottom=%1.9g c1Top=%1.9g c2Bottom=%1.9g c2Top=%1.9g" " 1-o=%1.9g 1+o=%1.9g 2-o=%1.9g 2+o=%1.9g offset=%1.9g\n", i.depth()*2, tab, __FUNCTION__, 0., 1., c2Bottom, c2Top, to1 - offset, to1 + offset, to2 - offset, to2 + offset, offset); SkDebugf("%.*s %s 3 to1=%1.9g to2=%1.9g c1Min=%1.9g c1Max=%1.9g c2Min=%1.9g" " c2Max=%1.9g\n", i.depth()*2, tab, __FUNCTION__, to1, to2, c1Min, c1Max, c2Min, c2Max); #endif intersect(cubic1, c1Min, c1Max, cubic2, c2Min, c2Max, offset, i); #if ONE_OFF_DEBUG SkDebugf("%.*s %s 3 i.used=%d t=%1.9g\n", i.depth()*2, tab, __FUNCTION__, i.used(), i.used() > 0 ? i[0][i.used() - 1] : -1); #endif } // intersect(cubic1, c1Min, c1Max, cubic2, c2Min, c2Max, offset, i); // FIXME: if no intersection is found, either quadratics intersected where // cubics did not, or the intersection was missed. In the former case, expect // the quadratics to be nearly parallel at the point of intersection, and check // for that. } } t2Start = t2; } t1Start = t1; } i.downDepth(); } // if two ends intersect, check middle for coincidence bool SkIntersections::cubicCheckCoincidence(const SkDCubic& c1, const SkDCubic& c2) { if (fUsed < 2) { return false; } int last = fUsed - 1; double tRange1 = fT[0][last] - fT[0][0]; double tRange2 = fT[1][last] - fT[1][0]; for (int index = 1; index < 5; ++index) { double testT1 = fT[0][0] + tRange1 * index / 5; double testT2 = fT[1][0] + tRange2 * index / 5; SkDPoint testPt1 = c1.ptAtT(testT1); SkDPoint testPt2 = c2.ptAtT(testT2); if (!testPt1.approximatelyEqual(testPt2)) { return false; } } if (fUsed > 2) { fPt[1] = fPt[last]; fT[0][1] = fT[0][last]; fT[1][1] = fT[1][last]; fUsed = 2; } fIsCoincident[0] = fIsCoincident[1] = 0x03; return true; } #define LINE_FRACTION 0.1 // intersect the end of the cubic with the other. Try lines from the end to control and opposite // end to determine range of t on opposite cubic. bool SkIntersections::cubicExactEnd(const SkDCubic& cubic1, bool start, const SkDCubic& cubic2) { int t1Index = start ? 0 : 3; double testT = (double) !start; bool swap = swapped(); // quad/quad at this point checks to see if exact matches have already been found // cubic/cubic can't reject so easily since cubics can intersect same point more than once SkDLine tmpLine; tmpLine[0] = tmpLine[1] = cubic2[t1Index]; tmpLine[1].fX += cubic2[2 - start].fY - cubic2[t1Index].fY; tmpLine[1].fY -= cubic2[2 - start].fX - cubic2[t1Index].fX; SkIntersections impTs; impTs.allowNear(false); impTs.intersectRay(cubic1, tmpLine); for (int index = 0; index < impTs.used(); ++index) { SkDPoint realPt = impTs.pt(index); if (!tmpLine[0].approximatelyEqual(realPt)) { continue; } if (swap) { insert(testT, impTs[0][index], tmpLine[0]); } else { insert(impTs[0][index], testT, tmpLine[0]); } return true; } return false; } void SkIntersections::cubicNearEnd(const SkDCubic& cubic1, bool start, const SkDCubic& cubic2, const SkDRect& bounds2) { SkDLine line; int t1Index = start ? 0 : 3; double testT = (double) !start; // don't bother if the two cubics are connnected static const int kPointsInCubic = 4; // FIXME: move to DCubic, replace '4' with this static const int kMaxLineCubicIntersections = 3; SkSTArray<(kMaxLineCubicIntersections - 1) * kMaxLineCubicIntersections, double, true> tVals; line[0] = cubic1[t1Index]; // this variant looks for intersections with the end point and lines parallel to other points for (int index = 0; index < kPointsInCubic; ++index) { if (index == t1Index) { continue; } SkDVector dxy1 = cubic1[index] - line[0]; dxy1 /= SkDCubic::gPrecisionUnit; line[1] = line[0] + dxy1; SkDRect lineBounds; lineBounds.setBounds(line); if (!bounds2.intersects(&lineBounds)) { continue; } SkIntersections local; if (!local.intersect(cubic2, line)) { continue; } for (int idx2 = 0; idx2 < local.used(); ++idx2) { double foundT = local[0][idx2]; if (approximately_less_than_zero(foundT) || approximately_greater_than_one(foundT)) { continue; } if (local.pt(idx2).approximatelyEqual(line[0])) { if (swapped()) { // FIXME: insert should respect swap insert(foundT, testT, line[0]); } else { insert(testT, foundT, line[0]); } } else { tVals.push_back(foundT); } } } if (tVals.count() == 0) { return; } SkTQSort(tVals.begin(), tVals.end() - 1); double tMin1 = start ? 