/* * Copyright 2012 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "SkBitmapProcState.h" #include "SkBitmapProcState_filter.h" #include "SkColorPriv.h" #include "SkFilterProc.h" #include "SkPaint.h" #include "SkShader.h" // for tilemodes #include "SkUtilsArm.h" // Required to ensure the table is part of the final binary. extern const SkBitmapProcState::SampleProc32 gSkBitmapProcStateSample32_neon[]; #define NAME_WRAP(x) x ## _neon #include "SkBitmapProcState_filter_neon.h" #include "SkBitmapProcState_procs.h" const SkBitmapProcState::SampleProc32 gSkBitmapProcStateSample32_neon[] = { S32_opaque_D32_nofilter_DXDY_neon, S32_alpha_D32_nofilter_DXDY_neon, S32_opaque_D32_nofilter_DX_neon, S32_alpha_D32_nofilter_DX_neon, S32_opaque_D32_filter_DXDY_neon, S32_alpha_D32_filter_DXDY_neon, S32_opaque_D32_filter_DX_neon, S32_alpha_D32_filter_DX_neon, S16_opaque_D32_nofilter_DXDY_neon, S16_alpha_D32_nofilter_DXDY_neon, S16_opaque_D32_nofilter_DX_neon, S16_alpha_D32_nofilter_DX_neon, S16_opaque_D32_filter_DXDY_neon, S16_alpha_D32_filter_DXDY_neon, S16_opaque_D32_filter_DX_neon, S16_alpha_D32_filter_DX_neon, SI8_opaque_D32_nofilter_DXDY_neon, SI8_alpha_D32_nofilter_DXDY_neon, SI8_opaque_D32_nofilter_DX_neon, SI8_alpha_D32_nofilter_DX_neon, SI8_opaque_D32_filter_DXDY_neon, SI8_alpha_D32_filter_DXDY_neon, SI8_opaque_D32_filter_DX_neon, SI8_alpha_D32_filter_DX_neon, S4444_opaque_D32_nofilter_DXDY_neon, S4444_alpha_D32_nofilter_DXDY_neon, S4444_opaque_D32_nofilter_DX_neon, S4444_alpha_D32_nofilter_DX_neon, S4444_opaque_D32_filter_DXDY_neon, S4444_alpha_D32_filter_DXDY_neon, S4444_opaque_D32_filter_DX_neon, S4444_alpha_D32_filter_DX_neon, // A8 treats alpha/opauqe the same (equally efficient) SA8_alpha_D32_nofilter_DXDY_neon, SA8_alpha_D32_nofilter_DXDY_neon, SA8_alpha_D32_nofilter_DX_neon, SA8_alpha_D32_nofilter_DX_neon, SA8_alpha_D32_filter_DXDY_neon, SA8_alpha_D32_filter_DXDY_neon, SA8_alpha_D32_filter_DX_neon, SA8_alpha_D32_filter_DX_neon, // todo: possibly specialize on opaqueness SG8_alpha_D32_nofilter_DXDY_neon, SG8_alpha_D32_nofilter_DXDY_neon, SG8_alpha_D32_nofilter_DX_neon, SG8_alpha_D32_nofilter_DX_neon, SG8_alpha_D32_filter_DXDY_neon, SG8_alpha_D32_filter_DXDY_neon, SG8_alpha_D32_filter_DX_neon, SG8_alpha_D32_filter_DX_neon, }; /////////////////////////////////////////////////////////////////////////////// #include #include "SkConvolver.h" // Convolves horizontally along a single row. The row data is given in // |srcData| and continues for the numValues() of the filter. void convolveHorizontally_neon(const unsigned char* srcData, const SkConvolutionFilter1D& filter, unsigned char* outRow, bool hasAlpha) { // Loop over each pixel on this row in the output image. int numValues = filter.numValues(); for (int outX = 0; outX < numValues; outX++) { uint8x8_t coeff_mask0 = vcreate_u8(0x0100010001000100); uint8x8_t coeff_mask1 = vcreate_u8(0x0302030203020302); uint8x8_t coeff_mask2 = vcreate_u8(0x0504050405040504); uint8x8_t coeff_mask3 = vcreate_u8(0x0706070607060706); // Get the filter that determines the current output pixel. int filterOffset, filterLength; const SkConvolutionFilter1D::ConvolutionFixed* filterValues = filter.FilterForValue(outX, &filterOffset, &filterLength); // Compute the first pixel in this row that the filter affects. It will // touch |filterLength| pixels (4 bytes each) after this. const unsigned char* rowToFilter = &srcData[filterOffset * 4]; // Apply the filter to the row to get the destination pixel in |accum|. int32x4_t accum = vdupq_n_s32(0); for (int filterX = 0; filterX < filterLength >> 2; filterX++) { // Load 4 coefficients int16x4_t coeffs, coeff0, coeff1, coeff2, coeff3; coeffs = vld1_s16(filterValues); coeff0 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_s16(coeffs), coeff_mask0)); coeff1 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_s16(coeffs), coeff_mask1)); coeff2 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_s16(coeffs), coeff_mask2)); coeff3 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_s16(coeffs), coeff_mask3)); // Load pixels and calc uint8x16_t pixels = vld1q_u8(rowToFilter); int16x8_t p01_16 = vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(pixels))); int16x8_t p23_16 = vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(pixels))); int16x4_t p0_src = vget_low_s16(p01_16); int16x4_t p1_src = vget_high_s16(p01_16); int16x4_t p2_src = vget_low_s16(p23_16); int16x4_t p3_src = vget_high_s16(p23_16); int32x4_t p0 = vmull_s16(p0_src, coeff0); int32x4_t p1 = vmull_s16(p1_src, coeff1); int32x4_t p2 = vmull_s16(p2_src, coeff2); int32x4_t p3 = vmull_s16(p3_src, coeff3); accum += p0; accum += p1; accum += p2; accum += p3; // Advance the pointers rowToFilter += 16; filterValues += 4; } int r = filterLength & 3; if (r) { const uint16_t mask[4][4] = { {0, 0, 0, 0}, {0xFFFF, 0, 0, 0}, {0xFFFF, 0xFFFF, 0, 0}, {0xFFFF, 0xFFFF, 0xFFFF, 0} }; uint16x4_t coeffs; int16x4_t coeff0, coeff1, coeff2; coeffs = vld1_u16(reinterpret_cast(filterValues)); coeffs &= vld1_u16(&mask[r][0]); coeff0 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_u16(coeffs), coeff_mask0)); coeff1 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_u16(coeffs), coeff_mask1)); coeff2 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_u16(coeffs), coeff_mask2)); // Load pixels and calc uint8x16_t pixels = vld1q_u8(rowToFilter); int16x8_t p01_16 = vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(pixels))); int16x8_t p23_16 = vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(pixels))); int32x4_t p0 = vmull_s16(vget_low_s16(p01_16), coeff0); int32x4_t p1 = vmull_s16(vget_high_s16(p01_16), coeff1); int32x4_t p2 = vmull_s16(vget_low_s16(p23_16), coeff2); accum += p0; accum += p1; accum += p2; } // Bring this value back in range. All of the filter scaling factors // are in fixed point with kShiftBits bits of fractional part. accum = vshrq_n_s32(accum, SkConvolutionFilter1D::kShiftBits); // Pack and store the new pixel. int16x4_t accum16 = vqmovn_s32(accum); uint8x8_t accum8 = vqmovun_s16(vcombine_s16(accum16, accum16)); vst1_lane_u32(reinterpret_cast(outRow), vreinterpret_u32_u8(accum8), 0); outRow += 4; } } // Does vertical convolution to produce one output row. The filter values and // length are given in the first two parameters. These are applied to each // of the rows pointed to in the |sourceDataRows| array, with each row // being |pixelWidth| wide. // // The output must have room for |pixelWidth * 4| bytes. template void convolveVertically_neon(const SkConvolutionFilter1D::ConvolutionFixed* filterValues, int filterLength, unsigned char* const* sourceDataRows, int pixelWidth, unsigned char* outRow) { int width = pixelWidth & ~3; int32x4_t accum0, accum1, accum2, accum3; int16x4_t coeff16; // Output four pixels per iteration (16 bytes). for (int outX = 0; outX < width; outX += 4) { // Accumulated result for each pixel. 