/* * Copyright 2015 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #ifndef SkNx_neon_DEFINED #define SkNx_neon_DEFINED namespace { // See SkNx.h // Well, this is absurd. The shifts require compile-time constant arguments. #define SHIFT8(op, v, bits) switch(bits) { \ case 1: return op(v, 1); case 2: return op(v, 2); case 3: return op(v, 3); \ case 4: return op(v, 4); case 5: return op(v, 5); case 6: return op(v, 6); \ case 7: return op(v, 7); \ } return fVec #define SHIFT16(op, v, bits) if (bits < 8) { SHIFT8(op, v, bits); } switch(bits) { \ case 8: return op(v, 8); case 9: return op(v, 9); \ case 10: return op(v, 10); case 11: return op(v, 11); case 12: return op(v, 12); \ case 13: return op(v, 13); case 14: return op(v, 14); case 15: return op(v, 15); \ } return fVec #define SHIFT32(op, v, bits) if (bits < 16) { SHIFT16(op, v, bits); } switch(bits) { \ case 16: return op(v, 16); case 17: return op(v, 17); case 18: return op(v, 18); \ case 19: return op(v, 19); case 20: return op(v, 20); case 21: return op(v, 21); \ case 22: return op(v, 22); case 23: return op(v, 23); case 24: return op(v, 24); \ case 25: return op(v, 25); case 26: return op(v, 26); case 27: return op(v, 27); \ case 28: return op(v, 28); case 29: return op(v, 29); case 30: return op(v, 30); \ case 31: return op(v, 31); } return fVec template <> class SkNf<2, float> { public: SkNf(float32x2_t vec) : fVec(vec) {} SkNf() {} explicit SkNf(float val) : fVec(vdup_n_f32(val)) {} static SkNf Load(const float vals[2]) { return vld1_f32(vals); } SkNf(float a, float b) { fVec = (float32x2_t) { a, b }; } void store(float vals[2]) const { vst1_f32(vals, fVec); } SkNf approxInvert() const { float32x2_t est0 = vrecpe_f32(fVec), est1 = vmul_f32(vrecps_f32(est0, fVec), est0); return est1; } SkNf invert() const { float32x2_t est1 = this->approxInvert().fVec, est2 = vmul_f32(vrecps_f32(est1, fVec), est1); return est2; } SkNf operator + (const SkNf& o) const { return vadd_f32(fVec, o.fVec); } SkNf operator - (const SkNf& o) const { return vsub_f32(fVec, o.fVec); } SkNf operator * (const SkNf& o) const { return vmul_f32(fVec, o.fVec); } SkNf operator / (const SkNf& o) const { #if defined(SK_CPU_ARM64) return vdiv_f32(fVec, o.fVec); #else return vmul_f32(fVec, o.invert().fVec); #endif } SkNf operator == (const SkNf& o) const { return vreinterpret_f32_u32(vceq_f32(fVec, o.fVec)); } SkNf operator < (const SkNf& o) const { return vreinterpret_f32_u32(vclt_f32(fVec, o.fVec)); } SkNf operator > (const SkNf& o) const { return vreinterpret_f32_u32(vcgt_f32(fVec, o.fVec)); } SkNf operator <= (const SkNf& o) const { return vreinterpret_f32_u32(vcle_f32(fVec, o.fVec)); } SkNf operator >= (const SkNf& o) const { return vreinterpret_f32_u32(vcge_f32(fVec, o.fVec)); } SkNf operator != (const SkNf& o) const { return vreinterpret_f32_u32(vmvn_u32(vceq_f32(fVec, o.fVec))); } static SkNf Min(const SkNf& l, const SkNf& r) { return vmin_f32(l.fVec, r.fVec); } static SkNf Max(const SkNf& l, const SkNf& r) { return vmax_f32(l.fVec, r.fVec); } SkNf rsqrt0() const { return vrsqrte_f32(fVec); } SkNf