/* * Copyright 2013 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include #include "SkBitmap.h" #include "SkBitmapFilter_opts_SSE2.h" #include "SkBitmapProcState.h" #include "SkColor.h" #include "SkColorPriv.h" #include "SkConvolver.h" #include "SkShader.h" #include "SkUnPreMultiply.h" #if 0 static inline void print128i(__m128i value) { int *v = (int*) &value; printf("% .11d % .11d % .11d % .11d\n", v[0], v[1], v[2], v[3]); } static inline void print128i_16(__m128i value) { short *v = (short*) &value; printf("% .5d % .5d % .5d % .5d % .5d % .5d % .5d % .5d\n", v[0], v[1], v[2], v[3], v[4], v[5], v[6], v[7]); } static inline void print128i_8(__m128i value) { unsigned char *v = (unsigned char*) &value; printf("%.3u %.3u %.3u %.3u %.3u %.3u %.3u %.3u %.3u %.3u %.3u %.3u %.3u %.3u %.3u %.3u\n", v[0], v[1], v[2], v[3], v[4], v[5], v[6], v[7], v[8], v[9], v[10], v[11], v[12], v[13], v[14], v[15] ); } static inline void print128f(__m128 value) { float *f = (float*) &value; printf("%3.4f %3.4f %3.4f %3.4f\n", f[0], f[1], f[2], f[3]); } #endif // because the border is handled specially, this is guaranteed to have all 16 pixels // available to it without running off the bitmap's edge. void highQualityFilter_SSE2(const SkBitmapProcState& s, int x, int y, SkPMColor* SK_RESTRICT colors, int count) { const int maxX = s.fBitmap->width(); const int maxY = s.fBitmap->height(); SkAutoTMalloc xWeights(maxX); while (count-- > 0) { SkPoint srcPt; s.fInvProc(s.fInvMatrix, x + 0.5f, y + 0.5f, &srcPt); srcPt.fX -= SK_ScalarHalf; srcPt.fY -= SK_ScalarHalf; __m128 weight = _mm_setzero_ps(); __m128 accum = _mm_setzero_ps(); int y0 = SkClampMax(SkScalarCeilToInt(srcPt.fY-s.getBitmapFilter()->width()), maxY); int y1 = SkClampMax(SkScalarFloorToInt(srcPt.fY+s.getBitmapFilter()->width()+1), maxY); int x0 = SkClampMax(SkScalarCeilToInt(srcPt.fX-s.getBitmapFilter()->width()), maxX); int x1 = SkClampMax(SkScalarFloorToInt(srcPt.fX+s.getBitmapFilter()->width())+1, maxX); for (int srcX = x0; srcX < x1 ; srcX++) { // Looking these up once instead of each loop is a ~15% speedup. xWeights[srcX - x0] = s.getBitmapFilter()->lookupScalar((srcPt.fX - srcX)); } for (int srcY = y0; srcY < y1; srcY++) { SkScalar yWeight = s.getBitmapFilter()->lookupScalar((srcPt.fY - srcY)); for (int srcX = x0; srcX < x1 ; srcX++) { SkScalar xWeight = xWeights[srcX - x0]; SkScalar combined_weight = SkScalarMul(xWeight, yWeight); SkPMColor color = *s.fBitmap->getAddr32(srcX, srcY); __m128i c = _mm_cvtsi32_si128(color); c = _mm_unpacklo_epi8(c, _mm_setzero_si128()); c = _mm_unpacklo_epi16(c, _mm_setzero_si128()); __m128 cfloat = _mm_cvtepi32_ps(c); __m128 weightVector = _mm_set1_ps(combined_weight); accum = _mm_add_ps(accum, _mm_mul_ps(cfloat, weightVector)); weight = _mm_add_ps( weight, weightVector ); } } accum = _mm_div_ps(accum, weight); accum = _mm_add_ps(accum, _mm_set1_ps(0.5f)); __m128i accumInt = _mm_cvttps_epi32(accum); accumInt = _mm_packs_epi32(accumInt, _mm_setzero_si128()); accumInt = _mm_packus_epi16(accumInt, _mm_setzero_si128()); SkPMColor c = _mm_cvtsi128_si32(accumInt); int a = SkClampMax(SkGetPackedA32(c), 255); int r = SkClampMax(SkGetPackedR32(c), a); int g = SkClampMax(SkGetPackedG32(c), a); int b = SkClampMax(SkGetPackedB32(c), a); *colors++ = SkPackARGB32(a, r, g, b); x++; } } // Convolves horizontally along a single row. The row data is given in // |src_data| and continues for the num_values() of the filter. void convolveHorizontally_SSE2(const unsigned char* src_data, const SkConvolutionFilter1D& filter, unsigned char* out_row, bool /*has_alpha*/) { int num_values = filter.numValues(); int filter_offset, filter_length; __m128i zero = _mm_setzero_si128(); __m128i mask[4]; // |mask| will be used to decimate all extra filter coefficients that are // loaded by SIMD when |filter_length| is not divisible by 4. // mask[0] is