/* * Copyright 2015 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #ifndef Sk4pxXfermode_DEFINED #define Sk4pxXfermode_DEFINED #include "Sk4px.h" #include "SkNx.h" #include "SkXfermode_proccoeff.h" namespace { // Most xfermodes can be done most efficiently 4 pixels at a time in 8 or 16-bit fixed point. #define XFERMODE(Name) static Sk4px SK_VECTORCALL Name(Sk4px s, Sk4px d) XFERMODE(Clear) { return Sk4px::DupPMColor(0); } XFERMODE(Src) { return s; } XFERMODE(Dst) { return d; } XFERMODE(SrcIn) { return s.approxMulDiv255(d.alphas() ); } XFERMODE(SrcOut) { return s.approxMulDiv255(d.alphas().inv()); } XFERMODE(SrcOver) { return s + d.approxMulDiv255(s.alphas().inv()); } XFERMODE(DstIn) { return SrcIn (d,s); } XFERMODE(DstOut) { return SrcOut (d,s); } XFERMODE(DstOver) { return SrcOver(d,s); } // [ S * Da + (1 - Sa) * D] XFERMODE(SrcATop) { return (s * d.alphas() + d * s.alphas().inv()).div255(); } XFERMODE(DstATop) { return SrcATop(d,s); } //[ S * (1 - Da) + (1 - Sa) * D ] XFERMODE(Xor) { return (s * d.alphas().inv() + d * s.alphas().inv()).div255(); } // [S + D ] XFERMODE(Plus) { return s.saturatedAdd(d); } // [S * D ] XFERMODE(Modulate) { return s.approxMulDiv255(d); } // [S + D - S * D] XFERMODE(Screen) { // Doing the math as S + (1-S)*D or S + (D - S*D) means the add and subtract can be done // in 8-bit space without overflow. S + (1-S)*D is a touch faster because inv() is cheap. return s + d.approxMulDiv255(s.inv()); } XFERMODE(Multiply) { return (s * d.alphas().inv() + d * s.alphas().inv() + s*d).div255(); } // [ Sa + Da - Sa*Da, Sc + Dc - 2*min(Sc*Da, Dc*Sa) ] (And notice Sa*Da == min(Sa*Da, Da*Sa).) XFERMODE(Difference) { auto m = Sk4px::Wide::Min(s * d.alphas(), d * s.alphas()).div255(); // There's no chance of underflow, and if we subtract m before adding s+d, no overflow. return (s - m) + (d - m.zeroAlphas()); } // [ Sa + Da - Sa*Da, Sc + Dc - 2*Sc*Dc ] XFERMODE(Exclusion) { auto p = s.approxMulDiv255(d); // There's no chance of underflow, and if we subtract p before adding src+dst, no overflow. return (s - p) + (d - p.zeroAlphas()); } // We take care to use exact math for these next few modes where alphas // and colors are calculated using significantly different math. We need // to preserve premul invariants, and exact math makes this easier. // // TODO: Some of these implementations might be able to be sped up a bit // while maintaining exact math, but let's follow up with that. XFERMODE(HardLight) { auto sa = s.alphas(), da = d.alphas(); auto srcover = s + (d * sa.inv()).div255(); auto isLite = ((sa-s) < s).widenLoHi(); auto lite = sa*da - ((da-d)*(sa-s) << 1), dark = s*d << 1, both = s*da.inv() + d*sa.inv(); auto alphas = srcover; auto colors = (both + isLite.thenElse(lite, dark)).div255(); return alphas.zeroColors() + colors.zeroAlphas(); } XFERMODE(Overlay) { return HardLight(d,s); } XFERMODE(Darken) { auto sa = s.alphas(), da = d.alphas(); auto sda = (s*da).div255(), dsa = (d*sa).div255(); auto srcover = s + (d * sa.inv()).div255(), dstover = d + (s * da.inv()).div255(); auto alphas = srcover, colors = (sda < dsa).thenElse(srcover, dstover); return