/* * Copyright 2015 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #ifndef SkNx_neon_DEFINED #define SkNx_neon_DEFINED #include #define SKNX_IS_FAST // ARMv8 has vrndmq_f32 to floor 4 floats. Here we emulate it: // - roundtrip through integers via truncation // - subtract 1 if that's too big (possible for negative values). // This restricts the domain of our inputs to a maximum somehwere around 2^31. Seems plenty big. static inline float32x4_t armv7_vrndmq_f32(float32x4_t v) { float32x4_t roundtrip = vcvtq_f32_s32(vcvtq_s32_f32(v)); uint32x4_t too_big = roundtrip > v; return roundtrip - (float32x4_t)vandq_u32(too_big, (uint32x4_t)vdupq_n_f32(1)); } // Well, this is absurd. The shifts require compile-time constant arguments. #define SHIFT8(op, v, bits) switch(bits) { \ case 1: return op(v, 1); case 2: return op(v, 2); case 3: return op(v, 3); \ case 4: return op(v, 4); case 5: return op(v, 5); case 6: return op(v, 6); \ case 7: return op(v, 7); \ } return fVec #define SHIFT16(op, v, bits) if (bits < 8) { SHIFT8(op, v, bits); } switch(bits) { \ case 8: return op(v, 8); case 9: return op(v, 9); \ case 10: return op(v, 10); case 11: return op(v, 11); case 12: return op(v, 12); \ case 13: return op(v, 13); case 14: return op(v, 14); case 15: return op(v, 15); \ } return fVec #define SHIFT32(op, v, bits) if (bits < 16) { SHIFT16(op, v, bits); } switch(bits) { \ case 16: return op(v, 16); case 17: return op(v, 17); case 18: return op(v, 18); \ case 19: return op(v, 19); case 20: return op(v, 20); case 21: return op(v, 21); \ case 22: return op(v, 22); case 23: return op(v, 23); case 24: return op(v, 24); \ case 25: return op(v, 25); case 26: return op(v, 26); case 27: return op(v, 27); \ case 28: return op(v, 28); case 29: return op(v, 29); case 30: return op(v, 30); \ case 31: return op(v, 31); } return fVec template <> class SkNx<2, float> { public: SkNx(float32x2_t vec) : fVec(vec) {} SkNx() {} SkNx(float a, float b) : fVec{a,b} {} SkNx(float v) : fVec{v,v} {} static SkNx Load(const void* ptr) { return vld1_f32((const float*)ptr); } void store(void* ptr) const { vst1_f32((float*)ptr, fVec); } SkNx operator + (const SkNx& o) const { return fVec + o.fVec; } SkNx operator - (const SkNx& o) const { return fVec - o.fVec; } SkNx operator * (const SkNx& o) const { return fVec * o.fVec; } SkNx operator / (const SkNx& o) const { return fVec / o.fVec; } SkNx operator == (const SkNx& o) const { return fVec == o.fVec; } SkNx operator < (const SkNx& o) const { return fVec < o.fVec; } SkNx operator > (const SkNx& o) const { return fVec > o.fVec; } SkNx operator <= (const SkNx& o) const { return fVec <= o.fVec; } SkNx operator >= (const SkNx& o) const { return fVec >= o.fVec; } SkNx operator != (const SkNx& o) const { return fVec != o.fVec; } static SkNx Min(const SkNx& l, const SkNx& r) { return vmin_f32(l.fVec, r.fVec); } static SkNx Max(const SkNx& l, const SkNx& r) { return vmax_f32(l.fVec, r.fVec); } SkNx rsqrt() const { float32x2_t est0 = vrsqrte_f32(fVec); return vmul_f32(vrsqrts_f32(fVec, vmul_f32(est0, est0)), est0); } SkNx sqrt() const { #if defined(SK_CPU_ARM64) return vsqrt_f32(fVec); #else float32x2_t est0 = vrsqrte_f32(fVec), est1 = vmul_f32(vrsqrts_f32(fVec, vmul_f32(est0, est0)), est0), est2 = vmul_f32(vrsqrts_f32(fVec, vmul_f32(est1, est1)), est1); return vmul_f32(fVec, est2); #endif } SkNx invert() const { float32x2_t est0 = vrecpe_f32(fVec), est1 = vmul_f32(vrecps_f32(est0, fVec), est0); return est1; } float operator[](int k) const { return fVec[k&1]; } bool allTrue() const { auto v = vreinterpret_u32_f32(fVec); return vget_lane_u32(v,0) && vget_lane_u32(v,1); } bool anyTrue() const { auto v = vreinterpret_u32_f32(fVec); return vget_lane_u32(v,0) || vget_lane_u32(v,1); } float32x2_t fVec; }; template <> class SkNx<4, float> { public: SkNx(float32x4_t vec) : fVec(vec) {} SkNx() {} SkNx(float a, float b, float c, float d) : fVec{a,b,c,d} {} SkNx(float v) : fVec{v,v,v,v} {} static SkNx Load(const void* ptr) { return vld1q_f32((const float*)ptr); } void store(void* ptr) const { vst1q_f32((float*)ptr, fVec); } SkNx operator + (const SkNx& o) const { return fVec + o.fVec; } SkNx operator - (const SkNx& o) const { return fVec - o.fVec; } SkNx operator * (const SkNx& o) const { return fVec * o.fVec; } SkNx operator / (const SkNx& o) const { return fVec / o.fVec; } SkNx operator==(const SkNx& o) const { return fVec == o.fVec; } SkNx operator <(const SkNx& o) const { return fVec < o.fVec; } SkNx operator >(const SkNx& o) const { return fVec > o.fVec; } SkNx operator<=(const SkNx& o) const { return fVec <= o.fVec; } SkNx operator>=(const SkNx& o) const { return fVec >= o.fVec; } SkNx operator!=(const SkNx& o) const { return fVec != o.fVec; } static SkNx Min(const SkNx& l, const SkNx& r) { return vminq_f32(l.fVec, r.fVec); } static SkNx Max(const SkNx& l, const SkNx& r) { return vmaxq_f32(l.fVec, r.fVec); } SkNx abs() const { return vabsq_f32(fVec); } SkNx floor() const { #if defined(SK_CPU_ARM64) return vrndmq_f32(fVec); #else return armv7_vrndmq_f32(fVec); #endif } SkNx rsqrt() const { float32x4_t est0 = vrsqrteq_f32(fVec); return vmulq_f32(vrsqrtsq_f32(fVec, vmulq_f32(est0, est0)), est0); } SkNx sqrt() const { #if defined(SK_CPU_ARM64) return vsqrtq_f32(fVec); #else float32x4_t est0 = vrsqrteq_f32(fVec), est1 = vmulq_f32(vrsqrtsq_f32(fVec, vmulq_f32(est0, est0)), est0), est2 = vmulq_f32(vrsqrtsq_f32(fVec, vmulq_f32(est1, est1)), est1); return vmulq_f32(fVec, est2); #endif } SkNx invert() const { float32x4_t est0 = vrecpeq_f32(fVec), est1 = vmulq_f32(vrecpsq_f32(est0, fVec), est0); return est1; } float operator[](int k) const { return fVec[k&3]; } bool allTrue() const { auto v = vreinterpretq_u32_f32(fVec); return vgetq_lane_u32(v,0) && vgetq_lane_u32(v,1) && vgetq_lane_u32(v,2) && vgetq_lane_u32(v,3); } bool anyTrue() const { auto v = vreinterpretq_u32_f32(fVec); return