/* * Copyright 2009 The Android Open Source Project * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "SkBitmapProcState_opts_SSE2.h" #include "SkBitmapProcState_utils.h" #include "SkColorData.h" #include "SkPaint.h" #include "SkTo.h" #include "SkUtils.h" #include void S32_opaque_D32_filter_DX_SSE2(const SkBitmapProcState& s, const uint32_t* xy, int count, uint32_t* colors) { SkASSERT(count > 0 && colors != nullptr); SkASSERT(s.fFilterQuality != kNone_SkFilterQuality); SkASSERT(kN32_SkColorType == s.fPixmap.colorType()); SkASSERT(s.fAlphaScale == 256); const char* srcAddr = static_cast(s.fPixmap.addr()); size_t rb = s.fPixmap.rowBytes(); uint32_t XY = *xy++; unsigned y0 = XY >> 14; const uint32_t* row0 = reinterpret_cast(srcAddr + (y0 >> 4) * rb); const uint32_t* row1 = reinterpret_cast(srcAddr + (XY & 0x3FFF) * rb); unsigned subY = y0 & 0xF; // ( 0, 0, 0, 0, 0, 0, 0, 16) __m128i sixteen = _mm_cvtsi32_si128(16); // ( 0, 0, 0, 0, 16, 16, 16, 16) sixteen = _mm_shufflelo_epi16(sixteen, 0); // ( 0, 0, 0, 0, 0, 0, 0, y) __m128i allY = _mm_cvtsi32_si128(subY); // ( 0, 0, 0, 0, y, y, y, y) allY = _mm_shufflelo_epi16(allY, 0); // ( 0, 0, 0, 0, 16-y, 16-y, 16-y, 16-y) __m128i negY = _mm_sub_epi16(sixteen, allY); // (16-y, 16-y, 16-y, 16-y, y, y, y, y) allY = _mm_unpacklo_epi64(allY, negY); // (16, 16, 16, 16, 16, 16, 16, 16 ) sixteen = _mm_shuffle_epi32(sixteen, 0); // ( 0, 0, 0, 0, 0, 0, 0, 0) __m128i zero = _mm_setzero_si128(); do { uint32_t XX = *xy++; // x0:14 | 4 | x1:14 unsigned x0 = XX >> 18; unsigned x1 = XX & 0x3FFF; // (0, 0, 0, 0, 0, 0, 0, x) __m128i allX = _mm_cvtsi32_si128((XX >> 14) & 0x0F); // (0, 0, 0, 0, x, x, x, x) allX = _mm_shufflelo_epi16(allX, 0); // (x, x, x, x, x, x, x, x) allX = _mm_shuffle_epi32(allX, 0); // (16-x, 16-x, 16-x, 16-x, 16-x, 16-x, 16-x) __m128i negX = _mm_sub_epi16(sixteen, allX); // Load 4 samples (pixels). __m128i a00 = _mm_cvtsi32_si128(row0[x0]); __m128i a01 = _mm_cvtsi32_si128(row0[x1]); __m128i a10 = _mm_cvtsi32_si128(row1[x0]); __m128i a11 = _mm_cvtsi32_si128(row1[x1]); // (0, 0, a00, a10) __m128i a00a10 = _mm_unpacklo_epi32(a10, a00); // Expand to 16 bits per component. a00a10 = _mm_unpacklo_epi8(a00a10, zero); // ((a00 * (16-y)), (a10 * y)). a00a10 = _mm_mullo_epi16(a00a10, allY); // (a00 * (16-y) * (16-x), a10 * y * (16-x)). a00a10 = _mm_mullo_epi16(a00a10, negX); // (0, 0, a01, a10) __m128i a01a11 = _mm_unpacklo_epi32(a11, a01); // Expand to 16 bits per component. a01a11 = _mm_unpacklo_epi8(a01a11, zero); // (a01 * (16-y)), (a11 * y) a01a11 = _mm_mullo_epi16(a01a11, allY); // (a01 * (16-y) * x), (a11 * y * x) a01a11 = _mm_mullo_epi16(a01a11, allX); // (a00*w00 + a01*w01, a10*w10 + a11*w11) __m128i sum = _mm_add_epi16(a00a10, a01a11); // (DC, a00*w00 + a01*w01) __m128i shifted = _mm_shuffle_epi32(sum, 0xEE); // (DC, a00*w00 + a01*w01 + a10*w10 + a11*w11) sum = _mm_add_epi16(sum, shifted); // Divide each 16 bit component by 256. sum = _mm_srli_epi16(sum, 8); // Pack lower 4 16 bit values of sum into lower 4 bytes. sum = _mm_packus_epi16(sum, zero); // Extract low int and store. *colors++ = _mm_cvtsi128_si32(sum); } while (--count > 0); } void S32_alpha_D32_filter_DX_SSE2(const SkBitmapProcState& s, const uint32_t* xy, int count, uint32_t* colors) { SkASSERT(count > 0 && colors != nullptr); SkASSERT(s.fFilterQuality != kNone_SkFilterQuality); SkASSERT(kN32_SkColorType == s.fPixmap.colorType()); SkASSERT(s.fAlphaScale < 256); const char* srcAddr = static_cast(s.fPixmap.addr()); size_t rb = s.fPixmap.rowBytes(); uint32_t XY = *xy++; unsigned y0 = XY >> 14; const uint32_t* row0 = reinterpret_cast(srcAddr + (y0 >> 4) * rb); const uint32_t* row1 = reinterpret_cast(srcAddr + (XY & 0x3FFF) * rb); unsigned subY = y0 & 0xF; // ( 0, 0, 0, 0, 0, 0, 0, 16) __m128i sixteen = _mm_cvtsi32_si128(16); // ( 0, 0, 0, 0, 16, 16, 16, 16) sixteen = _mm_shufflelo_epi16(sixteen, 0); // ( 0, 0, 0, 0, 0, 0, 0, y) __m128i allY = _mm_cvtsi32_si128(subY); // ( 0, 0, 0, 0, y, y, y, y) allY = _mm_shufflelo_epi16(allY, 0); // ( 0, 0, 0, 0, 16-y, 16-y, 16-y, 16-y) __m128i negY = _mm_sub_epi16(sixteen, allY); // (16-y, 16-y, 16-y, 16-y, y, y, y, y) allY = _mm_unpacklo_epi64(allY, negY); // (16, 16, 16, 16, 16, 16, 16, 16 ) sixteen = _mm_shuffle_epi32(sixteen, 0); // ( 0, 0, 0, 0, 0, 0, 0, 0) __m128i zero = _mm_setzero_si128(); // ( alpha, alpha, alpha, alpha, alpha, alpha, alpha, alpha ) __m128i alpha = _mm_set1_epi16(s.fAlphaScale); do { uint32_t XX = *xy++; // x0:14 | 4 | x1:14 unsigned x0 = XX >> 18; unsigned x1 = XX & 0x3FFF; // (0, 0, 0, 0, 0, 0, 0, x) __m128i allX = _mm_cvtsi32_si128((XX >> 14) & 0x0F); // (0, 0, 0, 0, x, x, x, x) allX = _mm_shufflelo_epi16(allX, 0); // (x, x, x, x, x, x, x, x) allX = _mm_shuffle_epi32(allX, 0); // (16-x, 16-x, 16-x, 16-x, 16-x, 16-x, 16-x) __m128i negX = _mm_sub_epi16(sixteen, allX); // Load 4 samples (pixels). __m128i a00 = _mm_cvtsi32_si128(row0[x0]); __m128i a01 = _mm_cvtsi32_si128(row0[x1]); __m128i a10 = _mm_cvtsi32_si128(row1[x0]); __m128i a11 = _mm_cvtsi32_si128(row1[x1]); // (0, 0, a00, a10) __m128i a00a10 = _mm_unpacklo_epi32(a10, a00); // Expand to 16 bits per component. a00a10 = _mm_unpacklo_epi8(a00a10, zero); // ((a00 * (16-y)), (a10 * y)). a00a10 = _mm_mullo_epi16(a00a10, allY); // (a00 * (16-y) * (16-x), a10 * y * (16-x)). a00a10 = _mm_mullo_epi16(a00a10, negX); // (0, 0, a01, a10) __m128i a01a11 = _mm_unpacklo_epi32(a11, a01); // Expand to 16 bits per component. a01a11 = _mm_unpacklo_epi8(a01a11, zero); // (a01 * (16-y)), (a11 * y) a01a11 = _mm_mullo_epi16(a01a11, allY); // (a01 * (16-y) * x), (a11 * y * x) a01a11 = _mm_mullo_epi16(a01a11, allX); // (a00*w00 + a01*w01, a10*w10 + a11*w11) __m128i sum = _mm_add_epi16(a00a10, a01a11); // (DC, a00*w00 + a01*w01) __m128i shifted = _mm_shuffle_epi32(sum, 0xEE); // (DC, a00*w00 + a01*w01 + a10*w10 + a11*w11) sum = _mm_add_epi16(sum, shifted); // Divide each 16 bit component by 256. sum = _mm_srli_epi16(sum, 8); // Multiply by alpha. sum = _mm_mullo_epi16(sum, alpha); // Divide each 16 bit component by 256. sum = _mm_srli_epi16(sum, 8); // Pack lower 4 16 bit values of sum into lower 4 bytes. sum = _mm_packus_epi16(sum, zero); // Extract low int and store. *colors++ = _mm_cvtsi128_si32(sum); } while (--count > 0); } // Temporarily go into 64bit so we don't overflow during the add. Since we shift down by 16 // in the end, the result should always fit back in 32bits. static inline int32_t safe_fixed_add_shift(SkFixed a, SkFixed b) { int64_t tmp = a; return SkToS32((tmp + b) >> 16); } static inline uint32_t ClampX_ClampY_pack_filter(SkFixed f, unsigned max, SkFixed one) { unsigned i = SkClampMax(f >> 16, max); i = (i << 4) | ((f >> 12) & 0xF); return (i << 14) | SkClampMax(safe_fixed_add_shift(f, one), max); } /* SSE version of ClampX_ClampY_filter_scale() * portable version is in core/SkBitmapProcState_matrix.h */ void ClampX_ClampY_filter_scale_SSE2(const SkBitmapProcState& s, uint32_t xy[], int count, int x, int y) { SkASSERT((s.fInvType & ~(SkMatrix::kTranslate_Mask | SkMatrix::kScale_Mask)) == 0); SkASSERT(s.fInvKy == 0); const unsigned maxX = s.fPixmap.width() - 1; const SkFixed one = s.fFilterOneX; const SkFixed dx = s.fInvSx; const SkBitmapProcStateAutoMapper mapper(s, x, y); const SkFixed fy = mapper.fixedY(); const unsigned maxY = s.fPixmap.height() - 1; // compute our two Y values up front *xy++ = ClampX_ClampY_pack_filter(fy, maxY, s.fFilterOneY); // now initialize fx SkFixed fx = mapper.fixedX(); // test if we don't need to apply the tile proc if (can_truncate_to_fixed_for_decal(fx, dx, count, maxX)) { if (count >= 4) { // SSE version of decal_filter_scale while ((size_t(xy) & 0x0F) != 0) { SkASSERT((fx >> (16 + 14)) == 0); *xy++ = (fx >> 12 << 14) | ((fx >> 16) + 1); fx += dx; count--; } __m128i wide_1 = _mm_set1_epi32(1); __m128i wide_dx4 = _mm_set1_epi32(dx * 4); __m128i wide_fx = _mm_set_epi32(fx + dx * 3, fx + dx * 2, fx + dx, fx); while (count >= 4) { __m128i wide_out; wide_out = _mm_slli_epi32(_mm_srai_epi32(wide_fx, 12), 14); wide_out = _mm_or_si128(wide_out, _mm_add_epi32( _mm_srai_epi32(wide_fx, 16), wide_1)); _mm_store_si128(reinterpret_cast<__m128i*>(xy), wide_out); xy += 4; fx += dx * 4; wide_fx = _mm_add_epi32(wide_fx, wide_dx4); count -= 4; } // while count >= 4 } // if count >= 4 while (count-- > 0) { SkASSERT((fx >> (16 + 14)) == 0); *xy++ = (fx >> 12 << 14) | ((fx >> 16) + 1); fx += dx; } } else { // SSE2 only support 16bit interger max & min, so only process the case // maxX less than the max 16bit interger. Actually maxX is the bitmap's // height, there should be rare bitmap whose height will be greater // than max 16bit interger in the real world. if ((count >= 4) && (maxX <= 0xFFFF)) { while (((size_t)xy & 0x0F) != 0) { *xy++ = ClampX_ClampY_pack_filter(fx, maxX, one); fx += dx; count--; } __m128i wide_fx = _mm_set_epi32(fx + dx * 3, fx + dx * 2, fx + dx, fx); __m128i wide_dx4 = _mm_set1_epi32(dx * 4); __m128i wide_one = _mm_set1_epi32(one); __m128i wide_maxX = _mm_set1_epi32(maxX); __m128i wide_mask = _mm_set1_epi32(0xF); while (count >= 4) { __m128i wide_i; __m128i wide_lo; __m128i wide_fx1; // i = SkClampMax(f>>16,maxX) wide_i = _mm_max_epi16(_mm_srli_epi32(wide_fx, 16), _mm_setzero_si128()); wide_i = _mm_min_epi16(wide_i, wide_maxX); // i<<4 | EXTRACT_LOW_BITS(fx) wide_lo = _mm_srli_epi32(wide_fx, 12); wide_lo = _mm_and_si128(wide_lo, wide_mask); wide_i = _mm_slli_epi32(wide_i, 4); wide_i = _mm_or_si128(wide_i, wide_lo); // i<<14 wide_i = _mm_slli_epi32(wide_i, 14); // SkClampMax(((f+one))>>16,max) wide_fx1 = _mm_add_epi32(wide_fx, wide_one); wide_fx1 = _mm_max_epi16(_mm_srli_epi32(wide_fx1, 16), _mm_setzero_si128()); wide_fx1 = _mm_min_epi16(wide_fx1, wide_maxX); // final combination wide_i = _mm_or_si128(wide_i, wide_fx1); _mm_store_si128(reinterpret_cast<__m128i*>(xy), wide_i); wide_fx = _mm_add_epi32(wide_fx, wide_dx4); fx += dx * 4; xy += 4; count -= 4; } // while count >= 4 } // if count >= 4 /* while (count-- > 0) { *xy++ = ClampX_ClampY_pack_filter(fx, maxX, one); fx += dx; } We'd like to write this as above, but that form allows fx to get 1-iteration too big/small when count is 0, and this can trigger a UBSAN error, even though we won't in fact use that last (undefined) value for fx. Here is an alternative that should always be efficient, but seems much harder to read: if (count > 0) { for (;;) { *xy++ = ClampX_ClampY_pack_filter(fx, maxX, one); if (--count == 0) break; fx += dx; } } For now, we'll try this variant: more compact than the if/for version, and we hope the compiler will get rid of the integer multiply. */ for (int i = 0; i < count; ++i) { *xy++ = ClampX_ClampY_pack_filter(fx + i*dx, maxX, one); } } } /* SSE version of ClampX_ClampY_nofilter_scale() * portable version is in core/SkBitmapProcState_matrix.h */ void ClampX_ClampY_nofilter_scale_SSE2(const SkBitmapProcState& s, uint32_t xy[], int count, int x, int y) { SkASSERT((s.fInvType & ~(SkMatrix::kTranslate_Mask | SkMatrix::kScale_Mask)) == 0); // we store y, x, x, x, x, x const unsigned maxX = s.fPixmap.width() - 1; const SkBitmapProcStateAutoMapper mapper(s, x, y); const