alphas.zeroColors() + colors.zeroAlphas(); } XFERMODE(Lighten) { auto sa = s.alphas(), da = d.alphas(); auto sda = (s*da).div255(), dsa = (d*sa).div255(); auto srcover = s + (d * sa.inv()).div255(), dstover = d + (s * da.inv()).div255(); auto alphas = srcover, colors = (dsa < sda).thenElse(srcover, dstover); return alphas.zeroColors() + colors.zeroAlphas(); } #undef XFERMODE // Some xfermodes use math like divide or sqrt that's best done in floats 1 pixel at a time. #define XFERMODE(Name) static Sk4f SK_VECTORCALL Name(Sk4f d, Sk4f s) static inline Sk4f a_rgb(const Sk4f& a, const Sk4f& rgb) { static_assert(SK_A32_SHIFT == 24, ""); return a * Sk4f(0,0,0,1) + rgb * Sk4f(1,1,1,0); } static inline Sk4f alphas(const Sk4f& f) { return SkNx_dup(f); } XFERMODE(ColorDodge) { auto sa = alphas(s), da = alphas(d), isa = Sk4f(1)-sa, ida = Sk4f(1)-da; auto srcover = s + d*isa, dstover = d + s*ida, otherwise = sa * Sk4f::Min(da, (d*sa)*(sa-s).approxInvert()) + s*ida + d*isa; // Order matters here, preferring d==0 over s==sa. auto colors = (d == Sk4f(0)).thenElse(dstover, (s == sa).thenElse(srcover, otherwise)); return a_rgb(srcover, colors); } XFERMODE(ColorBurn) { auto sa = alphas(s), da = alphas(d), isa = Sk4f(1)-sa, ida = Sk4f(1)-da; auto srcover = s + d*isa, dstover = d + s*ida, otherwise = sa*(da-Sk4f::Min(da, (da-d)*sa*s.approxInvert())) + s*ida + d*isa; // Order matters here, preferring d==da over s==0. auto colors = (d == da).thenElse(dstover, (s == Sk4f(0)).thenElse(srcover, otherwise)); return a_rgb(srcover, colors); } XFERMODE(SoftLight) { auto sa = alphas(s), da = alphas(d), isa = Sk4f(1)-sa, ida = Sk4f(1)-da; // Some common terms. auto m = (da > Sk4f(0)).thenElse(d / da, Sk4f(0)), s2 = Sk4f(2)*s, m4 = Sk4f(4)*m; // The logic forks three ways: // 1. dark src? // 2. light src, dark dst? // 3. light src, light dst? auto darkSrc = d*(sa + (s2 - sa)*(Sk4f(1) - m)), // Used in case 1. darkDst = (m4*m4 + m4)*(m - Sk4f(1)) + Sk4f(7)*m, // Used in case 2. liteDst = m.sqrt() - m, // Used in case 3. liteSrc = d*sa + da*(s2-sa)*(Sk4f(4)*d <= da).thenElse(darkDst, liteDst); // Case 2 or 3? auto alpha = s + d*isa; auto colors = s*ida + d*isa + (s2 <= sa).thenElse(darkSrc, liteSrc); // Case 1 or 2/3? return a_rgb(alpha, colors); } #undef XFERMODE // A reasonable fallback mode for doing AA is to simply apply the transfermode first, // then linearly interpolate the AA. template static Sk4px SK_VECTORCALL xfer_aa(Sk4px s, Sk4px d, Sk4px aa) { Sk4px bw = Mode(s, d); return (bw * aa + d * aa.inv()).div255(); } // For some transfermodes we specialize AA, either for correctness or performance. #define XFERMODE_AA(Name) \ template <> Sk4px SK_VECTORCALL xfer_aa(Sk4px s, Sk4px d, Sk4px aa) // Plus' clamp needs to happen after AA. skia:3852 XFERMODE_AA(Plus) { // [ clamp( (1-AA)D + (AA)(S+D) ) == clamp(D + AA*S) ] return d.saturatedAdd(s.approxMulDiv255(aa)); } #undef XFERMODE_AA class Sk4pxXfermode : public SkProcCoeffXfermode { public: typedef Sk4px (SK_VECTORCALL *Proc4)(Sk4px, Sk4px); typedef Sk4px (SK_VECTORCALL *AAProc4)(Sk4px, Sk4px, Sk4px); Sk4pxXfermode(const ProcCoeff& rec, SkXfermode::Mode mode, Proc4 