/* * Copyright 2015 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #ifndef SkBlitMask_opts_DEFINED #define SkBlitMask_opts_DEFINED #include "Sk4px.h" namespace SK_OPTS_NS { #if defined(SK_ARM_HAS_NEON) // The Sk4px versions below will work fine with NEON, but we have had many indications // that it doesn't perform as well as this NEON-specific code. TODO(mtklein): why? #include "SkColor_opts_neon.h" template static void D32_A8_Opaque_Color_neon(void* SK_RESTRICT dst, size_t dstRB, const void* SK_RESTRICT maskPtr, size_t maskRB, SkColor color, int width, int height) { SkPMColor pmc = SkPreMultiplyColor(color); SkPMColor* SK_RESTRICT device = (SkPMColor*)dst; const uint8_t* SK_RESTRICT mask = (const uint8_t*)maskPtr; uint8x8x4_t vpmc; maskRB -= width; dstRB -= (width << 2); if (width >= 8) { vpmc.val[NEON_A] = vdup_n_u8(SkGetPackedA32(pmc)); vpmc.val[NEON_R] = vdup_n_u8(SkGetPackedR32(pmc)); vpmc.val[NEON_G] = vdup_n_u8(SkGetPackedG32(pmc)); vpmc.val[NEON_B] = vdup_n_u8(SkGetPackedB32(pmc)); } do { int w = width; while (w >= 8) { uint8x8_t vmask = vld1_u8(mask); uint16x8_t vscale, vmask256 = SkAlpha255To256_neon8(vmask); if (isColor) { vscale = vsubw_u8(vdupq_n_u16(256), SkAlphaMul_neon8(vpmc.val[NEON_A], vmask256)); } else { vscale = vsubw_u8(vdupq_n_u16(256), vmask); } uint8x8x4_t vdev = vld4_u8((uint8_t*)device); vdev.val[NEON_A] = SkAlphaMul_neon8(vpmc.val[NEON_A], vmask256) + SkAlphaMul_neon8(vdev.val[NEON_A], vscale); vdev.val[NEON_R] = SkAlphaMul_neon8(vpmc.val[NEON_R], vmask256) + SkAlphaMul_neon8(vdev.val[NEON_R], vscale); vdev.val[NEON_G] = SkAlphaMul_neon8(vpmc.val[NEON_G], vmask256) + SkAlphaMul_neon8(vdev.val[NEON_G], vscale); vdev.val[NEON_B] = SkAlphaMul_neon8(vpmc.val[NEON_B], vmask256) + SkAlphaMul_neon8(vdev.val[NEON_B], vscale); vst4_u8((uint8_t*)device, vdev); mask += 8; device += 8; w -= 8; } while (w--) { unsigned aa = *mask++; if (isColor) { *device = SkBlendARGB32(pmc, *device, aa); } else { *device = SkAlphaMulQ(pmc, SkAlpha255To256(aa)) + SkAlphaMulQ(*device, SkAlpha255To256(255 - aa)); } device += 1; }; device = (uint32_t*)((char*)device + dstRB); mask += maskRB; } while (--height != 0); } static void blit_mask_d32_a8_general(SkPMColor* dst, size_t dstRB, const SkAlpha* mask, size_t maskRB, SkColor color, int w, int h) { D32_A8_Opaque_Color_neon(dst, dstRB, mask, maskRB, color, w, h); } // As above, but made slightly simpler by requiring that color is opaque. static void blit_mask_d32_a8_opaque(SkPMColor* dst, size_t dstRB, const SkAlpha* mask, size_t maskRB, SkColor color, int w, int h) { D32_A8_Opaque_Color_neon(dst, dstRB, mask, maskRB, color, w, h); } // Same as _opaque, but assumes color == SK_ColorBLACK, a very common and even simpler case. static void blit_mask_d32_a8_black(SkPMColor* dst, size_t dstRB, const SkAlpha* maskPtr, size_t maskRB, int width, int height) { SkPMColor* SK_RESTRICT device = (SkPMColor*)dst; const uint8_t* SK_RESTRICT mask = (const uint8_t*)maskPtr; maskRB -= width; dstRB -= (width << 2); do { int w = width; while (w >= 8) { uint8x8_t vmask = vld1_u8(mask); uint16x8_t vscale = vsubw_u8(vdupq_n_u16(256), vmask); uint8x8x4_t vdevice = vld4_u8((uint8_t*)device); vdevice = SkAlphaMulQ_neon8(vdevice, vscale); vdevice.val[NEON_A] += vmask; vst4_u8((uint8_t*)device, vdevice); mask += 8; device += 8; w -= 8; } while (w-- > 0) { unsigned aa = *mask++; *device = (aa << SK_A32_SHIFT) + SkAlphaMulQ(*device, SkAlpha255To256(255 - aa)); device += 1; }; device = (uint32_t*)((char*)device + dstRB); mask += maskRB; } while (--height != 0); } #else static void blit_mask_d32_a8_general(SkPMColor* dst, size_t dstRB, const SkAlpha* mask, size_t maskRB, SkColor color, int w, int h) { auto s = Sk4px::DupPMColor(SkPreMultiplyColor(color)); auto fn = [&](const Sk4px& d, const Sk4px& aa) { // = (s + d(1-sa))aa + d(1-aa) // = s*aa + d(1-sa*aa) auto left = s.approxMulDiv255(aa), right = d.approxMulDiv255(left.alphas().inv()); return left + right; // This does not overflow (exhaustively checked). }; while (h --> 0) { Sk4px::MapDstAlpha(w, dst, mask, fn); dst += dstRB / sizeof(*dst); mask += maskRB / sizeof(*mask); } } // As above, but made slightly simpler by requiring that color is opaque. static void blit_mask_d32_a8_opaque(SkPMColor* dst, size_t dstRB, const SkAlpha* mask, size_t maskRB, SkColor color, int w, int h) { SkASSERT(SkColorGetA(color) == 0xFF); auto s = Sk4px::DupPMColor(SkPreMultiplyColor(color)); auto fn = [&](const Sk4px& d, const Sk4px& aa) { // = (s + d(1-sa))aa + d(1-aa) // = s*aa + d(1-sa*aa) // ~~~> // = s*aa + d(1-aa) return s.approxMulDiv255(aa) + d.approxMulDiv255(aa.inv()); }; while (h --> 0) { Sk4px::MapDstAlpha(w, dst, mask, fn); dst += dstRB / sizeof(*dst); mask += maskRB / sizeof(*mask); } } // Same as _opaque, but assumes color == SK_ColorBLACK, a very common and even simpler case. static void blit_mask_d32_a8_black(SkPMColor* dst, size_t dstRB, const SkAlpha* mask, size_t maskRB, int w, int h) { auto fn = [](const Sk4px& d, const Sk4px& aa) { // = (s + d(1-sa))aa + d(1-aa) // = s*aa + d(1-sa*aa) // ~~~> // a = 1*aa + d(1-1*aa) = aa + d(1-aa) // c = 0*aa + d(1-1*aa) = d(1-aa) return aa.zeroColors() + d.approxMulDiv255(aa.inv()); }; while (h --> 0) { Sk4px::MapDstAlpha(w, dst, mask, fn); dst += dstRB / sizeof(*dst); mask += maskRB / sizeof(*mask); } } #endif /*not static*/ inline void blit_mask_d32_a8(SkPMColor* dst, size_t dstRB, const SkAlpha* mask, size_t maskRB, SkColor color, int w, int h) { if (color == SK_ColorBLACK) { blit_mask_d32_a8_black(dst, dstRB, mask, maskRB, w, h); } else if (SkColorGetA(color) == 0xFF) { blit_mask_d32_a8_opaque(dst, dstRB, mask, maskRB, color, w, h); } else { blit_mask_d32_a8_general(dst, dstRB, mask, maskRB, color, w, h); } } } // SK_OPTS_NS #endif//SkBlitMask_opts_DEFINED