/* * Copyright 2009 The Android Open Source Project * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "SkBitmapProcState.h" #include "SkColorPriv.h" #include "SkPaint.h" #include "SkTypes.h" #include "SkUtils.h" #include "SkUtilsArm.h" #include "SkConvolver.h" #if SK_ARM_ARCH >= 6 && !defined(SK_CPU_BENDIAN) void SI8_D16_nofilter_DX_arm( const SkBitmapProcState& s, const uint32_t* SK_RESTRICT xy, int count, uint16_t* SK_RESTRICT colors) SK_ATTRIBUTE_OPTIMIZE_O1; void SI8_D16_nofilter_DX_arm(const SkBitmapProcState& s, const uint32_t* SK_RESTRICT xy, int count, uint16_t* SK_RESTRICT colors) { SkASSERT(count > 0 && colors != NULL); SkASSERT(s.fInvType <= (SkMatrix::kTranslate_Mask | SkMatrix::kScale_Mask)); SkASSERT(SkPaint::kNone_FilterLevel == s.fFilterLevel); const uint16_t* SK_RESTRICT table = s.fBitmap->getColorTable()->lock16BitCache(); const uint8_t* SK_RESTRICT srcAddr = (const uint8_t*)s.fBitmap->getPixels(); // buffer is y32, x16, x16, x16, x16, x16 // bump srcAddr to the proper row, since we're told Y never changes SkASSERT((unsigned)xy[0] < (unsigned)s.fBitmap->height()); srcAddr = (const uint8_t*)((const char*)srcAddr + xy[0] * s.fBitmap->rowBytes()); uint8_t src; if (1 == s.fBitmap->width()) { src = srcAddr[0]; uint16_t dstValue = table[src]; sk_memset16(colors, dstValue, count); } else { int i; int count8 = count >> 3; const uint16_t* SK_RESTRICT xx = (const uint16_t*)(xy + 1); asm volatile ( "cmp %[count8], #0 \n\t" // compare loop counter with 0 "beq 2f \n\t" // if loop counter == 0, exit "1: \n\t" "ldmia %[xx]!, {r5, r7, r9, r11} \n\t" // load ptrs to pixels 0-7 "subs %[count8], %[count8], #1 \n\t" // decrement loop counter "uxth r4, r5 \n\t" // extract ptr 0 "mov r5, r5, lsr #16 \n\t" // extract ptr 1 "uxth r6, r7 \n\t" // extract ptr 2 "mov r7, r7, lsr #16 \n\t" // extract ptr 3 "ldrb r4, [%[srcAddr], r4] \n\t" // load pixel 0 from image "uxth r8, r9 \n\t" // extract ptr 4 "ldrb r5, [%[srcAddr], r5] \n\t" // load pixel 1 from image "mov r9, r9, lsr #16 \n\t" // extract ptr 5 "ldrb r6, [%[srcAddr], r6] \n\t" // load pixel 2 from image "uxth r10, r11 \n\t" // extract ptr 6 "ldrb r7, [%[srcAddr], r7] \n\t" // load pixel 3 from image "mov r11, r11, lsr #16 \n\t" // extract ptr 7 "ldrb r8, [%[srcAddr], r8] \n\t" // load pixel 4 from image "add r4, r4, r4 \n\t" // double pixel 0 for RGB565 lookup "ldrb r9, [%[srcAddr], r9] \n\t" // load pixel 5 from image "add r5, r5, r5 \n\t" // double pixel 1 for RGB565 lookup "ldrb r10, [%[srcAddr], r10] \n\t" // load pixel 6 from image "add r6, r6, r6 \n\t" // double pixel 2 for RGB565 lookup "ldrb r11, [%[srcAddr], r11] \n\t" // load pixel 7 from image "add r7, r7, r7 \n\t" // double pixel 3 for RGB565 lookup "ldrh r4, [%[table], r4] \n\t" // load pixel 0 RGB565 from colmap "add r8, r8, r8 \n\t" // double pixel 4 for RGB565 lookup "ldrh r5, [%[table], r5] \n\t" // load pixel 1 RGB565 from colmap "add r9, r9, r9 \n\t" // double pixel 5 for RGB565 lookup "ldrh r6, [%[table], r6] \n\t" // load pixel 2 RGB565 from colmap "add r10, r10, r10 \n\t" // double pixel 6 for RGB565 lookup "ldrh r7, [%[table], r7] \n\t" // load pixel 3 