32 bits per RGBA channel. accum0 = accum1 = accum2 = accum3 = vdupq_n_s32(0); // Convolve with one filter coefficient per iteration. for (int filterY = 0; filterY < filterLength; filterY++) { // Duplicate the filter coefficient 4 times. // [16] cj cj cj cj coeff16 = vdup_n_s16(filterValues[filterY]); // Load four pixels (16 bytes) together. // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0 uint8x16_t src8 = vld1q_u8(&sourceDataRows[filterY][outX << 2]); int16x8_t src16_01 = vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(src8))); int16x8_t src16_23 = vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(src8))); int16x4_t src16_0 = vget_low_s16(src16_01); int16x4_t src16_1 = vget_high_s16(src16_01); int16x4_t src16_2 = vget_low_s16(src16_23); int16x4_t src16_3 = vget_high_s16(src16_23); accum0 += vmull_s16(src16_0, coeff16); accum1 += vmull_s16(src16_1, coeff16); accum2 += vmull_s16(src16_2, coeff16); accum3 += vmull_s16(src16_3, coeff16); } // Shift right for fixed point implementation. accum0 = vshrq_n_s32(accum0, SkConvolutionFilter1D::kShiftBits); accum1 = vshrq_n_s32(accum1, SkConvolutionFilter1D::kShiftBits); accum2 = vshrq_n_s32(accum2, SkConvolutionFilter1D::kShiftBits); accum3 = vshrq_n_s32(accum3, SkConvolutionFilter1D::kShiftBits); // Packing 32 bits |accum| to 16 bits per channel (signed saturation). // [16] a1 b1 g1 r1 a0 b0 g0 r0 int16x8_t accum16_0 = vcombine_s16(vqmovn_s32(accum0), vqmovn_s32(accum1)); // [16] a3 b3 g3 r3 a2 b2 g2 r2 int16x8_t accum16_1 = vcombine_s16(vqmovn_s32(accum2), vqmovn_s32(accum3)); // Packing 16 bits |accum| to 8 bits per channel (unsigned saturation). // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0 uint8x16_t accum8 = vcombine_u8(vqmovun_s16(accum16_0), vqmovun_s16(accum16_1)); if (hasAlpha) { // Compute the max(ri, gi, bi) for each pixel. // [8] xx a3 b3 g3 xx a2 b2 g2 xx a1 b1 g1 xx a0 b0 g0 uint8x16_t a = vreinterpretq_u8_u32(vshrq_n_u32(vreinterpretq_u32_u8(accum8), 8)); // [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0 uint8x16_t b = vmaxq_u8(a, accum8); // Max of r and g // [8] xx xx a3 b3 xx xx a2 b2 xx xx a1 b1 xx xx a0 b0 a = vreinterpretq_u8_u32(vshrq_n_u32(vreinterpretq_u32_u8(accum8), 16)); // [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0 b = vmaxq_u8(a, b); // Max of r and g and b. // [8] max3 00 00 00 max2 00 00 00 max1 00 00 00 max0 00 00 00 b = vreinterpretq_u8_u32(vshlq_n_u32(vreinterpretq_u32_u8(b), 24)); // Make sure the value of alpha channel is always larger than maximum // value of color channels. accum8 = vmaxq_u8(b, accum8); } else { // Set value of alpha channels to 0xFF. accum8 = vreinterpretq_u8_u32(vreinterpretq_u32_u8(accum8) | vdupq_n_u32(0xFF000000)); } // Store the convolution result (16 bytes) and advance the pixel pointers. vst1q_u8(outRow, accum8); outRow += 16; } // Process the leftovers when the width of the output is not divisible // by 4, that is at most 3 pixels. int r = pixelWidth & 3; if (r) { accum0 = accum1 = accum2 = vdupq_n_s32(0); for (int filterY = 0; filterY < filterLength; ++filterY) { coeff16 = vdup_n_s16(filterValues[filterY]); // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0 uint8x16_t src8 = vld1q_u8(&sourceDataRows[filterY][width << 2]); int16x8_t src16_01 = vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(src8))); int16x8_t src16_23 = vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(src8))); int16x4_t src16_0 = vget_low_s16(src16_01); int16x4_t src16_1 = vget_high_s16(src16_01); int16x4_t src16_2 = vget_low_s16(src16_23); accum0 += vmull_s16(src16_0, coeff16); accum1 += vmull_s16(src16_1, coeff16); accum2 += vmull_s16(src16_2, coeff16); } accum0 = vshrq_n_s32(accum0, SkConvolutionFilter1D::kShiftBits); accum1 = vshrq_n_s32(accum1, SkConvolutionFilter1D::kShiftBits); accum2 = vshrq_n_s32(accum2, SkConvolutionFilter1D::kShiftBits); int16x8_t accum16_0 = vcombine_s16(vqmovn_s32(accum0), vqmovn_s32(accum1)); int16x8_t accum16_1 = vcombine_s16(vqmovn_s32(accum2), vqmovn_s32(accum2)); uint8x16_t accum8 = vcombine_u8(vqmovun_s16(accum16_0), vqmovun_s16(accum16_1)); if (hasAlpha) { // Compute the max(ri, gi, bi) for each pixel. // [8] xx a3 b3 g3 xx a2 b2 g2 xx a1 b1 g1 xx a0 b0 g0 uint8x16_t a = vreinterpretq_u8_u32(vshrq_n_u32(vreinterpretq_u32_u8(accum8), 8)); // [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0 uint8x16_t b = vmaxq_u8(a, accum8); // Max of r and g // [8] xx xx a3 b3 xx xx a2 b2 xx xx a1 b1 xx xx a0 b0 a = vreinterpretq_u8_u32(vshrq_n_u32(vreinterpretq_u32_u8(accum8), 16)); // [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0 b = vmaxq_u8(a, b); // Max of r and g and b. // [8] max3 00 00 00 max2 00 00 00 max1 00 00 00 max0 00 00 00 b = vreinterpretq_u8_u32(vshlq_n_u32(vreinterpretq_u32_u8(b), 24)); // Make sure the value of alpha channel is always larger than maximum // value of color channels. accum8 = vmaxq_u8(b, accum8); } else { // Set value of alpha channels to 0xFF. accum8 = vreinterpretq_u8_u32(vreinterpretq_u32_u8(accum8) | vdupq_n_u32(0xFF000000)); } switch(r) { case 1: vst1q_lane_u32(reinterpret_cast(outRow), vreinterpretq_u32_u8(accum8), 0); break; case 2: vst1_u32(reinterpret_cast(outRow), vreinterpret_u32_u8(vget_low_u8(accum8))); break; case 3: vst1_u32(reinterpret_cast(outRow), vreinterpret_u32_u8(vget_low_u8(accum8))); vst1q_lane_u32(reinterpret_cast(outRow+8), vreinterpretq_u32_u8(accum8), 2); break; } } } void convolveVertically_neon(const SkConvolutionFilter1D::ConvolutionFixed* filterValues, int filterLength, unsigned char* const* sourceDataRows, int pixelWidth, unsigned char* outRow, bool sourceHasAlpha) { if (sourceHasAlpha) { convolveVertically_neon(filterValues, filterLength, sourceDataRows, pixelWidth, outRow); } else { convolveVertically_neon(filterValues, filterLength, sourceDataRows, pixelWidth, outRow); } } // Convolves horizontally along four rows. The row data is given in // |src_data| and continues for the num_values() of the filter. // The algorithm is almost same as |ConvolveHorizontally_SSE2|. Please // refer to that function for detailed comments. void convolve4RowsHorizontally_neon(const unsigned char* srcData[4], const SkConvolutionFilter1D& filter, unsigned char* outRow[4], size_t outRowBytes) { uint8x8_t coeff_mask0 = vcreate_u8(0x0100010001000100); uint8x8_t coeff_mask1 = vcreate_u8(0x0302030203020302); uint8x8_t coeff_mask2 = vcreate_u8(0x0504050405040504); uint8x8_t coeff_mask3 = vcreate_u8(0x0706070607060706); int num_values = filter.numValues(); int filterOffset, filterLength; // |mask| will be used to decimate all extra filter coefficients that are // loaded by SIMD when |filter_length| is not divisible by 4. // mask[0] is not used in following algorithm. const uint16_t mask[4][4] = { {0, 0, 0, 0}, {0xFFFF, 0, 0, 0}, {0xFFFF, 0xFFFF, 0, 0}, {0xFFFF, 0xFFFF, 0xFFFF, 0} }; // Output one pixel each iteration, calculating all channels (RGBA) together. for (int outX = 0; outX < num_values; outX++) { const SkConvolutionFilter1D::ConvolutionFixed* filterValues = filter.FilterForValue(outX, &filterOffset, &filterLength); // four pixels in a column per iteration. int32x4_t accum0 = vdupq_n_s32(0); int32x4_t accum1 = vdupq_n_s32(0); int32x4_t accum2 = vdupq_n_s32(0); int32x4_t accum3 = vdupq_n_s32(0); int start = (filterOffset<<2); // We will load and accumulate