vgetq_lane_u32(v,0) || vgetq_lane_u32(v,1) || vgetq_lane_u32(v,2) || vgetq_lane_u32(v,3); } SkNx thenElse(const SkNx& t, const SkNx& e) const { return vbslq_f32(vreinterpretq_u32_f32(fVec), t.fVec, e.fVec); } float32x4_t fVec; }; // It's possible that for our current use cases, representing this as // half a uint16x8_t might be better than representing it as a uint16x4_t. // It'd make conversion to Sk4b one step simpler. template <> class SkNx<4, uint16_t> { public: SkNx(const uint16x4_t& vec) : fVec(vec) {} SkNx() {} SkNx(uint16_t a, uint16_t b, uint16_t c, uint16_t d) : fVec{a,b,c,d} {} SkNx(uint16_t v) : fVec{v,v,v,v} {} static SkNx Load(const void* ptr) { return vld1_u16((const uint16_t*)ptr); } void store(void* ptr) const { vst1_u16((uint16_t*)ptr, fVec); } SkNx operator + (const SkNx& o) const { return fVec + o.fVec; } SkNx operator - (const SkNx& o) const { return fVec - o.fVec; } SkNx operator * (const SkNx& o) const { return fVec * o.fVec; } SkNx operator << (int bits) const { SHIFT16(vshl_n_u16, fVec, bits); } SkNx operator >> (int bits) const { SHIFT16(vshr_n_u16, fVec, bits); } static SkNx Min(const SkNx& a, const SkNx& b) { return vmin_u16(a.fVec, b.fVec); } uint16_t operator[](int k) const { return fVec[k&3]; } SkNx thenElse(const SkNx& t, const SkNx& e) const { return vbsl_u16(fVec, t.fVec, e.fVec); } uint16x4_t fVec; }; template <> class SkNx<8, uint16_t> { public: SkNx(const uint16x8_t& vec) : fVec(vec) {} SkNx() {} SkNx(uint16_t a, uint16_t b, uint16_t c, uint16_t d, uint16_t e, uint16_t f, uint16_t g, uint16_t h) : fVec{a,b,c,d,e,f,g,h} {} SkNx(uint16_t v) : fVec{v,v,v,v,v,v,v,v} {} static SkNx Load(const void* ptr) { return vld1q_u16((const uint16_t*)ptr); } void store(void* ptr) const { vst1q_u16((uint16_t*)ptr, fVec); } SkNx operator + (const SkNx& o) const { return fVec + o.fVec; } SkNx operator - (const SkNx& o) const { return fVec - o.fVec; } SkNx operator * (const SkNx& o) const { return fVec * o.fVec; } SkNx operator << (int bits) const { SHIFT16(vshlq_n_u16, fVec, bits); } SkNx operator >> (int bits) const { SHIFT16(vshrq_n_u16, fVec, bits); } static SkNx Min(const SkNx& a, const SkNx& b) { return vminq_u16(a.fVec, b.fVec); } uint16_t operator[](int k) const { return fVec[k&7]; } SkNx thenElse(const SkNx& t, const SkNx& e) const { return vbslq_u16(fVec, t.fVec, e.fVec); } uint16x8_t fVec; }; template <> class SkNx<4, uint8_t> { public: typedef uint32_t __attribute__((aligned(1))) unaligned_uint32_t; SkNx(const uint8x8_t& vec) : fVec(vec) {} SkNx() {} SkNx(uint8_t a, uint8_t b, uint8_t c, uint8_t d) : fVec{a,b,c,d,0,0,0,0} {} SkNx(uint8_t v) : fVec{v,v,v,v,0,0,0,0} {} static SkNx Load(const void* ptr) { return (uint8x8_t)vld1_dup_u32((const unaligned_uint32_t*)ptr); } void store(void* ptr) const { return vst1_lane_u32((unaligned_uint32_t*)ptr, (uint32x2_t)fVec, 0); } uint8_t operator[](int k) const { return fVec[k&3]; } uint8x8_t fVec; }; template <> class SkNx<16, uint8_t> { public: SkNx(const uint8x16_t& vec) : fVec(vec) {} SkNx() {} SkNx(uint8_t