#include "SkColorPriv.h" #include "SkColor_opts_SSE2.h" #include "SkMathPriv.h" #include "SkXfermode.h" #include "SkXfermode_opts_SSE2.h" #include "SkXfermode_proccoeff.h" //////////////////////////////////////////////////////////////////////////////// // 4 pixels SSE2 version functions //////////////////////////////////////////////////////////////////////////////// static inline __m128i SkDiv255Round_SSE2(const __m128i& a) { __m128i prod = _mm_add_epi32(a, _mm_set1_epi32(128)); // prod += 128; prod = _mm_add_epi32(prod, _mm_srli_epi32(prod, 8)); // prod + (prod >> 8) prod = _mm_srli_epi32(prod, 8); // >> 8 return prod; } static inline __m128i saturated_add_SSE2(const __m128i& a, const __m128i& b) { __m128i sum = _mm_add_epi32(a, b); __m128i cmp = _mm_cmpgt_epi32(sum, _mm_set1_epi32(255)); sum = _mm_or_si128(_mm_and_si128(cmp, _mm_set1_epi32(255)), _mm_andnot_si128(cmp, sum)); return sum; } static inline __m128i clamp_div255round_SSE2(const __m128i& prod) { // test if > 0 __m128i cmp1 = _mm_cmpgt_epi32(prod, _mm_setzero_si128()); // test if < 255*255 __m128i cmp2 = _mm_cmplt_epi32(prod, _mm_set1_epi32(255*255)); __m128i ret = _mm_setzero_si128(); // if value >= 255*255, value = 255 ret = _mm_andnot_si128(cmp2, _mm_set1_epi32(255)); __m128i div = SkDiv255Round_SSE2(prod); // test if > 0 && < 255*255 __m128i cmp = _mm_and_si128(cmp1, cmp2); ret = _mm_or_si128(_mm_and_si128(cmp, div), _mm_andnot_si128(cmp, ret)); return ret; } static __m128i srcover_modeproc_SSE2(const __m128i& src, const __m128i& dst) { __m128i isa = _mm_sub_epi32(_mm_set1_epi32(256), SkGetPackedA32_SSE2(src)); return _mm_add_epi32(src, SkAlphaMulQ_SSE2(dst, isa)); } static __m128i dstover_modeproc_SSE2(const __m128i& src, const __m128i& dst) { __m128i ida = _mm_sub_epi32(_mm_set1_epi32(256), SkGetPackedA32_SSE2(dst)); return _mm_add_epi32(dst, SkAlphaMulQ_SSE2(src, ida)); } static __m128i srcin_modeproc_SSE2(const __m128i& src, const __m128i& dst) { __m128i da = SkGetPackedA32_SSE2(dst); return SkAlphaMulQ_SSE2(src, SkAlpha255To256_SSE2(da)); } static __m128i dstin_modeproc_SSE2(const __m128i& src, const __m128i& dst) { __m128i sa = SkGetPackedA32_SSE2(src); return SkAlphaMulQ_SSE2(dst, SkAlpha255To256_SSE2(sa)); } static __m128i srcout_modeproc_SSE2(const __m128i& src, const __m128i& dst) { __m128i ida = _mm_sub_epi32(_mm_set1_epi32(256), SkGetPackedA32_SSE2(dst)); return SkAlphaMulQ_SSE2(src, ida); } static __m128i dstout_modeproc_SSE2(const __m128i& src, const __m128i& dst) { __m128i isa = _mm_sub_epi32(_mm_set1_epi32(256), SkGetPackedA32_SSE2(src)); return SkAlphaMulQ_SSE2(dst, isa); } static __m128i srcatop_modeproc_SSE2(const __m128i& src, const __m128i& dst) { __m128i sa = SkGetPackedA32_SSE2(src); __m128i da = SkGetPackedA32_SSE2(dst); __m128i isa = _mm_sub_epi32(_mm_set1_epi32(255), sa); __m128i a = da; __m128i r1 = SkAlphaMulAlpha_SSE2(da, SkGetPackedR32_SSE2(src)); __m128i r2 = SkAlphaMulAlpha_SSE2(isa, SkGetPackedR32_SSE2(dst)); __m128i r = _mm_add_epi32(r1, r2); __m128i