with four coefficients per iteration. for (int filter_x = 0; filter_x < (filterLength >> 2); filter_x++) { int16x4_t coeffs, coeff0, coeff1, coeff2, coeff3; coeffs = vld1_s16(filterValues); coeff0 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_s16(coeffs), coeff_mask0)); coeff1 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_s16(coeffs), coeff_mask1)); coeff2 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_s16(coeffs), coeff_mask2)); coeff3 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_s16(coeffs), coeff_mask3)); uint8x16_t pixels; int16x8_t p01_16, p23_16; int32x4_t p0, p1, p2, p3; #define ITERATION(src, accum) \ pixels = vld1q_u8(src); \ p01_16 = vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(pixels))); \ p23_16 = vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(pixels))); \ p0 = vmull_s16(vget_low_s16(p01_16), coeff0); \ p1 = vmull_s16(vget_high_s16(p01_16), coeff1); \ p2 = vmull_s16(vget_low_s16(p23_16), coeff2); \ p3 = vmull_s16(vget_high_s16(p23_16), coeff3); \ accum += p0; \ accum += p1; \ accum += p2; \ accum += p3 ITERATION(srcData[0] + start, accum0); ITERATION(srcData[1] + start, accum1); ITERATION(srcData[2] + start, accum2); ITERATION(srcData[3] + start, accum3); start += 16; filterValues += 4; } int r = filterLength & 3; if (r) { int16x4_t coeffs, coeff0, coeff1, coeff2, coeff3; coeffs = vld1_s16(filterValues); coeffs &= vreinterpret_s16_u16(vld1_u16(&mask[r][0])); coeff0 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_s16(coeffs), coeff_mask0)); coeff1 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_s16(coeffs), coeff_mask1)); coeff2 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_s16(coeffs), coeff_mask2)); coeff3 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_s16(coeffs), coeff_mask3)); uint8x16_t pixels; int16x8_t p01_16, p23_16; int32x4_t p0, p1, p2, p3; ITERATION(srcData[0] + start, accum0); ITERATION(srcData[1] + start, accum1); ITERATION(srcData[2] + start, accum2); ITERATION(srcData[3] + start, accum3); } int16x4_t accum16; uint8x8_t res0, res1, res2, res3; #define PACK_RESULT(accum, res) \ accum = vshrq_n_s32(accum, SkConvolutionFilter1D::kShiftBits); \ accum16 = vqmovn_s32(accum); \ res = vqmovun_s16(vcombine_s16(accum16, accum16)); PACK_RESULT(accum0, res0); PACK_RESULT(accum1, res1); PACK_RESULT(accum2, res2); PACK_RESULT(accum3, res3); vst1_lane_u32(reinterpret_cast(outRow[0]), vreinterpret_u32_u8(res0), 0); vst1_lane_u32(reinterpret_cast(outRow[1]), vreinterpret_u32_u8(res1), 0); vst1_lane_u32(reinterpret_cast(outRow[2]), vreinterpret_u32_u8(res2), 0); vst1_lane_u32(reinterpret_cast(outRow[3]), vreinterpret_u32_u8(res3), 0); outRow[0] += 4; outRow[1] += 4; outRow[2] += 4; outRow[3] += 4; } } void applySIMDPadding_neon(SkConvolutionFilter1D *filter) { // Padding |paddingCount| of more dummy coefficients after the coefficients // of last filter to prevent SIMD instructions which load 8 or 16 bytes // together to access invalid memory areas. We are not trying to align the // coefficients right now due to the opaqueness of implementation. // This has to be done after all |AddFilter| calls. for (int i = 0; i < 8; ++i) { filter->addFilterValue(static_cast(0)); } } void platformConvolutionProcs_arm_neon(SkConvolutionProcs* procs) { procs->fExtraHorizontalReads = 3; procs->fConvolveVertically = &convolveVertically_neon; procs->fConvolve4RowsHorizontally = &convolve4RowsHorizontally_neon; procs->fConvolveHorizontally = &convolveHorizontally_neon; procs->fApplySIMDPadding = &applySIMDPadding_neon; }