a, uint8_t b, uint8_t c, uint8_t d, uint8_t e, uint8_t f, uint8_t g, uint8_t h, uint8_t i, uint8_t j, uint8_t k, uint8_t l, uint8_t m, uint8_t n, uint8_t o, uint8_t p) : fVec{a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p} {} SkNx(uint8_t v) : fVec{v,v,v,v,v,v,v,v,v,v,v,v,v,v,v,v} {} static SkNx Load(const void* ptr) { return vld1q_u8((const uint8_t*)ptr); } void store(void* ptr) const { vst1q_u8((uint8_t*)ptr, fVec); } SkNx saturatedAdd(const SkNx& o) const { return vqaddq_u8(fVec, o.fVec); } SkNx operator + (const SkNx& o) const { return fVec + o.fVec; } SkNx operator - (const SkNx& o) const { return fVec - o.fVec; } SkNx operator < (const SkNx& o) const { return fVec < o.fVec; } static SkNx Min(const SkNx& a, const SkNx& b) { return vminq_u8(a.fVec, b.fVec); } uint8_t operator[](int k) const { return fVec[k&15]; } SkNx thenElse(const SkNx& t, const SkNx& e) const { return vbslq_u8(fVec, t.fVec, e.fVec); } uint8x16_t fVec; }; template <> class SkNx<4, int32_t> { public: SkNx(const int32x4_t& vec) : fVec(vec) {} SkNx() {} SkNx(int32_t a, int32_t b, int32_t c, int32_t d) : fVec{a,b,c,d} {} SkNx(int32_t v) : fVec{v,v,v,v} {} static SkNx Load(const void* ptr) { return vld1q_s32((const int32_t*)ptr); } void store(void* ptr) const { return vst1q_s32((int32_t*)ptr, fVec); } SkNx operator + (const SkNx& o) const { return fVec + o.fVec; } SkNx operator - (const SkNx& o) const { return fVec - o.fVec; } SkNx operator * (const SkNx& o) const { return fVec * o.fVec; } SkNx operator & (const SkNx& o) const { return fVec & o.fVec; } SkNx operator | (const SkNx& o) const { return fVec | o.fVec; } SkNx operator ^ (const SkNx& o) const { return fVec ^ o.fVec; } SkNx operator << (int bits) const { SHIFT32(vshlq_n_s32, fVec, bits); } SkNx operator >> (int bits) const { SHIFT32(vshrq_n_s32, fVec, bits); } SkNx operator == (const SkNx& o) const { return fVec == o.fVec; } SkNx operator < (const SkNx& o) const { return fVec < o.fVec; } SkNx operator > (const SkNx& o) const { return fVec > o.fVec; } static SkNx Min(const SkNx& a, const SkNx& b) { return vminq_s32(a.fVec, b.fVec); } int32_t operator[](int k) const { return fVec[k&3]; } SkNx thenElse(const SkNx& t, const SkNx& e) const { return vbslq_s32(vreinterpretq_u32_s32(fVec), t.fVec, e.fVec); } int32x4_t fVec; }; template <> class SkNx<4, uint32_t> { public: SkNx(const uint32x4_t& vec) : fVec(vec) {} SkNx() {} SkNx(uint32_t a, uint32_t b, uint32_t c, uint32_t d) : fVec{a,b,c,d} {} SkNx(uint32_t v) : fVec{v,v,v,v} {} static SkNx Load(const void* ptr) { return vld1q_u32((const uint32_t*)ptr); } void store(void* ptr) const { return vst1q_u32((uint32_t*)ptr, fVec); } SkNx operator + (const SkNx& o) const { return fVec + o.fVec; } SkNx operator - (const SkNx& o) const { return fVec - o.fVec; } SkNx operator * (const SkNx& o) const { return fVec * o.fVec; } SkNx operator & (const SkNx& o) const { return fVec & o.fVec; } SkNx operator | (const