RGB565 from colmap "add r11, r11, r11 \n\t" // double pixel 7 for RGB565 lookup "ldrh r8, [%[table], r8] \n\t" // load pixel 4 RGB565 from colmap "ldrh r9, [%[table], r9] \n\t" // load pixel 5 RGB565 from colmap "ldrh r10, [%[table], r10] \n\t" // load pixel 6 RGB565 from colmap "ldrh r11, [%[table], r11] \n\t" // load pixel 7 RGB565 from colmap "pkhbt r5, r4, r5, lsl #16 \n\t" // pack pixels 0 and 1 "pkhbt r6, r6, r7, lsl #16 \n\t" // pack pixels 2 and 3 "pkhbt r8, r8, r9, lsl #16 \n\t" // pack pixels 4 and 5 "pkhbt r10, r10, r11, lsl #16 \n\t" // pack pixels 6 and 7 "stmia %[colors]!, {r5, r6, r8, r10} \n\t" // store last 8 pixels "bgt 1b \n\t" // loop if counter > 0 "2: \n\t" : [xx] "+r" (xx), [count8] "+r" (count8), [colors] "+r" (colors) : [table] "r" (table), [srcAddr] "r" (srcAddr) : "memory", "cc", "r4", "r5", "r6", "r7", "r8", "r9", "r10", "r11" ); for (i = (count & 7); i > 0; --i) { src = srcAddr[*xx++]; *colors++ = table[src]; } } s.fBitmap->getColorTable()->unlock16BitCache(); } void SI8_opaque_D32_nofilter_DX_arm( const SkBitmapProcState& s, const uint32_t* SK_RESTRICT xy, int count, SkPMColor* SK_RESTRICT colors) SK_ATTRIBUTE_OPTIMIZE_O1; void SI8_opaque_D32_nofilter_DX_arm(const SkBitmapProcState& s, const uint32_t* SK_RESTRICT xy, int count, SkPMColor* SK_RESTRICT colors) { SkASSERT(count > 0 && colors != NULL); SkASSERT(s.fInvType <= (SkMatrix::kTranslate_Mask | SkMatrix::kScale_Mask)); SkASSERT(SkPaint::kNone_FilterLevel == s.fFilterLevel); const SkPMColor* SK_RESTRICT table = s.fBitmap->getColorTable()->lockColors(); const uint8_t* SK_RESTRICT srcAddr = (const uint8_t*)s.fBitmap->getPixels(); // buffer is y32, x16, x16, x16, x16, x16 // bump srcAddr to the proper row, since we're told Y never changes SkASSERT((unsigned)xy[0] < (unsigned)s.fBitmap->height()); srcAddr = (const uint8_t*)((const char*)srcAddr + xy[0] * s.fBitmap->rowBytes()); if (1 == s.fBitmap->width()) { uint8_t src = srcAddr[0]; SkPMColor dstValue = table[src]; sk_memset32(colors, dstValue, count); } else { const uint16_t* xx = (const uint16_t*)(xy + 1); asm volatile ( "subs %[count], %[count], #8 \n\t" // decrement count by 8, set flags "blt 2f \n\t" // if count < 0, branch to singles "1: \n\t" // eights loop "ldmia %[xx]!, {r5, r7, r9, r11} \n\t" // load ptrs to pixels 0-7 "uxth r4, r5 \n\t" // extract ptr 0 "mov r5, r5, lsr #16 \n\t" // extract ptr 1 "uxth r6, r7 \n\t" // extract ptr 2 "mov r7, r7, lsr #16 \n\t" // extract ptr 3 "ldrb r4, [%[srcAddr], r4] \n\t" // load pixel 0 from image "uxth r8, r9 \n\t" // extract ptr 4 "ldrb r5, [%[srcAddr], r5] \n\t" // load pixel 1 from image "mov r9, r9, lsr #16 \n\t" // extract ptr 5 "ldrb r6, [%[srcAddr], r6] \n\t" // load pixel 2 from image "uxth r10, r11 \n\t" // extract ptr 6 "ldrb r7, [%[srcAddr], r7] \n\t" // load pixel 3 from image "mov r11, r11, lsr #16 \n\t" // extract ptr 7 "ldrb r8, [%[srcAddr], r8] \n\t" // load pixel 4 from image "ldrb r9, [%[srcAddr], r9] \n\t" // load pixel 5 from image "ldrb r10, [%[srcAddr], r10] \n\t" // load pixel 6 from image "ldrb r11, [%[srcAddr], r11] \n\t" // load pixel 7 from image "ldr r4, [%[table], r4, lsl #2] \n\t" // load pixel 0 SkPMColor from colmap "ldr r5, [%[table], r5, lsl #2] \n\t" // load pixel 1 SkPMColor from colmap "ldr r6, [%[table], r6, lsl #2] \n\t" // load pixel 2 SkPMColor from colmap "ldr r7, [%[table], r7, lsl #2] \n\t" // load pixel 3 SkPMColor from colmap "ldr r8, [%[table], r8, lsl #2] \n\t" // load pixel 4 SkPMColor from colmap "ldr r9, [%[table], r9, lsl #2] \n\t" // load pixel 5 SkPMColor from colmap "ldr r10, [%[table], r10, lsl #2] \n\t" // load pixel 6 SkPMColor from colmap "ldr r11, [%[table], r11, lsl #2] \n\t" // load pixel 7 SkPMColor from colmap "subs %[count], %[count], #8 \n\t" // decrement loop counter "stmia %[colors]!, {r4-r11} \n\t" // store 8 pixels "bge 1b \n\t" // loop if counter >= 0 "2: \n\t" "adds %[count], %[count], #8 \n\t" // fix up counter, set flags "beq 4f \n\t" // if count == 0, branch to exit "3: \n\t" // singles loop "ldrh r4, [%[xx]], #2 \n\t" // load pixel ptr "subs %[count], %[count], #1 \n\t" // decrement loop counter "ldrb r5, [%[srcAddr], r4] \n\t" // load pixel from image "ldr r6, [%[table], r5, lsl #2] \n\t" // load SkPMColor from colmap "str r6, [%[colors]], #4 \n\t" // store pixel, update ptr "bne 3b \n\t" // loop if counter != 0 "4: \n\t" // exit : [xx] "+r" (xx), [count] "+r" (count), [colors] "+r" (colors) : [table] "r" (table), [srcAddr] "r" (srcAddr) : "memory", "cc", "r4", "r5", "r6", "r7", "r8", "r9", "r10", "r11" ); } s.fBitmap->getColorTable()->unlockColors(); } #endif // SK_ARM_ARCH >= 6 && !defined(SK_CPU_BENDIAN) /////////////////////////////////////////////////////////////////////////////// /* If we replace a sampleproc, then we null-out the associated shaderproc, otherwise the shader won't even look at the matrix/sampler */ void SkBitmapProcState::platformProcs() { bool isOpaque = 256 == fAlphaScale; bool justDx = false; if (fInvType <= (SkMatrix::kTranslate_Mask | SkMatrix::kScale_Mask)) { justDx = true; } switch (fBitmap->config()) { case SkBitmap::kIndex8_Config: #if SK_ARM_ARCH >= 6 && !defined(SK_CPU_BENDIAN) if (justDx && SkPaint::kNone_FilterLevel == fFilterLevel) { #if 0 /* crashing on android device */ fSampleProc16 = SI8_D16_nofilter_DX_arm; fShaderProc16 = NULL; #endif if (isOpaque) { // this one is only very slighty faster than the C version fSampleProc32 = SI8_opaque_D32_nofilter_DX_arm; fShaderProc32 = NULL; } } #endif break; default: break; } } ///////////////////////////////////// /* FUNCTIONS BELOW ARE SCALAR STUBS INTENDED FOR ARM DEVELOPERS TO REPLACE */ ///////////////////////////////////// static inline unsigned char ClampTo8(int a) { if (static_cast(a) < 256) { return a; // Avoid the extra check in the common case. } if (a < 0) { return 0; } return 255; } // Convolves horizontally along a single row. The row data is given in // |srcData| and continues for the numValues() of the filter. void convolveHorizontally_arm(const unsigned char* srcData, const SkConvolutionFilter1D& filter, unsigned char* outRow, bool hasAlpha) { // Loop over each pixel on this row in the output image. int numValues = filter.numValues(); for (int outX = 0; outX < numValues; outX++) { // Get the filter that