g1 = SkAlphaMulAlpha_SSE2(da, SkGetPackedG32_SSE2(src)); __m128i g2 = SkAlphaMulAlpha_SSE2(isa, SkGetPackedG32_SSE2(dst)); __m128i g = _mm_add_epi32(g1, g2); __m128i b1 = SkAlphaMulAlpha_SSE2(da, SkGetPackedB32_SSE2(src)); __m128i b2 = SkAlphaMulAlpha_SSE2(isa, SkGetPackedB32_SSE2(dst)); __m128i b = _mm_add_epi32(b1, b2); return SkPackARGB32_SSE2(a, r, g, b); } static __m128i dstatop_modeproc_SSE2(const __m128i& src, const __m128i& dst) { __m128i sa = SkGetPackedA32_SSE2(src); __m128i da = SkGetPackedA32_SSE2(dst); __m128i ida = _mm_sub_epi32(_mm_set1_epi32(255), da); __m128i a = sa; __m128i r1 = SkAlphaMulAlpha_SSE2(ida, SkGetPackedR32_SSE2(src)); __m128i r2 = SkAlphaMulAlpha_SSE2(sa, SkGetPackedR32_SSE2(dst)); __m128i r = _mm_add_epi32(r1, r2); __m128i g1 = SkAlphaMulAlpha_SSE2(ida, SkGetPackedG32_SSE2(src)); __m128i g2 = SkAlphaMulAlpha_SSE2(sa, SkGetPackedG32_SSE2(dst)); __m128i g = _mm_add_epi32(g1, g2); __m128i b1 = SkAlphaMulAlpha_SSE2(ida, SkGetPackedB32_SSE2(src)); __m128i b2 = SkAlphaMulAlpha_SSE2(sa, SkGetPackedB32_SSE2(dst)); __m128i b = _mm_add_epi32(b1, b2); return SkPackARGB32_SSE2(a, r, g, b); } static __m128i xor_modeproc_SSE2(const __m128i& src, const __m128i& dst) { __m128i sa = SkGetPackedA32_SSE2(src); __m128i da = SkGetPackedA32_SSE2(dst); __m128i isa = _mm_sub_epi32(_mm_set1_epi32(255), sa); __m128i ida = _mm_sub_epi32(_mm_set1_epi32(255), da); __m128i a1 = _mm_add_epi32(sa, da); __m128i a2 = SkAlphaMulAlpha_SSE2(sa, da); a2 = _mm_slli_epi32(a2, 1); __m128i a = _mm_sub_epi32(a1, a2); __m128i r1 = SkAlphaMulAlpha_SSE2(ida, SkGetPackedR32_SSE2(src)); __m128i r2 = SkAlphaMulAlpha_SSE2(isa, SkGetPackedR32_SSE2(dst)); __m128i r = _mm_add_epi32(r1, r2); __m128i g1 = SkAlphaMulAlpha_SSE2(ida, SkGetPackedG32_SSE2(src)); __m128i g2 = SkAlphaMulAlpha_SSE2(isa, SkGetPackedG32_SSE2(dst)); __m128i g = _mm_add_epi32(g1, g2); __m128i b1 = SkAlphaMulAlpha_SSE2(ida, SkGetPackedB32_SSE2(src)); __m128i b2 = SkAlphaMulAlpha_SSE2(isa, SkGetPackedB32_SSE2(dst)); __m128i b = _mm_add_epi32(b1, b2); return SkPackARGB32_SSE2(a, r, g, b); } static __m128i plus_modeproc_SSE2(const __m128i& src, const __m128i& dst) { __m128i b = saturated_add_SSE2(SkGetPackedB32_SSE2(src), SkGetPackedB32_SSE2(dst)); __m128i g = saturated_add_SSE2(SkGetPackedG32_SSE2(src), SkGetPackedG32_SSE2(dst)); __m128i r = saturated_add_SSE2(SkGetPackedR32_SSE2(src), SkGetPackedR32_SSE2(dst)); __m128i a = saturated_add_SSE2(SkGetPackedA32_SSE2(src), SkGetPackedA32_SSE2(dst)); return SkPackARGB32_SSE2(a, r, g, b); } static __m128i modulate_modeproc_SSE2(const __m128i& src, const __m128i& dst) { __m128i a = SkAlphaMulAlpha_SSE2(SkGetPackedA32_SSE2(src), SkGetPackedA32_SSE2(dst)); __m128i r = SkAlphaMulAlpha_SSE2(SkGetPackedR32_SSE2(src), SkGetPackedR32_SSE2(dst)); __m128i g = SkAlphaMulAlpha_SSE2(SkGetPackedG32_SSE2(src), SkGetPackedG32_SSE2(dst)); __m128i b = SkAlphaMulAlpha_SSE2(SkGetPackedB32_SSE2(src), SkGetPackedB32_SSE2(dst)); return SkPackARGB32_SSE2(a, r, g, b); } static inline __m128i srcover_byte_SSE2(const __m128i& a, const __m128i& b) { // a + b - SkAlphaMulAlpha(a, b); return _mm_sub_epi32(_mm_add_epi32(a, b), SkAlphaMulAlpha_SSE2(a, b)); } static inline __m128i blendfunc_multiply_byte_SSE2(const __m128i& sc, const __m128i& dc, const __m128i& sa, const __m128i& da) { // sc * (255 - da) __m128i ret1 = _mm_sub_epi32(_mm_set1_epi32(255), da); ret1 = _mm_mullo_epi16(sc, ret1); // dc * (255 - sa) __m128i ret2 = _mm_sub_epi32(_mm_set1_epi32(255), sa); ret2 = _mm_mullo_epi16(dc, ret2); // sc * dc __m128i ret3 = _mm_mullo_epi16(sc, dc); __m128i ret = _mm_add_epi32(ret1, ret2); ret = _mm_add_epi32(ret, ret3); return clamp_div255round_SSE2(ret); } static __m128i multiply_modeproc_SSE2(const __m128i& src, const __m128i& dst) { __m128i sa = SkGetPackedA32_SSE2(src); __m128i da = SkGetPackedA32_SSE2(dst); __m128i a = srcover_byte_SSE2(sa, da); __m128i sr = SkGetPackedR32_SSE2(src); __m128i dr = SkGetPackedR32_SSE2(dst); __m128i r = blendfunc_multiply_byte_SSE2(sr, dr, sa, da); __m128i sg = SkGetPackedG32_SSE2(src); __m128i dg = SkGetPackedG32_SSE2(dst); __m128i g = blendfunc_multiply_byte_SSE2(sg, dg, sa, da); __m128i sb = SkGetPackedB32_SSE2(src); __m128i db = SkGetPackedB32_SSE2(dst); __m128i b = blendfunc_multiply_byte_SSE2(sb, db, sa, da); return SkPackARGB32_SSE2(a, r, g, b); } static __m128i screen_modeproc_SSE2(const __m128i& src, const __m128i& dst) { __m128i a = srcover_byte_SSE2(SkGetPackedA32_SSE2(src), SkGetPackedA32_SSE2(dst)); __m128i r = srcover_byte_SSE2(SkGetPackedR32_SSE2(src), SkGetPackedR32_SSE2(dst)); __m128i g = srcover_byte_SSE2(SkGetPackedG32_SSE2(src), SkGetPackedG32_SSE2(dst)); __m128i b = srcover_byte_SSE2(SkGetPackedB32_SSE2(src), SkGetPackedB32_SSE2(dst)); return SkPackARGB32_SSE2(a, r, g, b); } //////////////////////////////////////////////////////////////////////////////// typedef __m128i (*SkXfermodeProcSIMD)(const __m128i& src, const __m128i& dst); extern SkXfermodeProcSIMD gSSE2XfermodeProcs[]; SkSSE2ProcCoeffXfermode::SkSSE2ProcCoeffXfermode(SkReadBuffer& buffer) : INHERITED(buffer) { fProcSIMD = reinterpret_cast(gSSE2XfermodeProcs[this->getMode()]); } void SkSSE2ProcCoeffXfermode::xfer32(SkPMColor dst[], const SkPMColor src[], int count, const SkAlpha aa[]) const { SkASSERT(dst && src && count >= 0); SkXfermodeProc proc = this->getProc(); SkXfermodeProcSIMD procSIMD = reinterpret_cast(fProcSIMD); SkASSERT(procSIMD != NULL); if (NULL == aa) { if (count >= 4) { while (((size_t)dst & 0x0F) != 0) { *dst = proc(*src, *dst); dst++; src++; count--; } const __m128i* s = reinterpret_cast(src); __m128i* d = reinterpret_cast<__m128i*>(dst); while (count >= 4) { __m128i src_pixel = _mm_loadu_si128(s++); __m128i dst_pixel = _mm_load_si128(d); dst_pixel = procSIMD(src_pixel, dst_pixel); _mm_store_si128(d++, dst_pixel); count -= 4; } src = reinterpret_cast(s); dst = reinterpret_cast(d); } for (int i = count - 1; i >= 0; --i) { *dst = proc(*src, *dst); dst++; src++; } } else { for (int i = count - 1; i >= 