/* * Copyright 2015 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #ifndef SkNx_neon_DEFINED #define SkNx_neon_DEFINED #include template <> class SkNi<2, int32_t> { public: SkNi(int32x2_t vec) : fVec(vec) {} SkNi() {} bool allTrue() const { return fVec[0] && fVec[1]; } bool anyTrue() const { return fVec[0] || fVec[1]; } private: int32x2_t fVec; }; template <> class SkNi<4, int32_t> { public: SkNi(int32x4_t vec) : fVec(vec) {} SkNi() {} bool allTrue() const { return fVec[0] && fVec[1] && fVec[2] && fVec[3]; } bool anyTrue() const { return fVec[0] || fVec[1] || fVec[2] || fVec[3]; } private: int32x4_t fVec; }; template <> class SkNf<2, float> { typedef SkNi<2, int32_t> Ni; public: SkNf(float32x2_t vec) : fVec(vec) {} SkNf() {} explicit SkNf(float val) : fVec(vdup_n_f32(val)) {} static SkNf Load(const float vals[2]) { return vld1_f32(vals); } SkNf(float a, float b) { fVec = (float32x2_t) { a, b }; } void store(float vals[2]) const { vst1_f32(vals, fVec); } SkNf approxInvert() const { float32x2_t est0 = vrecpe_f32(fVec), est1 = vmul_f32(vrecps_f32(est0, fVec), est0); return est1; } SkNf invert() const { float32x2_t est1 = this->approxInvert().fVec, est2 = vmul_f32(vrecps_f32(est1, fVec), est1); return est2; } SkNf operator + (const SkNf& o) const { return vadd_f32(fVec, o.fVec); } SkNf operator - (const SkNf& o) const { return vsub_f32(fVec, o.fVec); } SkNf operator * (const SkNf& o) const { return vmul_f32(fVec, o.fVec); } SkNf operator / (const SkNf& o) const { #if defined(SK_CPU_ARM64) return vdiv_f32(fVec, o.fVec); #else return vmul_f32(fVec, o.invert().fVec); #endif } Ni operator == (const SkNf& o) const { return vreinterpret_s32_u32(vceq_f32(fVec, o.fVec)); } Ni operator < (const SkNf& o) const { return vreinterpret_s32_u32(vclt_f32(fVec, o.fVec)); } Ni operator > (const SkNf& o) const { return vreinterpret_s32_u32(vcgt_f32(fVec, o.fVec)); } Ni operator <= (const SkNf& o) const { return vreinterpret_s32_u32(vcle_f32(fVec, o.fVec)); } Ni operator >= (const SkNf& o) const { return vreinterpret_s32_u32(vcge_f32(fVec, o.fVec)); } Ni operator != (const SkNf& o) const { return vreinterpret_s32_u32(vmvn_u32(vceq_f32(fVec, o.fVec))); } static SkNf Min(const SkNf& l, const SkNf& r) { return vmin_f32(l.fVec, r.fVec); } static SkNf Max(const SkNf& l, const SkNf& r) { return vmax_f32(l.fVec, r.fVec); } SkNf rsqrt() const { float32x2_t est0 = vrsqrte_f32(fVec), est1 = vmul_f32(vrsqrts_f32(fVec, vmul_f32(est0, est0)), est0); return est1; } SkNf sqrt() const { #if defined(SK_CPU_ARM64) return vsqrt_f32(fVec); #else float32x2_t est1 = this->rsqrt().fVec, // An extra step of Newton's method to refine the estimate of 1/sqrt(this). est2 = vmul_f32(vrsqrts_f32(fVec, vmul_f32(est1, est1)), est1); return vmul_f32(fVec, est2); #endif } float operator[] (int k) const { SkASSERT(0 <= k && k < 2); return fVec[k]; } private: float32x2_t fVec; }; #if defined(SK_CPU_ARM64) template <> class SkNi<2, int64_t> { public: SkNi(int64x2_t vec) : fVec(vec) {} SkNi() {} bool allTrue() const { return fVec[0] && fVec[1]; } bool anyTrue() const { return fVec[0] || fVec[1]; } private: int64x2_t fVec; }; template <> class SkNf<2, double> { typedef SkNi<2, int64_t> Ni; public: SkNf(float64x2_t vec) : fVec(vec) {} SkNf() {} explicit SkNf(double val) : fVec(vdupq_n_f64(val)) {} static SkNf Load(const double vals[2]) { return vld1q_f64(vals); } SkNf(double a, double b) { fVec = (float64x2_t) { a, b }; } void store(double vals[2]) const { vst1q_f64(vals, fVec); } SkNf operator + (const SkNf& o) const { return vaddq_f64(fVec, o.fVec); } SkNf operator - (const SkNf& o) const { return vsubq_f64(fVec, o.fVec); } SkNf operator * (const SkNf& o) const { return vmulq_f64(fVec, o.fVec); } SkNf operator / (const SkNf& o) const { return vdivq_f64(fVec, o.fVec); } Ni