SkNx& o) const { return fVec | o.fVec; } SkNx operator ^ (const SkNx& o) const { return fVec ^ o.fVec; } SkNx operator << (int bits) const { SHIFT32(vshlq_n_u32, fVec, bits); } SkNx operator >> (int bits) const { SHIFT32(vshrq_n_u32, fVec, bits); } SkNx operator == (const SkNx& o) const { return fVec == o.fVec; } SkNx operator < (const SkNx& o) const { return fVec < o.fVec; } SkNx operator > (const SkNx& o) const { return fVec > o.fVec; } static SkNx Min(const SkNx& a, const SkNx& b) { return vminq_u32(a.fVec, b.fVec); } uint32_t operator[](int k) const { return fVec[k&3]; } SkNx thenElse(const SkNx& t, const SkNx& e) const { return vbslq_u32(fVec, t.fVec, e.fVec); } uint32x4_t fVec; }; #undef SHIFT32 #undef SHIFT16 #undef SHIFT8 template<> inline Sk4i SkNx_cast(const Sk4f& src) { return vcvtq_s32_f32(src.fVec); } template<> inline Sk4f SkNx_cast(const Sk4i& src) { return vcvtq_f32_s32(src.fVec); } template<> inline Sk4f SkNx_cast(const Sk4u& src) { return SkNx_cast(Sk4i::Load(&src)); } template<> inline Sk4h SkNx_cast(const Sk4f& src) { return vqmovn_u32(vcvtq_u32_f32(src.fVec)); } template<> inline Sk4f SkNx_cast(const Sk4h& src) { return vcvtq_f32_u32(vmovl_u16(src.fVec)); } template<> inline Sk4b SkNx_cast(const Sk4f& src) { uint32x4_t _32 = vcvtq_u32_f32(src.fVec); uint16x4_t _16 = vqmovn_u32(_32); return vqmovn_u16(vcombine_u16(_16, _16)); } template<> inline Sk4f SkNx_cast(const Sk4b& src) { uint16x8_t _16 = vmovl_u8 (src.fVec) ; uint32x4_t _32 = vmovl_u16(vget_low_u16(_16)); return vcvtq_f32_u32(_32); } template<> inline Sk16b SkNx_cast(const Sk16f& src) { Sk8f ab, cd; SkNx_split(src, &ab, &cd); Sk4f a,b,c,d; SkNx_split(ab, &a, &b); SkNx_split(cd, &c, &d); return vuzpq_u8(vuzpq_u8((uint8x16_t)vcvtq_u32_f32(a.fVec), (uint8x16_t)vcvtq_u32_f32(b.fVec)).val[0], vuzpq_u8((uint8x16_t)vcvtq_u32_f32(c.fVec), (uint8x16_t)vcvtq_u32_f32(d.fVec)).val[0]).val[0]; } template<> inline Sk4h SkNx_cast(const Sk4b& src) { return vget_low_u16(vmovl_u8(src.fVec)); } template<> inline Sk4b SkNx_cast(const Sk4h& src) { return vmovn_u16(vcombine_u16(src.fVec, src.fVec)); } template<> inline Sk4b SkNx_cast(const Sk4i& src) { uint16x4_t _16 = vqmovun_s32(src.fVec); return vqmovn_u16(vcombine_u16(_16, _16)); } template<> inline Sk4i SkNx_cast(const Sk4h& src) { return vreinterpretq_s32_u32(vmovl_u16(src.fVec)); } template<> inline Sk4h SkNx_cast(const Sk4i& src) { return vmovn_u32(vreinterpretq_u32_s32(src.fVec)); } static inline Sk4i Sk4f_round(const Sk4f& x) { return vcvtq_s32_f32((x + 0.5f).fVec); } static inline void Sk4h_load4(const void* ptr, Sk4h* r, Sk4h* g, Sk4h* b, Sk4h* a) { uint16x4x4_t rgba = vld4_u16((const uint16_t*)ptr); *r = rgba.val[0]; *g = rgba.val[1]; *b = rgba.val[2]; *a = rgba.val[3]; } static inline void Sk4h_store4(void* dst, const Sk4h& r, const Sk4h& g, const Sk4h& b, const Sk4h& a) { uint16x4x4_t rgba = {{ r.fVec, g.fVec, b.fVec, a.fVec, }}; vst4_u16((uint16_t*) dst, rgba); } #endif//SkNx_neon_DEFINED