0 : 1 - LINE_FRACTION; double tMax1 = start ? LINE_FRACTION : 1; int tIdx = 0; do { int tLast = tIdx; while (tLast + 1 < tVals.count() && roughly_equal(tVals[tLast + 1], tVals[tIdx])) { ++tLast; } double tMin2 = SkTMax(tVals[tIdx] - LINE_FRACTION, 0.0); double tMax2 = SkTMin(tVals[tLast] + LINE_FRACTION, 1.0); int lastUsed = used(); ::intersect(cubic1, tMin1, tMax1, cubic2, tMin2, tMax2, 1, *this); if (lastUsed == used()) { tMin2 = SkTMax(tVals[tIdx] - (1.0 / SkDCubic::gPrecisionUnit), 0.0); tMax2 = SkTMin(tVals[tLast] + (1.0 / SkDCubic::gPrecisionUnit), 1.0); ::intersect(cubic1, tMin1, tMax1, cubic2, tMin2, tMax2, 1, *this); } tIdx = tLast + 1; } while (tIdx < tVals.count()); return; } const double CLOSE_ENOUGH = 0.001; static bool closeStart(const SkDCubic& cubic, int cubicIndex, SkIntersections& i, SkDPoint& pt) { if (i[cubicIndex][0] != 0 || i[cubicIndex][1] > CLOSE_ENOUGH) { return false; } pt = cubic.ptAtT((i[cubicIndex][0] + i[cubicIndex][1]) / 2); return true; } static bool closeEnd(const SkDCubic& cubic, int cubicIndex, SkIntersections& i, SkDPoint& pt) { int last = i.used() - 1; if (i[cubicIndex][last] != 1 || i[cubicIndex][last - 1] < 1 - CLOSE_ENOUGH) { return false; } pt = cubic.ptAtT((i[cubicIndex][last] + i[cubicIndex][last - 1]) / 2); return true; } static bool only_end_pts_in_common(const SkDCubic& c1, const SkDCubic& c2) { // the idea here is to see at minimum do a quick reject by rotating all points // to either side of the line formed by connecting the endpoints // if the opposite curves points are on the line or on the other side, the // curves at most intersect at the endpoints for (int oddMan = 0; oddMan < 4; ++oddMan) { const SkDPoint* endPt[3]; for (int opp = 1; opp < 4; ++opp) { int end = oddMan ^ opp; // choose a value not equal to oddMan endPt[opp - 1] = &c1[end]; } for (int triTest = 0; triTest < 3; ++triTest) { double origX = endPt[triTest]->fX; double origY = endPt[triTest]->fY; int oppTest = triTest + 1; if (3 == oppTest) { oppTest = 0; } double adj = endPt[oppTest]->fX - origX; double opp = endPt[oppTest]->fY - origY; double sign = (c1[oddMan].fY - origY) * adj - (c1[oddMan].fX - origX) * opp; if (approximately_zero(sign)) { goto tryNextHalfPlane; } for (int n = 0; n < 4; ++n) { double test = (c2[n].fY - origY) * adj - (c2[n].fX - origX) * opp; if (test * sign > 0 && !precisely_zero(test)) { goto tryNextHalfPlane; } } } return true; tryNextHalfPlane: ; } return false; } int SkIntersections::intersect(const SkDCubic& c1, const SkDCubic& c2) { if (fMax == 0) { fMax = 9; } bool selfIntersect = &c1 == &c2; if (selfIntersect) { if (c1[0].approximatelyEqual(c1[3])) { insert(0, 1, c1[0]); return fUsed; } } else { // OPTIMIZATION: set exact end bits here to avoid cubic exact end later for (int i1 = 0; i1 < 4; i1 += 3) { for (int i2 = 0; i2 < 4; i2 += 3) { if (c1[i1].approximatelyEqual(c2[i2])) { insert(i1 >> 1, i2 >> 1, c1[i1]); } } } } SkASSERT(fUsed < 4); if (!selfIntersect) { if (only_end_pts_in_common(c1, c2)) { return fUsed; } if (only_end_pts_in_common(c2, c1)) { return fUsed; } } // quad/quad does linear test here -- cubic does not // cubics which are really lines should have been detected in reduce step earlier int exactEndBits = 0; if (selfIntersect) { if (fUsed) { return fUsed; } } else { exactEndBits |= cubicExactEnd(c1, false, c2) << 0; exactEndBits |= cubicExactEnd(c1, true, c2) << 1; swap(); exactEndBits |= cubicExactEnd(c2, false, c1) << 2; exactEndBits |= cubicExactEnd(c2, true, c1) << 3; swap(); } if (cubicCheckCoincidence(c1, c2)) { SkASSERT(!selfIntersect); return fUsed; } // FIXME: pass in cached bounds from caller SkDRect c2Bounds; c2Bounds.setBounds(c2); if (!(exactEndBits & 4)) { cubicNearEnd(c1, false, c2, c2Bounds); } if (!(exactEndBits & 8)) { cubicNearEnd(c1, true, c2, c2Bounds); } if (!selfIntersect) { SkDRect c1Bounds; c1Bounds.setBounds(c1); // OPTIMIZE use setRawBounds ? swap(); if (!