proc4, AAProc4 aaproc4) : INHERITED(rec, mode) , fProc4(proc4) , fAAProc4(aaproc4) {} void xfer32(SkPMColor dst[], const SkPMColor src[], int n, const SkAlpha aa[]) const override { if (nullptr == aa) { Sk4px::MapDstSrc(n, dst, src, [&](const Sk4px& dst4, const Sk4px& src4) { return fProc4(src4, dst4); }); } else { Sk4px::MapDstSrcAlpha(n, dst, src, aa, [&](const Sk4px& dst4, const Sk4px& src4, const Sk4px& alpha) { return fAAProc4(src4, dst4, alpha); }); } } void xfer16(uint16_t dst[], const SkPMColor src[], int n, const SkAlpha aa[]) const override { if (nullptr == aa) { Sk4px::MapDstSrc(n, dst, src, [&](const Sk4px& dst4, const Sk4px& src4) { return fProc4(src4, dst4); }); } else { Sk4px::MapDstSrcAlpha(n, dst, src, aa, [&](const Sk4px& dst4, const Sk4px& src4, const Sk4px& alpha) { return fAAProc4(src4, dst4, alpha); }); } } private: Proc4 fProc4; AAProc4 fAAProc4; typedef SkProcCoeffXfermode INHERITED; }; class Sk4fXfermode : public SkProcCoeffXfermode { public: typedef Sk4f (SK_VECTORCALL *ProcF)(Sk4f, Sk4f); Sk4fXfermode(const ProcCoeff& rec, SkXfermode::Mode mode, ProcF procf) : INHERITED(rec, mode) , fProcF(procf) {} void xfer32(SkPMColor dst[], const SkPMColor src[], int n, const SkAlpha aa[]) const override { for (int i = 0; i < n; i++) { dst[i] = aa ? this->xfer32(dst[i], src[i], aa[i]) : this->xfer32(dst[i], src[i]); } } void xfer16(uint16_t dst[], const SkPMColor src[], int n, const SkAlpha aa[]) const override { for (int i = 0; i < n; i++) { SkPMColor dst32 = SkPixel16ToPixel32(dst[i]); dst32 = aa ? this->xfer32(dst32, src[i], aa[i]) : this->xfer32(dst32, src[i]); dst[i] = SkPixel32ToPixel16(dst32); } } private: static Sk4f Load(SkPMColor c) { return Sk4f::FromBytes((uint8_t*)&c) * Sk4f(1.0f/255); } static SkPMColor Round(const Sk4f& f) { SkPMColor c; (f * Sk4f(255) + Sk4f(0.5f)).toBytes((uint8_t*)&c); return c; } inline SkPMColor xfer32(SkPMColor dst, SkPMColor src) const { return Round(fProcF(Load(dst), Load(src))); } inline SkPMColor xfer32(SkPMColor dst, SkPMColor src, SkAlpha aa) const { Sk4f s(Load(src)), d(Load(dst)), b(fProcF(d,s)); // We do aa in full float precision before going back down to bytes, because we can! Sk4f a = Sk4f(aa) * Sk4f(1.0f/255); b = b*a + d*(Sk4f(1)-a); return Round(b); } ProcF fProcF; typedef SkProcCoeffXfermode INHERITED; }; } // namespace namespace SK_OPTS_NS { static SkXfermode* create_xfermode(const ProcCoeff& rec, SkXfermode::Mode mode) { switch (mode) { #define CASE(Mode) \ case SkXfermode::k##Mode##_Mode: return new Sk4pxXfermode(rec, mode, &Mode, &xfer_aa) CASE(Clear); CASE(Src); CASE(Dst); CASE(SrcOver); CASE(DstOver); CASE(SrcIn); CASE(DstIn); CASE(SrcOut); CASE(DstOut); CASE(SrcATop); CASE(DstATop); CASE(Xor); CASE(Plus); CASE(Modulate); CASE(Screen); CASE(Multiply); CASE(Difference); CASE(Exclusion); CASE(HardLight); CASE(Overlay); CASE(Darken); CASE(Lighten); #undef CASE #define CASE(Mode) \ case SkXfermode::k##Mode##_Mode: return new Sk4fXfermode(rec, mode, &Mode) CASE(ColorDodge); CASE(ColorBurn); CASE(SoftLight); #undef CASE default: break; } return nullptr; } } // namespace SK_OPTS_NS #endif//Sk4pxXfermode_DEFINED