/* * Copyright 2014 The Android Open Source Project * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #ifndef SkColor_opts_SSE2_DEFINED #define SkColor_opts_SSE2_DEFINED #include #define ASSERT_EQ(a,b) SkASSERT(0xffff == _mm_movemask_epi8(_mm_cmpeq_epi8((a), (b)))) // Because no _mm_mul_epi32() in SSE2, we emulate it here. // Multiplies 4 32-bit integers from a by 4 32-bit intergers from b. // The 4 multiplication results should be represented within 32-bit // integers, otherwise they would be overflow. static inline __m128i Multiply32_SSE2(const __m128i& a, const __m128i& b) { // Calculate results of a0 * b0 and a2 * b2. __m128i r1 = _mm_mul_epu32(a, b); // Calculate results of a1 * b1 and a3 * b3. __m128i r2 = _mm_mul_epu32(_mm_srli_si128(a, 4), _mm_srli_si128(b, 4)); // Shuffle results to [63..0] and interleave the results. __m128i r = _mm_unpacklo_epi32(_mm_shuffle_epi32(r1, _MM_SHUFFLE(0,0,2,0)), _mm_shuffle_epi32(r2, _MM_SHUFFLE(0,0,2,0))); return r; } static inline __m128i SkAlpha255To256_SSE2(const __m128i& alpha) { return _mm_add_epi32(alpha, _mm_set1_epi32(1)); } // See #define SkAlphaMulAlpha(a, b) SkMulDiv255Round(a, b) in SkXfermode.cpp. static inline __m128i SkAlphaMulAlpha_SSE2(const __m128i& a, const __m128i& b) { __m128i prod = _mm_mullo_epi16(a, b); prod = _mm_add_epi32(prod, _mm_set1_epi32(128)); prod = _mm_add_epi32(prod, _mm_srli_epi32(prod, 8)); prod = _mm_srli_epi32(prod, 8); return prod; } // Portable version SkAlphaMulQ is in SkColorData.h. static inline __m128i SkAlphaMulQ_SSE2(const __m128i& c, const __m128i& scale) { const __m128i mask = _mm_set1_epi32(0xFF00FF); __m128i s = _mm_or_si128(_mm_slli_epi32(scale, 16), scale); // uint32_t rb = ((c & mask) * scale) >> 8 __m128i rb = _mm_and_si128(mask, c); rb = _mm_mullo_epi16(rb, s); rb = _mm_srli_epi16(rb, 8); // uint32_t ag = ((c >> 8) & mask) * scale __m128i ag = _mm_srli_epi16(c, 8); ASSERT_EQ(ag, _mm_and_si128(mask, ag)); // ag = _mm_srli_epi16(c, 8) did this for us. ag = _mm_mullo_epi16(ag, s); // (rb & mask) | (ag & ~mask) ASSERT_EQ(rb, _mm_and_si128(mask, rb)); // rb = _mm_srli_epi16(rb, 8) did this for us. ag = _mm_andnot_si128(mask, ag); return _mm_or_si128(rb, ag); } // Fast path for SkAlphaMulQ_SSE2 with a constant scale factor. static inline __m128i SkAlphaMulQ_SSE2(const __m128i& c, const unsigned scale) { const __m128i mask = _mm_set1_epi32(0xFF00FF); __m128i s = _mm_set1_epi16(scale << 8); // Move scale factor to upper byte of word. // With mulhi, red and blue values are already in the right place and // don't need to be divided by 256. __m128i rb = _mm_and_si128(mask, c); rb = _mm_mulhi_epu16(rb, s); __m128i ag = _mm_andnot_si128(mask, c); ag = _mm_mulhi_epu16(ag, s); // Alpha and green values are in the higher byte of each word. ag = _mm_andnot_si128(mask, ag); return _mm_or_si128(rb, ag); } // Portable version SkFastFourByteInterp256 is in SkColorData.h. static inline __m128i SkFastFourByteInterp256_SSE2(const __m128i& src, const __m128i& dst, const unsigned src_scale) { // Computes dst + (((src - dst)*src_scale)>>8) const __m128i mask = _mm_set1_epi32(0x00FF00FF); // Unpack the 16x8-bit source into 2 8x16-bit splayed halves. __m128i src_rb = _mm_and_si128(mask, src); __m128i src_ag = _mm_srli_epi16(src, 8); __m128i dst_rb = _mm_and_si128(mask, dst); __m128i dst_ag = _mm_srli_epi16(dst, 8); // Compute scaled differences. __m128i diff_rb = _mm_sub_epi16(src_rb, dst_rb); __m128i diff_ag = _mm_sub_epi16(src_ag, dst_ag); __m128i s = _mm_set1_epi16(src_scale); diff_rb = _mm_mullo_epi16(diff_rb, s); diff_ag = _mm_mullo_epi16(diff_ag, s); // Pack the differences back together. diff_rb = _mm_srli_epi16(diff_rb, 8); diff_ag = _mm_andnot_si128(mask, diff_ag); __m128i diff = _mm_or_si128(diff_rb, diff_ag); // Add difference to destination. return _mm_add_epi8(dst, diff); } // Portable version SkPMLerp is in SkColorData.h static inline __m128i SkPMLerp_SSE2(const __m128i& src, const __m128i& dst, const unsigned scale) { return SkFastFourByteInterp256_SSE2(src, dst, scale); } static inline __m128i SkGetPackedA32_SSE2(const __m128i& src) { #if SK_A32_SHIFT == 24 // It's very common (universal?) that alpha is the top byte. return _mm_srli_epi32(src, 24); // You'd hope the compiler would remove the left shift then, #else // but I've seen Clang just do a dumb left shift of zero. :( __m128i a = _mm_slli_epi32(src, (24 - SK_A32_SHIFT)); return _mm_srli_epi32(a, 24); #endif } static inline __m128i SkGetPackedR32_SSE2(const __m128i& src) { __m128i r = _mm_slli_epi32(src, (24 - SK_R32_SHIFT)); return _mm_srli_epi32(r, 24); } static inline __m128i SkGetPackedG32_SSE2(const __m128i& src) { __m128i g = _mm_slli_epi32(src, (24 - SK_G32_SHIFT)); return _mm_srli_epi32(g, 24); } static inline __m128i SkGetPackedB32_SSE2(const __m128i& src) { __m128i b = _mm_slli_epi32(src, (24 - SK_B32_SHIFT)); return _mm_srli_epi32(b, 24); } static inline __m128i SkMul16ShiftRound_SSE2(const __m128i& a, const __m128i& b, int shift) { __m128i prod = _mm_mullo_epi16(a, b); prod = _mm_add_epi16(prod, _mm_set1_epi16(1 << (shift - 1))); prod = _mm_add_epi16(prod, _mm_srli_epi16(prod, shift)); prod = _mm_srli_epi16(prod, shift); return prod; } static inline __m128i SkPackRGB16_SSE2(const __m128i& r, const __m128i& g, const __m128i& b) { __m128i dr = _mm_slli_epi16(r, SK_R16_SHIFT); __m128i dg = _mm_slli_epi16(g, SK_G16_SHIFT); __m128i db = _mm_slli_epi16(b, SK_B16_SHIFT); __m128i c = _mm_or_si128(dr, dg); return _mm_or_si128(c, db); } static inline __m128i SkPackARGB32_SSE2(const __m128i& a, const __m128i& r, const __m128i& g, const __m128i& b) { __m128i da = _mm_slli_epi32(a, SK_A32_SHIFT); __m128i dr = _mm_slli_epi32(r, SK_R32_SHIFT); __m128i dg = _mm_slli_epi32(g, SK_G32_SHIFT); __m128i db = _mm_slli_epi32(b, SK_B32_SHIFT); __m128i c = _mm_or_si128(da, dr); c = _mm_or_si128(c, dg); return _mm_or_si128(c, db); } static inline __m128i SkPacked16ToR32_SSE2(const __m128i& src) { __m128i r = _mm_srli_epi32(src, SK_R16_SHIFT); r = _mm_and_si128(r, _mm_set1_epi32(SK_R16_MASK)); r = _mm_or_si128(_mm_slli_epi32(r, (8 - SK_R16_BITS)), _mm_srli_epi32(r, (2 * SK_R16_BITS - 8))); return r; } static inline __m128i SkPacked16ToG32_SSE2(const __m128i& src) { __m128i g = _mm_srli_epi32(src, SK_G16_SHIFT); g = _mm_and_si128(g, _mm_set1_epi32(SK_G16_MASK)); g = _mm_or_si128(_mm_slli_epi32(g, (8 - SK_G16_BITS)), _mm_srli_epi32(g, (2 * SK_G16_BITS - 8))); return g; } static inline __m128i SkPacked16ToB32_SSE2(const __m128i& src) { __m128i b = _mm_srli_epi32(src, SK_B16_SHIFT); b = _mm_and_si128(b, _mm_set1_epi32(SK_B16_MASK)); b = _mm_or_si128(_mm_slli_epi32(b, (8 - SK_B16_BITS)), _mm_srli_epi32(b, (2 * SK_B16_BITS - 8))); return b; } static inline __m128i SkPixel16ToPixel32_SSE2(const __m128i& src) { __m128i r = SkPacked16ToR32_SSE2(src); __m128i g = SkPacked16ToG32_SSE2(src); __m128i b = SkPacked16ToB32_SSE2(src); return SkPackARGB32_SSE2(_mm_set1_epi32(0xFF), r, g, b); } static inline __m128i SkPixel32ToPixel16_ToU16_SSE2(const __m128i& src_pixel1, const __m128i& src_pixel2) { // Calculate result r. __m128i r1 = _mm_srli_epi32(src_pixel1, SK_R32_SHIFT + (8 - SK_R16_BITS)); r1 = _mm_and_si128(r1, _mm_set1_epi32(SK_R16_MASK)); __m128i r2 = _mm_srli_epi32(src_pixel2, SK_R32_SHIFT + (8 - SK_R16_BITS)); r2 = _mm_and_si128(r2, _mm_set1_epi32(SK_R16_MASK)); __m128i r = _mm_packs_epi32(r1, r2); // Calculate result g. __m128i g1 = _mm_srli_epi32(src_pixel1, SK_G32_SHIFT + (8 - SK_G16_BITS)); g1 = _mm_and_si128(g1, _mm_set1_epi32(SK_G16_MASK)); __m128i g2 = _mm_srli_epi32(src_pixel2, SK_G32_SHIFT + (8 - SK_G16_BITS)); g2 = _mm_and_si128(g2, _mm_set1_epi32(SK_G16_MASK)); __m128i g = _mm_packs_epi32(g1, g2); // Calculate result b. __m128i b1 = _mm_srli_epi32(src_pixel1, SK_B32_SHIFT + (8 - SK_B16_BITS)); b1 = _mm_and_si128(b1, _mm_set1_epi32(SK_B16_MASK)); __m128i b2 = _mm_srli_epi32(src_pixel2, SK_B32_SHIFT + (8 - SK_B16_BITS)); b2 = _mm_and_si128(b2, _mm_set1_epi32(SK_B16_MASK)); __m128i b = _mm_packs_epi32(b1, b2); // Store 8 16-bit colors in dst. __m128i d_pixel = SkPackRGB16_SSE2(r, g, b); return d_pixel; } // Portable version is SkPMSrcOver in SkColorData.h. static inline __m128i SkPMSrcOver_SSE2(const __m128i& src, const __m128i& dst) { return _mm_add_epi32(src, SkAlphaMulQ_SSE2(dst, _mm_sub_epi32(_mm_set1_epi32(256), SkGetPackedA32_SSE2(src)))); } // Fast path for SkBlendARGB32_SSE2 with a constant alpha factor. static inline __m128i SkBlendARGB32_SSE2(const __m128i& src, const __m128i& dst, const unsigned aa) { unsigned alpha = SkAlpha255To256(aa); __m128i src_scale = _mm_set1_epi16(alpha); // SkAlphaMulInv256(SkGetPackedA32(src), src_scale) __m128i dst_scale = SkGetPackedA32_SSE2(src); // High words in dst_scale are 0, so it's safe to multiply with 16-bit src_scale. dst_scale = _mm_mullo_epi16(dst_scale, src_scale); dst_scale = _mm_sub_epi32(_mm_set1_epi32(0xFFFF), dst_scale); dst_scale = _mm_add_epi32(dst_scale, _mm_srli_epi32(dst_scale, 8)); dst_scale = _mm_srli_epi32(dst_scale, 8); // Duplicate scales into 2x16-bit pattern per pixel. dst_scale = _mm_shufflelo_epi16(dst_scale, _MM_SHUFFLE(2, 2, 0, 0)); dst_scale = _mm_shufflehi_epi16(dst_scale, _MM_SHUFFLE(2, 2, 0, 0)); const __m128i mask = _mm_set1_epi32(0x00FF00FF); // Unpack the 16x8-bit source/destination into 2 8x16-bit splayed halves. __m128i src_rb = _mm_and_si128(mask, src); __m128i src_ag = _mm_srli_epi16(src, 8); __m128i dst_rb = _mm_and_si128(mask, dst); __m128i dst_ag = _mm_srli_epi16(dst, 8); // Scale them. src_rb = _mm_mullo_epi16(src_rb, src_scale); src_ag = _mm_mullo_epi16(src_ag, src_scale); dst_rb = _mm_mullo_epi16(dst_rb, dst_scale); dst_ag = _mm_mullo_epi16(dst_ag, dst_scale); // Add the scaled source and destination. dst_rb = _mm_add_epi16(src_rb, dst_rb); dst_ag = _mm_add_epi16(src_ag, dst_ag); // Unsplay the halves back together. dst_rb = _mm_srli_epi16(dst_rb, 8); dst_ag = _mm_andnot_si128(mask, dst_ag); return _mm_or_si128(dst_rb, dst_ag); } #undef ASSERT_EQ #endif // SkColor_opts_SSE2_DEFINED