rsqrt1() const { float32x2_t est0 = this->rsqrt0().fVec; return vmul_f32(vrsqrts_f32(fVec, vmul_f32(est0, est0)), est0); } SkNf rsqrt2() const { float32x2_t est1 = this->rsqrt1().fVec; return vmul_f32(vrsqrts_f32(fVec, vmul_f32(est1, est1)), est1); } SkNf sqrt() const { #if defined(SK_CPU_ARM64) return vsqrt_f32(fVec); #else return *this * this->rsqrt2(); #endif } template float kth() const { SkASSERT(0 <= k && k < 2); return vget_lane_f32(fVec, k&1); } bool allTrue() const { auto v = vreinterpret_u32_f32(fVec); return vget_lane_u32(v,0) && vget_lane_u32(v,1); } bool anyTrue() const { auto v = vreinterpret_u32_f32(fVec); return vget_lane_u32(v,0) || vget_lane_u32(v,1); } float32x2_t fVec; }; #if defined(SK_CPU_ARM64) template <> class SkNf<2, double> { public: SkNf(float64x2_t vec) : fVec(vec) {} SkNf() {} explicit SkNf(double val) : fVec(vdupq_n_f64(val)) {} static SkNf Load(const double vals[2]) { return vld1q_f64(vals); } SkNf(double a, double b) { fVec = (float64x2_t) { a, b }; } void store(double vals[2]) const { vst1q_f64(vals, fVec); } SkNf operator + (const SkNf& o) const { return vaddq_f64(fVec, o.fVec); } SkNf operator - (const SkNf& o) const { return vsubq_f64(fVec, o.fVec); } SkNf operator * (const SkNf& o) const { return vmulq_f64(fVec, o.fVec); } SkNf operator / (const SkNf& o) const { return vdivq_f64(fVec, o.fVec); } // vreinterpretq_f64_u64 and vreinterpretq_f64_u32 don't seem to exist.... weird. SkNf operator==(const SkNf& o) const { return (float64x2_t)(vceqq_f64(fVec, o.fVec)); } SkNf operator <(const SkNf& o) const { return (float64x2_t)(vcltq_f64(fVec, o.fVec)); } SkNf operator >(const SkNf& o) const { return (float64x2_t)(vcgtq_f64(fVec, o.fVec)); } SkNf operator<=(const SkNf& o) const { return (float64x2_t)(vcleq_f64(fVec, o.fVec)); } SkNf operator>=(const SkNf& o) const { return (float64x2_t)(vcgeq_f64(fVec, o.fVec)); } SkNf operator != (const SkNf& o) const { return (float64x2_t)(vmvnq_u32(vreinterpretq_u32_u64(vceqq_f64(fVec, o.fVec)))); } static SkNf Min(const SkNf& l, const SkNf& r) { return vminq_f64(l.fVec, r.fVec); } static SkNf Max(const SkNf& l, const SkNf& r) { return vmaxq_f64(l.fVec, r.fVec); } SkNf sqrt() const { return vsqrtq_f64(fVec); } SkNf rsqrt0() const { return vrsqrteq_f64(fVec); } SkNf rsqrt1() const { float64x2_t est0 = this->rsqrt0().fVec; return vmulq_f64(vrsqrtsq_f64(fVec, vmulq_f64(est0, est0)), est0); } SkNf rsqrt2() const { float64x2_t est1 = this->rsqrt1().fVec; return vmulq_f64(vrsqrtsq_f64(fVec, vmulq_f64(est1, est1)), est1); } SkNf approxInvert() const { float64x2_t est0 = vrecpeq_f64(fVec), est1 = vmulq_f64(vrecpsq_f64(est0, fVec), est0); return est1; } SkNf invert() const { float64x2_t est1 = this->approxInvert().fVec, est2 = vmulq_f64(vrecpsq_f64(est1, fVec), est1), est3 = vmulq_f64(vrecpsq_f64(est2, fVec), est2); return est3; } template double kth() const { SkASSERT(0 <= k && k < 2); return vgetq_lane_f64(fVec, k&1); } // vreinterpretq_u64_f64 doesn't seem to exist.... weird. bool allTrue() const { auto v = (uint64x2_t)(fVec); return