/* * Copyright 2015 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #ifndef SkNx_sse_DEFINED #define SkNx_sse_DEFINED #include "SkCpu.h" // This file may assume <= SSE2, but must check SK_CPU_SSE_LEVEL for anything more recent. // If you do, make sure this is in a static inline function... anywhere else risks violating ODR. #define SKNX_IS_FAST template <> class SkNx<2, float> { public: SkNx(const __m128& vec) : fVec(vec) {} SkNx() {} SkNx(float val) : fVec(_mm_set1_ps(val)) {} static SkNx Load(const void* ptr) { return _mm_castsi128_ps(_mm_loadl_epi64((const __m128i*)ptr)); } SkNx(float a, float b) : fVec(_mm_setr_ps(a,b,0,0)) {} void store(void* ptr) const { _mm_storel_pi((__m64*)ptr, fVec); } SkNx operator + (const SkNx& o) const { return _mm_add_ps(fVec, o.fVec); } SkNx operator - (const SkNx& o) const { return _mm_sub_ps(fVec, o.fVec); } SkNx operator * (const SkNx& o) const { return _mm_mul_ps(fVec, o.fVec); } SkNx operator / (const SkNx& o) const { return _mm_div_ps(fVec, o.fVec); } SkNx operator == (const SkNx& o) const { return _mm_cmpeq_ps (fVec, o.fVec); } SkNx operator != (const SkNx& o) const { return _mm_cmpneq_ps(fVec, o.fVec); } SkNx operator < (const SkNx& o) const { return _mm_cmplt_ps (fVec, o.fVec); } SkNx operator > (const SkNx& o) const { return _mm_cmpgt_ps (fVec, o.fVec); } SkNx operator <= (const SkNx& o) const { return _mm_cmple_ps (fVec, o.fVec); } SkNx operator >= (const SkNx& o) const { return _mm_cmpge_ps (fVec, o.fVec); } static SkNx Min(const SkNx& l, const SkNx& r) { return _mm_min_ps(l.fVec, r.fVec); } static SkNx Max(const SkNx& l, const SkNx& r) { return _mm_max_ps(l.fVec, r.fVec); } SkNx sqrt() const { return _mm_sqrt_ps (fVec); } SkNx rsqrt() const { return _mm_rsqrt_ps(fVec); } SkNx invert() const { return _mm_rcp_ps(fVec); } float operator[](int k) const { SkASSERT(0 <= k && k < 2); union { __m128 v; float fs[4]; } pun = {fVec}; return pun.fs[k&1]; } bool allTrue() const { return 0xff == (_mm_movemask_epi8(_mm_castps_si128(fVec)) & 0xff); } bool anyTrue() const { return 0x00 != (_mm_movemask_epi8(_mm_castps_si128(fVec)) & 0xff); } __m128 fVec; }; template <> class SkNx<4, float> { public: SkNx(const __m128& vec) : fVec(vec) {} SkNx() {} SkNx(float val) : fVec( _mm_set1_ps(val) ) {} static SkNx Load(const void* ptr) { return _mm_loadu_ps((const float*)ptr); } SkNx(float a, float b, float c, float d) : fVec(_mm_setr_ps(a,b,c,d)) {} void store(void* ptr) const { _mm_storeu_ps((float*)ptr, fVec); } SkNx operator + (const SkNx& o) const { return _mm_add_ps(fVec, o.fVec); } SkNx operator - (const SkNx& o) const { return _mm_sub_ps(fVec, o.fVec); } SkNx operator * (const SkNx& o) const { return _mm_mul_ps(fVec, o.fVec); } SkNx operator / (const SkNx& o) const { return _mm_div_ps(fVec, o.fVec); } SkNx operator == (const SkNx& o) const { return _mm_cmpeq_ps (fVec, o.fVec); } SkNx operator != (const SkNx& o) const { return _mm_cmpneq_ps(fVec, o.fVec); } SkNx operator < (const SkNx& o) const { return _mm_cmplt_ps (fVec, o.fVec); } SkNx operator > (const SkNx& o) const { return _mm_cmpgt_ps (fVec, o.fVec); } SkNx operator <= (const SkNx& o) const { return _mm_cmple_ps (fVec, o.fVec); } SkNx operator >= (const SkNx& o) const { return _mm_cmpge_ps (fVec, o.fVec); } static SkNx Min(const SkNx& l, const SkNx& r) { return _mm_min_ps(l.fVec, r.fVec); } static SkNx Max(const SkNx& l, const SkNx& r) { return _mm_max_ps(l.fVec, r.fVec); } SkNx abs() const { return _mm_andnot_ps(_mm_set1_ps(-0.0f), fVec); } SkNx floor() const { if (SkCpu::Supports(SkCpu::SSE41)) { __m128 r; #if defined(__GNUC__) || defined(__clang__) asm("roundps $0x1, %[fVec], %[r]" : [r]"=x"(r) : [fVec]"x"(fVec)); #else r = _mm_floor_ps(fVec); #endif return r; } // Emulate _mm_floor_ps() with SSE2: // - roundtrip through integers via truncation // - subtract 1 if that's too big (possible for negative values). // This restricts the domain of our inputs to a maximum somehwere around 2^31. // Seems plenty big. __m128 roundtrip = _mm_cvtepi32_ps(_mm_cvttps_epi32(fVec)); __m128 too_big = _mm_cmpgt_ps(roundtrip, fVec); return _mm_sub_ps(roundtrip, _mm_and_ps(too_big, _mm_set1_ps(1.0f))); } SkNx sqrt() const { return _mm_sqrt_ps (fVec); } SkNx rsqrt() const { return _mm_rsqrt_ps(fVec); } SkNx invert() const { return _mm_rcp_ps(fVec); } float operator[](int k) const { SkASSERT(0 <= k && k < 4); union { __m128 v; float fs[4]; } pun = {fVec}; return pun.fs[k&3]; } bool allTrue() const { return 0xffff == _mm_movemask_epi8(_mm_castps_si128(fVec)); } bool anyTrue() const { return 0x0000 != _mm_movemask_epi8(_mm_castps_si128(fVec)); } SkNx thenElse(const SkNx& t, const SkNx& e) const { return _mm_or_ps(_mm_and_ps (fVec, t.fVec), _mm_andnot_ps(fVec, e.fVec)); } __m128 fVec; }; template <> class SkNx<4, int> { public: SkNx(const __m128i& vec) : fVec(vec) {} SkNx() {} SkNx(int val) : fVec(_mm_set1_epi32(val)) {} static SkNx Load(const void* ptr) { return _mm_loadu_si128((const __m128i*)ptr); } SkNx(int a, int b, int c, int d) : fVec(_mm_setr_epi32(a,b,c,d)) {} void store(void* ptr) const { _mm_storeu_si128((__m128i*)ptr, fVec); } SkNx operator + (const SkNx& o) const { return _mm_add_epi32(fVec, o.fVec); } SkNx operator - (const SkNx& o) const { return _mm_sub_epi32(fVec, o.fVec); } SkNx operator * (const SkNx& o) const { __m128i mul20 = _mm_mul_epu32(fVec, o.fVec), mul31 = _mm_mul_epu32(_mm_srli_si128(fVec, 4), _mm_srli_si128(o.fVec, 4)); return _mm_unpacklo_epi32(_mm_shuffle_epi32(mul20, _MM_SHUFFLE(0,0,2,0)), _mm_shuffle_epi32(mul31, _MM_SHUFFLE(0,0,2,0))); } SkNx operator << (int bits) const { return _mm_slli_epi32(fVec, bits); } SkNx operator >> (int bits) const { return _mm_srai_epi32(fVec, bits); } int operator[](int k) const { SkASSERT(0 <= k && k < 4); union { __m128i v; int is[4]; } pun = {fVec}; return pun.is[k&3]; } __m128i fVec; }; template <> class SkNx<4, uint16_t> { public: SkNx(const __m128i& vec) : fVec(vec) {} SkNx() {} SkNx(uint16_t val) : fVec(_mm_set1_epi16(val)) {} static SkNx Load(const void* ptr) { return _mm_loadl_epi64((const __m128i*)ptr); } SkNx(uint16_t a, uint16_t b, uint16_t c, uint16_t d) : fVec(_mm_setr_epi16(a,b,c,d,0,0,0,0)) {} void store(void* ptr) const { _mm_storel_epi64((__m128i*)ptr, fVec); } SkNx operator + (const SkNx& o) const { return _mm_add_epi16(fVec, o.fVec); } SkNx operator - (const SkNx& o) const { return _mm_sub_epi16(fVec, o.fVec); } SkNx operator * (const SkNx& o) const { return _mm_mullo_epi16(fVec, o.fVec); } SkNx operator << (int bits) const { return _mm_slli_epi16(fVec, bits); } SkNx operator >> (int bits) const { return _mm_srli_epi16(fVec, bits); } uint16_t operator[](int k) const { SkASSERT(0 <= k && k < 4); union { __m128i v; uint16_t us[8]; } pun = {fVec}; return pun.us[k&3]; } __m128i fVec; }; template <> class SkNx<8, uint16_t> { public: SkNx(const __m128i& vec) : fVec(vec) {} SkNx() {} SkNx(uint16_t val) : fVec(_mm_set1_epi16(val)) {} static SkNx Load(const void* ptr) { return _mm_loadu_si128((const __m128i*)ptr); } SkNx(uint16_t a, uint16_t b, uint16_t c, uint16_t d, uint16_t e, uint16_t f, uint16_t g, uint16_t h) : fVec(_mm_setr_epi16(a,b,c,d,e,f,g,h)) {} void store(void* ptr) const { _mm_storeu_si128((__m128i*)ptr, fVec); } SkNx operator + (const SkNx& o) const { return _mm_add_epi16(fVec, o.fVec); } SkNx operator - (const SkNx& o) const { return _mm_sub_epi16(fVec, o.fVec); } SkNx operator * (const SkNx& o) const { return _mm_mullo_epi16(fVec, o.fVec); } SkNx operator << (int bits) const { return _mm_slli_epi16(fVec, bits); } SkNx operator >> (int bits) const { return _mm_srli_epi16(fVec, bits); } static SkNx Min(const SkNx& a, const SkNx& b) { // No unsigned _mm_min_epu16, so we'll shift into a space where we can use the // signed version, _mm_min_epi16, then shift back. const uint16_t top = 0x8000; // Keep this separate from _mm_set1_epi16 or MSVC will whine. const __m128i top_8x = _mm_set1_epi16(top); return _mm_add_epi8(top_8x, _mm_min_epi16(_mm_sub_epi8(a.fVec, top_8x), _mm_sub_epi8(b.fVec, top_8x))); } SkNx thenElse(const SkNx& t, const SkNx& e) const { return _mm_or_si128(_mm_and_si128 (fVec, t.fVec), _mm_andnot_si128(fVec, e.fVec)); } uint16_t operator[](int k) const { SkASSERT(0 <= k && k < 8); union { __m128i v; uint16_t us[8]; } pun = {fVec}; return pun.us[k&7]; } __m128i fVec; }; template <> class SkNx<4, uint8_t> { public: SkNx() {} SkNx(const __m128i& vec) : fVec(vec) {} SkNx(uint8_t a, uint8_t b, uint8_t c, uint8_t d) : fVec(_mm_setr_epi8(a,b,c,d, 0,0,0,0, 0,0,0,0, 0,0,0,0)) {} static SkNx Load(const void* ptr) { return _mm_cvtsi32_si128(*(const int*)ptr); } void store(void* ptr) const { *(int*)ptr = _mm_cvtsi128_si32(fVec); } uint8_t operator[](int k) const { SkASSERT(0 <= k && k < 4); union { __m128i v; uint8_t us[16]; } pun = {fVec}; return pun.us[k&3]; } // TODO as needed __m128i fVec; }; template <> class SkNx<16, uint8_t> { public: SkNx(const __m128i& vec) : fVec(vec) {} SkNx() {} SkNx(uint8_t val) : fVec(_mm_set1_epi8(val)) {} static SkNx Load(const void* ptr) { return _mm_loadu_si128((const __m128i*)ptr); } SkNx(uint8_t a, uint8_t b, uint8_t c, uint8_t d, uint8_t e, uint8_t f, uint8_t g, uint8_t h, uint8_t i, uint8_t j, uint8_t k, uint8_t l, uint8_t m, uint8_t n, uint8_t o, uint8_t p) : fVec(_mm_setr_epi8(a,b,c,d, e,f,g,h, i,j,k,l, m,n,o,p)) {} void store(void* ptr) const { _mm_storeu_si128((__m128i*)ptr, fVec); } SkNx saturatedAdd(const SkNx& o) const { return _mm_adds_epu8(fVec, o.fVec); } SkNx operator + (const SkNx& o) const { return _mm_add_epi8(fVec, o.fVec); } SkNx operator - (const SkNx& o) const { return _mm_sub_epi8(fVec, o.fVec); } static SkNx Min(const SkNx& a, const SkNx& b) { return _mm_min_epu8(a.fVec, b.fVec); } SkNx operator < (const SkNx& o) const { // There's no unsigned _mm_cmplt_epu8, so we flip the sign bits then use a signed compare. auto flip = _mm_set1_epi8(char(0x80)); return _mm_cmplt_epi8(_mm_xor_si128(flip, fVec), _mm_xor_si128(flip, o.fVec)); } uint8_t operator[](int k) const { SkASSERT(0 <= k && k < 16); union { __m128i v; uint8_t us[16]; } pun = {fVec}; return pun.us[k&15]; } SkNx thenElse(const SkNx& t, const SkNx& e) const { return _mm_or_si128(_mm_and_si128 (fVec, t.fVec), _mm_andnot_si128(fVec, e.fVec)); } __m128i fVec; }; template<> /*static*/ inline Sk4f SkNx_cast(const Sk4i& src) { return _mm_cvtepi32_ps(src.fVec); } template <> /*static*/ inline Sk4i SkNx_cast(const Sk4f& src) { return _mm_cvttps_epi32(src.fVec); } template<> /*static*/ inline Sk4h SkNx_cast(const Sk4f& src) { auto _32 = _mm_cvttps_epi32(src.fVec); // Ideally we'd use _mm_packus_epi32 here. But that's SSE4.1+. #if SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSSE3 // With SSSE3, we can just shuffle the low 2 bytes from each lane right into place. const int _ = ~0; return _mm_shuffle_epi8(_32, _mm_setr_epi8(0,1, 4,5, 8,9, 12,13, _,_,_,_,_,_,_,_)); #else // With SSE2, we have to emulate _mm_packus_epi32 with _mm_packs_epi32: _32 = _mm_sub_epi32(_32, _mm_set1_epi32((int)0x00008000)); return _mm_add_epi16(_mm_packs_epi32(_32, _32), _mm_set1_epi16((short)0x8000)); #endif } template<> /*static*/ inline Sk4b SkNx_cast(const Sk4f& src) { auto _32 = _mm_cvttps_epi32(src.fVec); #if SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSSE3 const int _ = ~0; return _mm_shuffle_epi8(_32, _mm_setr_epi8(0,4,8,12, _,_,_,_, _,_,_,_, _,_,_,_)); #else auto _16 = _mm_packus_epi16(_32, _32); return _mm_packus_epi16(_16, _16); #endif } template<> /*static*/ inline Sk4f SkNx_cast(const Sk4b& src) { #if SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSSE3 const int _ = ~0; auto _32 = _mm_shuffle_epi8(src.fVec, _mm_setr_epi8(0,_,_,_, 1,_,_,_, 2,_,_,_, 3,_,_,_)); #else auto _16 = _mm_unpacklo_epi8(src.fVec, _mm_setzero_si128()), _32 = _mm_unpacklo_epi16(_16, _mm_setzero_si128()); #endif return _mm_cvtepi32_ps(_32); } template<> /*static*/ inline Sk4f SkNx_cast(const Sk4h& src) { auto _32 = _mm_unpacklo_epi16(src.fVec, _mm_setzero_si128()); return _mm_cvtepi32_ps(_32); } template<> /*static*/ inline Sk16b SkNx_cast(const Sk16f& src) { Sk8f ab, cd; SkNx_split(src, &ab, &cd); Sk4f a,b,c,d; SkNx_split(ab, &a, &b); SkNx_split(cd, &c, &d); return _mm_packus_epi16(_mm_packus_epi16(_mm_cvttps_epi32(a.fVec), _mm_cvttps_epi32(b.fVec)), _mm_packus_epi16(_mm_cvttps_epi32(c.fVec), _mm_cvttps_epi32(d.fVec))); } template<> /*static*/ inline Sk4h SkNx_cast(const Sk4b& src) { return _mm_unpacklo_epi8(src.fVec, _mm_setzero_si128()); } template<> /*static*/ inline Sk4b SkNx_cast(const Sk4h& src) { return _mm_packus_epi16(src.fVec, src.fVec); } #endif//SkNx_sse_DEFINED