0; --i) { unsigned a = aa[i]; if (0 != a) { SkPMColor dstC = dst[i]; SkPMColor C = proc(src[i], dstC); if (a != 0xFF) { C = SkFourByteInterp(C, dstC, a); } dst[i] = C; } } } } void SkSSE2ProcCoeffXfermode::xfer16(uint16_t dst[], const SkPMColor src[], int count, const SkAlpha aa[]) const { SkASSERT(dst && src && count >= 0); SkXfermodeProc proc = this->getProc(); SkXfermodeProcSIMD procSIMD = reinterpret_cast(fProcSIMD); SkASSERT(procSIMD != NULL); if (NULL == aa) { if (count >= 8) { while (((size_t)dst & 0x0F) != 0) { SkPMColor dstC = SkPixel16ToPixel32(*dst); *dst = SkPixel32ToPixel16_ToU16(proc(*src, dstC)); dst++; src++; count--; } const __m128i* s = reinterpret_cast(src); __m128i* d = reinterpret_cast<__m128i*>(dst); while (count >= 8) { __m128i src_pixel1 = _mm_loadu_si128(s++); __m128i src_pixel2 = _mm_loadu_si128(s++); __m128i dst_pixel = _mm_load_si128(d); __m128i dst_pixel1 = _mm_unpacklo_epi16(dst_pixel, _mm_setzero_si128()); __m128i dst_pixel2 = _mm_unpackhi_epi16(dst_pixel, _mm_setzero_si128()); __m128i dstC1 = SkPixel16ToPixel32_SSE2(dst_pixel1); __m128i dstC2 = SkPixel16ToPixel32_SSE2(dst_pixel2); dst_pixel1 = procSIMD(src_pixel1, dstC1); dst_pixel2 = procSIMD(src_pixel2, dstC2); dst_pixel = SkPixel32ToPixel16_ToU16_SSE2(dst_pixel1, dst_pixel2); _mm_store_si128(d++, dst_pixel); count -= 8; } src = reinterpret_cast(s); dst = reinterpret_cast(d); } for (int i = count - 1; i >= 0; --i) { SkPMColor dstC = SkPixel16ToPixel32(*dst); *dst = SkPixel32ToPixel16_ToU16(proc(*src, dstC)); dst++; src++; } } else { for (int i = count - 1; i >= 0; --i) { unsigned a = aa[i]; if (0 != a) { SkPMColor dstC = SkPixel16ToPixel32(dst[i]); SkPMColor C = proc(src[i], dstC); if (0xFF != a) { C = SkFourByteInterp(C, dstC, a); } dst[i] = SkPixel32ToPixel16_ToU16(C); } } } } #ifndef SK_IGNORE_TO_STRING void SkSSE2ProcCoeffXfermode::toString(SkString* str) const { this->INHERITED::toString(str); } #endif //////////////////////////////////////////////////////////////////////////////// // 4 pixels modeprocs with SSE2 SkXfermodeProcSIMD gSSE2XfermodeProcs[] = { NULL, // kClear_Mode NULL, // kSrc_Mode NULL, // kDst_Mode srcover_modeproc_SSE2, dstover_modeproc_SSE2, srcin_modeproc_SSE2, dstin_modeproc_SSE2, srcout_modeproc_SSE2, dstout_modeproc_SSE2, srcatop_modeproc_SSE2, dstatop_modeproc_SSE2, xor_modeproc_SSE2, plus_modeproc_SSE2, modulate_modeproc_SSE2, screen_modeproc_SSE2, NULL, // kOverlay_Mode NULL, // kDarken_Mode NULL, // kLighten_Mode NULL, // kColorDodge_Mode NULL, // kColorBurn_Mode NULL, // kHardLight_Mode NULL, // kSoftLight_Mode NULL, // kDifference_Mode NULL, // kExclusion_Mode multiply_modeproc_SSE2, NULL, // kHue_Mode NULL, // kSaturation_Mode NULL, // kColor_Mode NULL, // kLuminosity_Mode }; SkProcCoeffXfermode* SkPlatformXfermodeFactory_impl_SSE2(const ProcCoeff& rec, SkXfermode::Mode mode) { void* procSIMD = reinterpret_cast(gSSE2XfermodeProcs[mode]); if (procSIMD != NULL) { return SkNEW_ARGS(SkSSE2ProcCoeffXfermode, (rec, mode, procSIMD)); } return NULL; }