operator == (const SkNf& o) const { return vreinterpretq_s64_u64(vceqq_f64(fVec, o.fVec)); } Ni operator < (const SkNf& o) const { return vreinterpretq_s64_u64(vcltq_f64(fVec, o.fVec)); } Ni operator > (const SkNf& o) const { return vreinterpretq_s64_u64(vcgtq_f64(fVec, o.fVec)); } Ni operator <= (const SkNf& o) const { return vreinterpretq_s64_u64(vcleq_f64(fVec, o.fVec)); } Ni operator >= (const SkNf& o) const { return vreinterpretq_s64_u64(vcgeq_f64(fVec, o.fVec)); } Ni operator != (const SkNf& o) const { return vreinterpretq_s64_u32(vmvnq_u32(vreinterpretq_u32_u64(vceqq_f64(fVec, o.fVec)))); } static SkNf Min(const SkNf& l, const SkNf& r) { return vminq_f64(l.fVec, r.fVec); } static SkNf Max(const SkNf& l, const SkNf& r) { return vmaxq_f64(l.fVec, r.fVec); } SkNf sqrt() const { return vsqrtq_f64(fVec); } SkNf rsqrt() const { float64x2_t est0 = vrsqrteq_f64(fVec), est1 = vmulq_f64(vrsqrtsq_f64(fVec, vmulq_f64(est0, est0)), est0); return est1; } SkNf approxInvert() const { float64x2_t est0 = vrecpeq_f64(fVec), est1 = vmulq_f64(vrecpsq_f64(est0, fVec), est0); return est1; } SkNf invert() const { float64x2_t est1 = this->approxInvert().fVec, est2 = vmulq_f64(vrecpsq_f64(est1, fVec), est1), est3 = vmulq_f64(vrecpsq_f64(est2, fVec), est2); return est3; } double operator[] (int k) const { SkASSERT(0 <= k && k < 2); return fVec[k]; } private: float64x2_t fVec; }; #endif//defined(SK_CPU_ARM64) template <> class SkNf<4, float> { typedef SkNi<4, int32_t> Ni; public: SkNf(float32x4_t vec) : fVec(vec) {} float32x4_t vec() const { return fVec; } SkNf() {} explicit SkNf(float val) : fVec(vdupq_n_f32(val)) {} static SkNf Load(const float vals[4]) { return vld1q_f32(vals); } SkNf(float a, float b, float c, float d) { fVec = (float32x4_t) { a, b, c, d }; } void store(float vals[4]) const { vst1q_f32(vals, fVec); } SkNf approxInvert() const { float32x4_t est0 = vrecpeq_f32(fVec), est1 = vmulq_f32(vrecpsq_f32(est0, fVec), est0); return est1; } SkNf invert() const { float32x4_t est1 = this->approxInvert().fVec, est2 = vmulq_f32(vrecpsq_f32(est1, fVec), est1); return est2; } SkNf operator + (const SkNf& o) const { return vaddq_f32(fVec, o.fVec); } SkNf operator - (const SkNf& o) const { return vsubq_f32(fVec, o.fVec); } SkNf operator * (const SkNf& o) const { return vmulq_f32(fVec, o.fVec); } SkNf operator / (const SkNf& o) const { #if defined(SK_CPU_ARM64) return vdivq_f32(fVec, o.fVec); #else return vmulq_f32(fVec, o.invert().fVec); #endif } Ni operator == (const SkNf& o) const { return vreinterpretq_s32_u32(vceqq_f32(fVec, o.fVec)); } Ni operator < (const SkNf& o) const { return vreinterpretq_s32_u32(vcltq_f32(fVec, o.fVec)); } Ni operator > (const SkNf& o) const { return vreinterpretq_s32_u32(vcgtq_f32(fVec, o.fVec)); } Ni operator <= (const SkNf& o) const { return vreinterpretq_s32_u32(vcleq_f32(fVec, o.fVec)); } Ni operator >= (const SkNf& o) const { return vreinterpretq_s32_u32(vcgeq_f32(fVec, o.fVec)); } Ni operator != (const SkNf& o) const { return vreinterpretq_s32_u32(vmvnq_u32(vceqq_f32(fVec, o.fVec))); } static SkNf Min(const SkNf& l, const SkNf& r) { return vminq_f32(l.fVec, r.fVec); } static SkNf Max(const SkNf& l, const SkNf& r) { return vmaxq_f32(l.fVec, r.fVec); } SkNf rsqrt() const { float32x4_t est0 = vrsqrteq_f32(fVec), est1 = vmulq_f32(vrsqrtsq_f32(fVec, vmulq_f32(est0, est0)), est0); return est1; } SkNf sqrt() const { #if defined(SK_CPU_ARM64) return vsqrtq_f32(fVec); #else float32x4_t est1 = this->rsqrt().fVec, // An extra step of Newton's method to refine the estimate of 1/sqrt(this). est2 = vmulq_f32(vrsqrtsq_f32(fVec, vmulq_f32(est1, est1)), est1); return vmulq_f32(fVec, est2); #endif } float operator[] (int k) const { SkASSERT(0 <= k && k < 4); return fVec[k]; } private: float32x4_t fVec; }; #endif//SkNx_neon_DEFINED