determines the current output pixel. int filterOffset, filterLength; const SkConvolutionFilter1D::ConvolutionFixed* filterValues = filter.FilterForValue(outX, &filterOffset, &filterLength); // Compute the first pixel in this row that the filter affects. It will // touch |filterLength| pixels (4 bytes each) after this. const unsigned char* rowToFilter = &srcData[filterOffset * 4]; // Apply the filter to the row to get the destination pixel in |accum|. int accum[4] = {0}; for (int filterX = 0; filterX < filterLength; filterX++) { SkConvolutionFilter1D::ConvolutionFixed curFilter = filterValues[filterX]; accum[0] += curFilter * rowToFilter[filterX * 4 + 0]; accum[1] += curFilter * rowToFilter[filterX * 4 + 1]; accum[2] += curFilter * rowToFilter[filterX * 4 + 2]; if (hasAlpha) { accum[3] += curFilter * rowToFilter[filterX * 4 + 3]; } } // Bring this value back in range. All of the filter scaling factors // are in fixed point with kShiftBits bits of fractional part. accum[0] >>= SkConvolutionFilter1D::kShiftBits; accum[1] >>= SkConvolutionFilter1D::kShiftBits; accum[2] >>= SkConvolutionFilter1D::kShiftBits; if (hasAlpha) { accum[3] >>= SkConvolutionFilter1D::kShiftBits; } // Store the new pixel. outRow[outX * 4 + 0] = ClampTo8(accum[0]); outRow[outX * 4 + 1] = ClampTo8(accum[1]); outRow[outX * 4 + 2] = ClampTo8(accum[2]); if (hasAlpha) { outRow[outX * 4 + 3] = ClampTo8(accum[3]); } } } // Does vertical convolution to produce one output row. The filter values and // length are given in the first two parameters. These are applied to each // of the rows pointed to in the |sourceDataRows| array, with each row // being |pixelWidth| wide. // // The output must have room for |pixelWidth * 4| bytes. template void convolveVertically_arm(const SkConvolutionFilter1D::ConvolutionFixed* filterValues, int filterLength, unsigned char* const* sourceDataRows, int pixelWidth, unsigned char* outRow) { // We go through each column in the output and do a vertical convolution, // generating one output pixel each time. for (int outX = 0; outX < pixelWidth; outX++) { // Compute the number of bytes over in each row that the current column // we're convolving starts at. The pixel will cover the next 4 bytes. int byteOffset = outX * 4; // Apply the filter to one column of pixels. int accum[4] = {0}; for (int filterY = 0; filterY < filterLength; filterY++) { SkConvolutionFilter1D::ConvolutionFixed curFilter = filterValues[filterY]; accum[0] += curFilter * sourceDataRows[filterY][byteOffset + 0]; accum[1] += curFilter * sourceDataRows[filterY][byteOffset + 1]; accum[2] += curFilter * sourceDataRows[filterY][byteOffset + 2]; if (hasAlpha) { accum[3] += curFilter * sourceDataRows[filterY][byteOffset + 3]; } } // Bring this value back in range. All of the filter scaling factors // are in fixed point with kShiftBits bits of precision. accum[0] >>= SkConvolutionFilter1D::kShiftBits; accum[1] >>= SkConvolutionFilter1D::kShiftBits; accum[2] >>= SkConvolutionFilter1D::kShiftBits; if (hasAlpha) { accum[3] >>= SkConvolutionFilter1D::kShiftBits; } // Store the new pixel. outRow[byteOffset + 0] = ClampTo8(accum[0]); outRow[byteOffset + 1] = ClampTo8(accum[1]); outRow[byteOffset + 2] = ClampTo8(accum[2]); if (hasAlpha) { unsigned char alpha = ClampTo8(accum[3]); // Make sure the alpha channel doesn't come out smaller than any of the // color channels. We use premultipled alpha channels, so this should // never happen, but rounding errors will cause this from time to time. // These "impossible" colors will cause overflows (and hence random pixel // values) when the resulting bitmap is drawn to the screen. // // We only need to do this when generating the final output row (here). int maxColorChannel = SkTMax(outRow[byteOffset + 0], SkTMax(outRow[byteOffset + 1], outRow[byteOffset + 2])); if (alpha < maxColorChannel) { outRow[byteOffset + 3] = maxColorChannel; } else { outRow[byteOffset + 3] = alpha; } } else { // No alpha channel, the image is opaque. outRow[byteOffset + 3] = 0xff; } } } void convolveVertically_arm(const SkConvolutionFilter1D::ConvolutionFixed* filterValues, int filterLength, unsigned char* const* sourceDataRows, int pixelWidth, unsigned char* outRow, bool sourceHasAlpha) { if (sourceHasAlpha) { convolveVertically_arm(filterValues, filterLength, sourceDataRows, pixelWidth, outRow); } else { convolveVertically_arm(filterValues, filterLength, sourceDataRows, pixelWidth, outRow); } } // Convolves horizontally along four rows. The row data is given in // |src_data| and continues for the num_values() of the filter. // The algorithm is almost same as |ConvolveHorizontally_SSE2|. Please // refer to that function for detailed comments. void convolve4RowsHorizontally_arm(const unsigned char* src_data[4], const SkConvolutionFilter1D& filter, unsigned char* out_row[4]) { } /////////////////////////// /* STOP REWRITING FUNCTIONS HERE, BUT DON'T FORGET TO EDIT THE PLATFORM CONVOLUTION PROCS BELOW */ /////////////////////////// void applySIMDPadding_arm(SkConvolutionFilter1D *filter) { // Padding |paddingCount| of more dummy coefficients after the coefficients // of last filter to prevent SIMD instructions which load 8 or 16 bytes // together to access invalid memory areas. We are not trying to align the // coefficients right now due to the opaqueness of implementation. // This has to be done after all |AddFilter| calls. for (int i = 0; i < 8; ++i) { filter->addFilterValue(static_cast(0)); } } void SkBitmapProcState::platformConvolutionProcs(SkConvolutionProcs* procs) { if (sk_cpu_arm_has_neon()) { procs->fExtraHorizontalReads = 3; procs->fConvolveVertically = &convolveVertically_arm; // next line is commented out because the four-row convolution function above is // just a no-op. Please see the comment above its definition, and the SSE implementation // in SkBitmapProcState_opts_SSE2.cpp for guidance on its semantics. // leaving it as NULL will just cause the convolution system to not attempt // to operate on four rows at once, which is correct but not performance-optimal. // procs->fConvolve4RowsHorizontally = &convolve4RowsHorizontally_arm; procs->fConvolve4RowsHorizontally = NULL; procs->fConvolveHorizontally = &convolveHorizontally_arm; procs->fApplySIMDPadding = &applySIMDPadding_arm; } }