vgetq_lane_u64(v,0) && vgetq_lane_u64(v,1); } bool anyTrue() const { auto v = (uint64x2_t)(fVec); return vgetq_lane_u64(v,0) || vgetq_lane_u64(v,1); } float64x2_t fVec; }; #endif//defined(SK_CPU_ARM64) template <> class SkNi<4, int> { public: SkNi(const int32x4_t& vec) : fVec(vec) {} SkNi() {} explicit SkNi(int val) : fVec(vdupq_n_s32(val)) {} static SkNi Load(const int vals[4]) { return vld1q_s32(vals); } SkNi(int a, int b, int c, int d) { fVec = (int32x4_t) { a, b, c, d }; } void store(int vals[4]) const { vst1q_s32(vals, fVec); } SkNi operator + (const SkNi& o) const { return vaddq_s32(fVec, o.fVec); } SkNi operator - (const SkNi& o) const { return vsubq_s32(fVec, o.fVec); } SkNi operator * (const SkNi& o) const { return vmulq_s32(fVec, o.fVec); } SkNi operator << (int bits) const { SHIFT32(vshlq_n_s32, fVec, bits); } SkNi operator >> (int bits) const { SHIFT32(vshrq_n_s32, fVec, bits); } template int kth() const { SkASSERT(0 <= k && k < 4); return vgetq_lane_s32(fVec, k&3); } int32x4_t fVec; }; template <> class SkNf<4, float> { public: SkNf(float32x4_t vec) : fVec(vec) {} SkNf() {} explicit SkNf(float val) : fVec(vdupq_n_f32(val)) {} static SkNf Load(const float vals[4]) { return vld1q_f32(vals); } SkNf(float a, float b, float c, float d) { fVec = (float32x4_t) { a, b, c, d }; } void store(float vals[4]) const { vst1q_f32(vals, fVec); } SkNi<4, int> castTrunc() const { return vcvtq_s32_f32(fVec); } SkNf approxInvert() const { float32x4_t est0 = vrecpeq_f32(fVec), est1 = vmulq_f32(vrecpsq_f32(est0, fVec), est0); return est1; } SkNf invert() const { float32x4_t est1 = this->approxInvert().fVec, est2 = vmulq_f32(vrecpsq_f32(est1, fVec), est1); return est2; } SkNf operator + (const SkNf& o) const { return vaddq_f32(fVec, o.fVec); } SkNf operator - (const SkNf& o) const { return vsubq_f32(fVec, o.fVec); } SkNf operator * (const SkNf& o) const { return vmulq_f32(fVec, o.fVec); } SkNf operator / (const SkNf& o) const { #if defined(SK_CPU_ARM64) return vdivq_f32(fVec, o.fVec); #else return vmulq_f32(fVec, o.invert().fVec); #endif } SkNf operator==(const SkNf& o) const { return vreinterpretq_f32_u32(vceqq_f32(fVec, o.fVec)); } SkNf operator <(const SkNf& o) const { return vreinterpretq_f32_u32(vcltq_f32(fVec, o.fVec)); } SkNf operator >(const SkNf& o) const { return vreinterpretq_f32_u32(vcgtq_f32(fVec, o.fVec)); } SkNf operator<=(const SkNf& o) const { return vreinterpretq_f32_u32(vcleq_f32(fVec, o.fVec)); } SkNf operator>=(const SkNf& o) const { return vreinterpretq_f32_u32(vcgeq_f32(fVec, o.fVec)); } SkNf operator!=(const SkNf& o) const { return vreinterpretq_f32_u32(vmvnq_u32(vceqq_f32(fVec, o.fVec))); } static SkNf Min(const SkNf& l, const SkNf& r) { return vminq_f32(l.fVec, r.fVec); } static SkNf Max(const SkNf& l, const SkNf& r) { return vmaxq_f32(l.fVec, r.fVec); } SkNf rsqrt0() const { return vrsqrteq_f32(fVec); } SkNf rsqrt1() const { float32x4_t est0 = this->rsqrt0().fVec; return vmulq_f32(vrsqrtsq_f32(fVec, vmulq_f32(est0, est0)), est0); } SkNf rsqrt2() const { float32x4_t est1 = this->rsqrt1().fVec; return