unsigned maxY = s.fPixmap.height() - 1; *xy++ = SkClampMax(mapper.intY(), maxY); SkFixed fx = mapper.fixedX(); if (0 == maxX) { // all of the following X values must be 0 memset(xy, 0, count * sizeof(uint16_t)); return; } const SkFixed dx = s.fInvSx; // test if we don't need to apply the tile proc if ((unsigned)(fx >> 16) <= maxX && (unsigned)((fx + dx * (count - 1)) >> 16) <= maxX) { // SSE version of decal_nofilter_scale if (count >= 8) { while (((size_t)xy & 0x0F) != 0) { *xy++ = pack_two_shorts(fx >> 16, (fx + dx) >> 16); fx += 2 * dx; count -= 2; } __m128i wide_dx4 = _mm_set1_epi32(dx * 4); __m128i wide_dx8 = _mm_add_epi32(wide_dx4, wide_dx4); __m128i wide_low = _mm_set_epi32(fx + dx * 3, fx + dx * 2, fx + dx, fx); __m128i wide_high = _mm_add_epi32(wide_low, wide_dx4); while (count >= 8) { __m128i wide_out_low = _mm_srli_epi32(wide_low, 16); __m128i wide_out_high = _mm_srli_epi32(wide_high, 16); __m128i wide_result = _mm_packs_epi32(wide_out_low, wide_out_high); _mm_store_si128(reinterpret_cast<__m128i*>(xy), wide_result); wide_low = _mm_add_epi32(wide_low, wide_dx8); wide_high = _mm_add_epi32(wide_high, wide_dx8); xy += 4; fx += dx * 8; count -= 8; } } // if count >= 8 uint16_t* xx = reinterpret_cast(xy); while (count-- > 0) { *xx++ = SkToU16(fx >> 16); fx += dx; } } else { // SSE2 only support 16bit interger max & min, so only process the case // maxX less than the max 16bit interger. Actually maxX is the bitmap's // height, there should be rare bitmap whose height will be greater // than max 16bit interger in the real world. if ((count >= 8) && (maxX <= 0xFFFF)) { while (((size_t)xy & 0x0F) != 0) { *xy++ = pack_two_shorts(SkClampMax((fx + dx) >> 16, maxX), SkClampMax(fx >> 16, maxX)); fx += 2 * dx; count -= 2; } __m128i wide_dx4 = _mm_set1_epi32(dx * 4); __m128i wide_dx8 = _mm_add_epi32(wide_dx4, wide_dx4); __m128i wide_low = _mm_set_epi32(fx + dx * 3, fx + dx * 2, fx + dx, fx); __m128i wide_high = _mm_add_epi32(wide_low, wide_dx4); __m128i wide_maxX = _mm_set1_epi32(maxX); while (count >= 8) { __m128i wide_out_low = _mm_srli_epi32(wide_low, 16); __m128i wide_out_high = _mm_srli_epi32(wide_high, 16); wide_out_low = _mm_max_epi16(wide_out_low, _mm_setzero_si128()); wide_out_low = _mm_min_epi16(wide_out_low, wide_maxX); wide_out_high = _mm_max_epi16(wide_out_high, _mm_setzero_si128()); wide_out_high = _mm_min_epi16(wide_out_high, wide_maxX); __m128i wide_result = _mm_packs_epi32(wide_out_low, wide_out_high); _mm_store_si128(reinterpret_cast<__m128i*>(xy), wide_result); wide_low = _mm_add_epi32(wide_low, wide_dx8); wide_high = _mm_add_epi32(wide_high, wide_dx8); xy += 4; fx += dx * 8; count -= 8; } } // if count >= 8 uint16_t* xx = reinterpret_cast(xy); while (count-- > 0) { *xx++ = SkClampMax(fx >> 16, maxX); fx += dx; } } }