(exactEndBits & 1)) { cubicNearEnd(c2, false, c1, c1Bounds); } if (!(exactEndBits & 2)) { cubicNearEnd(c2, true, c1, c1Bounds); } swap(); } if (cubicCheckCoincidence(c1, c2)) { SkASSERT(!selfIntersect); return fUsed; } SkIntersections i; i.fAllowNear = false; i.fMax = 9; ::intersect(c1, 0, 1, c2, 0, 1, 1, i); int compCount = i.used(); if (compCount) { int exactCount = used(); if (exactCount == 0) { set(i); } else { // at least one is exact or near, and at least one was computed. Eliminate duplicates for (int exIdx = 0; exIdx < exactCount; ++exIdx) { for (int cpIdx = 0; cpIdx < compCount; ) { if (fT[0][0] == i[0][0] && fT[1][0] == i[1][0]) { i.removeOne(cpIdx); --compCount; continue; } double tAvg = (fT[0][exIdx] + i[0][cpIdx]) / 2; SkDPoint pt = c1.ptAtT(tAvg); if (!pt.approximatelyEqual(fPt[exIdx])) { ++cpIdx; continue; } tAvg = (fT[1][exIdx] + i[1][cpIdx]) / 2; pt = c2.ptAtT(tAvg); if (!pt.approximatelyEqual(fPt[exIdx])) { ++cpIdx; continue; } i.removeOne(cpIdx); --compCount; } } // if mid t evaluates to nearly the same point, skip the t for (int cpIdx = 0; cpIdx < compCount - 1; ) { double tAvg = (fT[0][cpIdx] + i[0][cpIdx + 1]) / 2; SkDPoint pt = c1.ptAtT(tAvg); if (!pt.approximatelyEqual(fPt[cpIdx])) { ++cpIdx; continue; } tAvg = (fT[1][cpIdx] + i[1][cpIdx + 1]) / 2; pt = c2.ptAtT(tAvg); if (!pt.approximatelyEqual(fPt[cpIdx])) { ++cpIdx; continue; } i.removeOne(cpIdx); --compCount; } // in addition to adding below missing function, think about how to say append(i); } } // If an end point and a second point very close to the end is returned, the second // point may have been detected because the approximate quads // intersected at the end and close to it. Verify that the second point is valid. if (fUsed <= 1) { return fUsed; } SkDPoint pt[2]; if (closeStart(c1, 0, *this, pt[0]) && closeStart(c2, 1, *this, pt[1]) && pt[0].approximatelyEqual(pt[1])) { removeOne(1); } if (closeEnd(c1, 0, *this, pt[0]) && closeEnd(c2, 1, *this, pt[1]) && pt[0].approximatelyEqual(pt[1])) { removeOne(used() - 2); } // vet the pairs of t values to see if the mid value is also on the curve. If so, mark // the span as coincident if (fUsed >= 2 && !coincidentUsed()) { int last = fUsed - 1; int match = 0; for (int index = 0; index < last; ++index) { double mid1 = (fT[0][index] + fT[0][index + 1]) / 2; double mid2 = (fT[1][index] + fT[1][index + 1]) / 2; pt[0] = c1.ptAtT(mid1); pt[1] = c2.ptAtT(mid2); if (pt[0].approximatelyEqual(pt[1])) { match |= 1 << index; } } if (match) { #if DEBUG_CONCIDENT if (((match + 1) & match) != 0) { SkDebugf("%s coincident hole\n", __FUNCTION__); } #endif // for now, assume that everything from start to finish is coincident if (fUsed > 2) { fPt[1] = fPt[last]; fT[0][1] = fT[0][last]; fT[1][1] = fT[1][last]; fIsCoincident[0] = 0x03; fIsCoincident[1] = 0x03; fUsed = 2; } } } return fUsed; } // Up promote the quad to a cubic. // OPTIMIZATION If this is a common use case, optimize by duplicating // the intersect 3 loop to avoid the promotion / demotion code int SkIntersections::intersect(const SkDCubic& cubic, const SkDQuad& quad) { fMax = 6; SkDCubic up = quad.toCubic(); (void) intersect(cubic, up); return used(); } /* http://www.ag.jku.at/compass/compasssample.pdf ( Self-Intersection Problems and Approximate Implicitization by Jan B. Thomassen Centre of Mathematics for Applications, University of Oslo http://www.cma.uio.no janbth@math.uio.no SINTEF Applied Mathematics http://www.sintef.no ) describes a method to find the self intersection of a cubic by taking the gradient of the implicit form dotted with the normal, and solving for the roots. My math foo is too poor to implement this.*/ int SkIntersections::intersect(const SkDCubic& c) { fMax = 1; // check to see if x or y end points are the extrema. Are other quick rejects possible? if (c.endsAreExtremaInXOrY()) { return false; } (void) intersect(c, c); if (used() > 0) { SkASSERT(used() == 1); if (fT[0][0] > fT[1][0]) { swapPts(); } } return used(); }