vmulq_f32(vrsqrtsq_f32(fVec, vmulq_f32(est1, est1)), est1); } SkNf sqrt() const { #if defined(SK_CPU_ARM64) return vsqrtq_f32(fVec); #else return *this * this->rsqrt2(); #endif } template float kth() const { SkASSERT(0 <= k && k < 4); return vgetq_lane_f32(fVec, k&3); } bool allTrue() const { auto v = vreinterpretq_u32_f32(fVec); return vgetq_lane_u32(v,0) && vgetq_lane_u32(v,1) && vgetq_lane_u32(v,2) && vgetq_lane_u32(v,3); } bool anyTrue() const { auto v = vreinterpretq_u32_f32(fVec); return vgetq_lane_u32(v,0) || vgetq_lane_u32(v,1) || vgetq_lane_u32(v,2) || vgetq_lane_u32(v,3); } SkNf thenElse(const SkNf& t, const SkNf& e) const { uint32x4_t ci = vreinterpretq_u32_f32(fVec), ti = vreinterpretq_u32_f32(t.fVec), ei = vreinterpretq_u32_f32(e.fVec); return vreinterpretq_f32_u32(vorrq_u32(vandq_u32(ti, ci), vbicq_u32(ei, ci))); } float32x4_t fVec; }; template <> class SkNi<8, uint16_t> { public: SkNi(const uint16x8_t& vec) : fVec(vec) {} SkNi() {} explicit SkNi(uint16_t val) : fVec(vdupq_n_u16(val)) {} static SkNi Load(const uint16_t vals[8]) { return vld1q_u16(vals); } SkNi(uint16_t a, uint16_t b, uint16_t c, uint16_t d, uint16_t e, uint16_t f, uint16_t g, uint16_t h) { fVec = (uint16x8_t) { a,b,c,d, e,f,g,h }; } void store(uint16_t vals[8]) const { vst1q_u16(vals, fVec); } SkNi operator + (const SkNi& o) const { return vaddq_u16(fVec, o.fVec); } SkNi operator - (const SkNi& o) const { return vsubq_u16(fVec, o.fVec); } SkNi operator * (const SkNi& o) const { return vmulq_u16(fVec, o.fVec); } SkNi operator << (int bits) const { SHIFT16(vshlq_n_u16, fVec, bits); } SkNi operator >> (int bits) const { SHIFT16(vshrq_n_u16, fVec, bits); } static SkNi Min(const SkNi& a, const SkNi& b) { return vminq_u16(a.fVec, b.fVec); } template uint16_t kth() const { SkASSERT(0 <= k && k < 8); return vgetq_lane_u16(fVec, k&7); } uint16x8_t fVec; }; template <> class SkNi<16, uint8_t> { public: SkNi(const uint8x16_t& vec) : fVec(vec) {} SkNi() {} explicit SkNi(uint8_t val) : fVec(vdupq_n_u8(val)) {} static SkNi Load(const uint8_t vals[16]) { return vld1q_u8(vals); } SkNi(uint8_t a, uint8_t b, uint8_t c, uint8_t d, uint8_t e, uint8_t f, uint8_t g, uint8_t h, uint8_t i, uint8_t j, uint8_t k, uint8_t l, uint8_t m, uint8_t n, uint8_t o, uint8_t p) { fVec = (uint8x16_t) { a,b,c,d, e,f,g,h, i,j,k,l, m,n,o,p }; } void store(uint8_t vals[16]) const { vst1q_u8(vals, fVec); } SkNi saturatedAdd(const SkNi& o) const { return vqaddq_u8(fVec, o.fVec); } SkNi operator + (const SkNi& o) const { return vaddq_u8(fVec, o.fVec); } SkNi operator - (const SkNi& o) const { return vsubq_u8(fVec, o.fVec); } static SkNi Min(const SkNi& a, const SkNi& b) { return vminq_u8(a.fVec, b.fVec); } SkNi operator < (const SkNi& o) const { return vcltq_u8(fVec, o.fVec); } template uint8_t kth() const { SkASSERT(0 <= k && k < 15); return vgetq_lane_u8(fVec, k&16); } SkNi thenElse(const SkNi& t, const SkNi& e) const { return vorrq_u8(vandq_u8(t.fVec, fVec), vbicq_u8(e.fVec, fVec)); } uint8x16_t fVec; }; #undef SHIFT32 #undef SHIFT16 #undef SHIFT8 } // namespace #endif//SkNx_neon_DEFINED