/* * Copyright 2015 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "SkBlitMask.h" #include "SkColor_opts_neon.h" void SkBlitLCD16OpaqueRow_neon(SkPMColor dst[], const uint16_t src[], SkColor color, int width, SkPMColor opaqueDst) { int colR = SkColorGetR(color); int colG = SkColorGetG(color); int colB = SkColorGetB(color); uint8x8_t vcolR = vdup_n_u8(colR); uint8x8_t vcolG = vdup_n_u8(colG); uint8x8_t vcolB = vdup_n_u8(colB); uint8x8_t vopqDstA = vdup_n_u8(SkGetPackedA32(opaqueDst)); uint8x8_t vopqDstR = vdup_n_u8(SkGetPackedR32(opaqueDst)); uint8x8_t vopqDstG = vdup_n_u8(SkGetPackedG32(opaqueDst)); uint8x8_t vopqDstB = vdup_n_u8(SkGetPackedB32(opaqueDst)); while (width >= 8) { uint8x8x4_t vdst; uint16x8_t vmask; uint16x8_t vmaskR, vmaskG, vmaskB; uint8x8_t vsel_trans, vsel_opq; vdst = vld4_u8((uint8_t*)dst); vmask = vld1q_u16(src); // Prepare compare masks vsel_trans = vmovn_u16(vceqq_u16(vmask, vdupq_n_u16(0))); vsel_opq = vmovn_u16(vceqq_u16(vmask, vdupq_n_u16(0xFFFF))); // Get all the color masks on 5 bits vmaskR = vshrq_n_u16(vmask, SK_R16_SHIFT); vmaskG = vshrq_n_u16(vshlq_n_u16(vmask, SK_R16_BITS), SK_B16_BITS + SK_R16_BITS + 1); vmaskB = vmask & vdupq_n_u16(SK_B16_MASK); // Upscale to 0..32 vmaskR = vmaskR + vshrq_n_u16(vmaskR, 4); vmaskG = vmaskG + vshrq_n_u16(vmaskG, 4); vmaskB = vmaskB + vshrq_n_u16(vmaskB, 4); vdst.val[NEON_A] = vbsl_u8(vsel_trans, vdst.val[NEON_A], vdup_n_u8(0xFF)); vdst.val[NEON_A] = vbsl_u8(vsel_opq, vopqDstA, vdst.val[NEON_A]); vdst.val[NEON_R] = SkBlend32_neon8(vcolR, vdst.val[NEON_R], vmaskR); vdst.val[NEON_G] = SkBlend32_neon8(vcolG, vdst.val[NEON_G], vmaskG); vdst.val[NEON_B] = SkBlend32_neon8(vcolB, vdst.val[NEON_B], vmaskB); vdst.val[NEON_R] = vbsl_u8(vsel_opq, vopqDstR, vdst.val[NEON_R]); vdst.val[NEON_G] = vbsl_u8(vsel_opq, vopqDstG, vdst.val[NEON_G]); vdst.val[NEON_B] = vbsl_u8(vsel_opq, vopqDstB, vdst.val[NEON_B]); vst4_u8((uint8_t*)dst, vdst); dst += 8; src += 8; width -= 8; } // Leftovers for (int i = 0; i < width; i++) { dst[i] = SkBlendLCD16Opaque(colR, colG, colB, dst[i], src[i], opaqueDst); } } void SkBlitLCD16Row_neon(SkPMColor dst[], const uint16_t src[], SkColor color, int width, SkPMColor) { int colA = SkColorGetA(color); int colR = SkColorGetR(color); int colG = SkColorGetG(color); int colB = SkColorGetB(color); colA = SkAlpha255To256(colA); uint16x8_t vcolA = vdupq_n_u16(colA); uint8x8_t vcolR = vdup_n_u8(colR); uint8x8_t vcolG = vdup_n_u8(colG); uint8x8_t vcolB = vdup_n_u8(colB); while (width >= 8) { uint8x8x4_t vdst; uint16x8_t vmask; uint16x8_t vmaskR, vmaskG, vmaskB; vdst = vld4_u8((uint8_t*)dst); vmask = vld1q_u16(src); // Get all the color masks on 5 bits vmaskR = vshrq_n_u16(vmask, SK_R16_SHIFT); vmaskG = vshrq_n_u16(vshlq_n_u16(vmask, SK_R16_BITS), SK_B16_BITS + SK_R16_BITS + 1); vmaskB = vmask & vdupq_n_u16(SK_B16_MASK); // Upscale to 0..32 vmaskR = vmaskR + vshrq_n_u16(vmaskR, 4); vmaskG = vmaskG + vshrq_n_u16(vmaskG, 4); vmaskB = vmaskB + vshrq_n_u16(vmaskB, 4); vmaskR = vshrq_n_u16(vmaskR * vcolA, 8); vmaskG = vshrq_n_u16(vmaskG * vcolA, 8); vmaskB = vshrq_n_u16(vmaskB * vcolA, 8); vdst.val[NEON_A] = vdup_n_u8(0xFF); vdst.val[NEON_R] = SkBlend32_neon8(vcolR, vdst.val[NEON_R], vmaskR); vdst.val[NEON_G] = SkBlend32_neon8(vcolG, vdst.val[NEON_G], vmaskG); vdst.val[NEON_B] = SkBlend32_neon8(vcolB, vdst.val[NEON_B], vmaskB); vst4_u8((uint8_t*)dst, vdst); dst += 8; src += 8; width -= 8; } for (int i = 0; i < width; i++) { dst[i] = SkBlendLCD16(colA, colR, colG, colB, dst[i], src[i]); } } #define LOAD_LANE_16(reg, n) \ reg = vld1q_lane_u16(device, reg, n); \ device = (uint16_t*)((char*)device + deviceRB); #define STORE_LANE_16(reg, n) \ vst1_lane_u16(dst, reg, n); \ dst = (uint16_t*)((char*)dst + deviceRB); void SkRGB16BlitterBlitV_neon(uint16_t* device, int height, size_t deviceRB, unsigned scale, uint32_t src32) { if (height >= 8) { uint16_t* dst = device; // prepare constants uint16x8_t vdev = vdupq_n_u16(0); uint16x8_t vmaskq_g16 = vdupq_n_u16(SK_G16_MASK_IN_PLACE); uint16x8_t vmaskq_ng16 = vdupq_n_u16(~SK_G16_MASK_IN_PLACE); uint32x4_t vsrc32 = vdupq_n_u32(src32); uint32x4_t vscale5 = vdupq_n_u32((uint32_t)scale); while (height >= 8){ LOAD_LANE_16(vdev, 0) LOAD_LANE_16(vdev, 1) LOAD_LANE_16(vdev, 2) LOAD_LANE_16(vdev, 3) LOAD_LANE_16(vdev, 4) LOAD_LANE_16(vdev, 5) LOAD_LANE_16(vdev, 6) LOAD_LANE_16(vdev, 7) // Expand_rgb_16 uint16x8x2_t vdst = vzipq_u16((vdev & vmaskq_ng16), (vdev & vmaskq_g16)); uint32x4_t vdst32_lo = vmulq_u32(vreinterpretq_u32_u16(vdst.val[0]), vscale5); uint32x4_t vdst32_hi = vmulq_u32(vreinterpretq_u32_u16(vdst.val[1]), vscale5); // Compact_rgb_16 vdst32_lo = vaddq_u32(vdst32_lo, vsrc32); vdst32_hi = vaddq_u32(vdst32_hi, vsrc32); vdst32_lo = vshrq_n_u32(vdst32_lo, 5); vdst32_hi = vshrq_n_u32(vdst32_hi, 5); uint16x4_t vtmp_lo = vmovn_u32(vdst32_lo) & vget_low_u16(vmaskq_ng16); uint16x4_t vtmp_hi = vshrn_n_u32(vdst32_lo, 16) & vget_low_u16(vmaskq_g16); uint16x4_t vdst16_lo = vorr_u16(vtmp_lo, vtmp_hi); vtmp_lo = vmovn_u32(vdst32_hi) & vget_low_u16(vmaskq_ng16); vtmp_hi = vshrn_n_u32(vdst32_hi, 16) & vget_low_u16(vmaskq_g16); uint16x4_t vdst16_hi = vorr_u16(vtmp_lo, vtmp_hi); STORE_LANE_16(vdst16_lo, 0) STORE_LANE_16(vdst16_lo, 1) STORE_LANE_16(vdst16_lo, 2) STORE_LANE_16(vdst16_lo, 3) STORE_LANE_16(vdst16_hi, 0) STORE_LANE_16(vdst16_hi, 1) STORE_LANE_16(vdst16_hi, 2) STORE_LANE_16(vdst16_hi, 3) height -= 8; } } while (height != 0){ uint32_t dst32 = SkExpand_rgb_16(*device) * scale; *device = SkCompact_rgb_16((src32 + dst32) >> 5); device = (uint16_t*)((char*)device + deviceRB); height--; } } #undef LOAD_LANE_16 #undef STORE_LANE_16