not used in following algorithm. mask[1] = _mm_set_epi16(0, 0, 0, 0, 0, 0, 0, -1); mask[2] = _mm_set_epi16(0, 0, 0, 0, 0, 0, -1, -1); mask[3] = _mm_set_epi16(0, 0, 0, 0, 0, -1, -1, -1); // Output one pixel each iteration, calculating all channels (RGBA) together. for (int out_x = 0; out_x < num_values; out_x++) { const SkConvolutionFilter1D::ConvolutionFixed* filter_values = filter.FilterForValue(out_x, &filter_offset, &filter_length); __m128i accum = _mm_setzero_si128(); // Compute the first pixel in this row that the filter affects. It will // touch |filter_length| pixels (4 bytes each) after this. const __m128i* row_to_filter = reinterpret_cast(&src_data[filter_offset << 2]); // We will load and accumulate with four coefficients per iteration. for (int filter_x = 0; filter_x < filter_length >> 2; filter_x++) { // Load 4 coefficients => duplicate 1st and 2nd of them for all channels. __m128i coeff, coeff16; // [16] xx xx xx xx c3 c2 c1 c0 coeff = _mm_loadl_epi64(reinterpret_cast(filter_values)); // [16] xx xx xx xx c1 c1 c0 c0 coeff16 = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(1, 1, 0, 0)); // [16] c1 c1 c1 c1 c0 c0 c0 c0 coeff16 = _mm_unpacklo_epi16(coeff16, coeff16); // Load four pixels => unpack the first two pixels to 16 bits => // multiply with coefficients => accumulate the convolution result. // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0 __m128i src8 = _mm_loadu_si128(row_to_filter); // [16] a1 b1 g1 r1 a0 b0 g0 r0 __m128i src16 = _mm_unpacklo_epi8(src8, zero); __m128i mul_hi = _mm_mulhi_epi16(src16, coeff16); __m128i mul_lo = _mm_mullo_epi16(src16, coeff16); // [32] a0*c0 b0*c0 g0*c0 r0*c0 __m128i t = _mm_unpacklo_epi16(mul_lo, mul_hi); accum = _mm_add_epi32(accum, t); // [32] a1*c1 b1*c1 g1*c1 r1*c1 t = _mm_unpackhi_epi16(mul_lo, mul_hi); accum = _mm_add_epi32(accum, t); // Duplicate 3rd and 4th coefficients for all channels => // unpack the 3rd and 4th pixels to 16 bits => multiply with coefficients // => accumulate the convolution results. // [16] xx xx xx xx c3 c3 c2 c2 coeff16 = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(3, 3, 2, 2)); // [16] c3 c3 c3 c3 c2 c2 c2 c2 coeff16 = _mm_unpacklo_epi16(coeff16, coeff16); // [16] a3 g3 b3 r3 a2 g2 b2 r2 src16 = _mm_unpackhi_epi8(src8, zero); mul_hi = _mm_mulhi_epi16(src16, coeff16); mul_lo = _mm_mullo_epi16(src16, coeff16); // [32] a2*c2 b2*c2 g2*c2 r2*c2 t = _mm_unpacklo_epi16(mul_lo, mul_hi); accum = _mm_add_epi32(accum, t); // [32] a3*c3 b3*c3 g3*c3 r3*c3 t = _mm_unpackhi_epi16(mul_lo, mul_hi); accum = _mm_add_epi32(accum, t); // Advance the pixel and coefficients pointers. row_to_filter += 1; filter_values += 4; } // When |filter_length| is not divisible by 4, we need to decimate some of // the filter coefficient that was loaded incorrectly to zero; Other than // that the algorithm is same with above, exceot that the 4th pixel will be // always absent. int r = filter_length&3; if (r) { // Note: filter_values must be padded to align_up(filter_offset, 8). __m128i coeff, coeff16; coeff = _mm_loadl_epi64(reinterpret_cast(filter_values)); // Mask out extra filter taps. coeff = _mm_and_si128(coeff, mask[r]); coeff16 = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(1, 1, 0, 0)); coeff16 = _mm_unpacklo_epi16(coeff16, coeff16); // Note: line buffer must be padded to align_up(filter_offset, 16). // We resolve this by use C-version for the last horizontal line. __m128i src8 = _mm_loadu_si128(row_to_filter); __m128i src16 = _mm_unpacklo_epi8(src8, zero); __m128i mul_hi = _mm_mulhi_epi16(src16, coeff16); __m128i mul_lo = _mm_mullo_epi16(src16, coeff16); __m128i t = _mm_unpacklo_epi16(mul_lo, mul_hi); accum = _mm_add_epi32(accum, t); t = _mm_unpackhi_epi16(mul_lo, mul_hi); accum = _mm_add_epi32(accum, t); src16 = _mm_unpackhi_epi8(src8, zero); coeff16 = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(3, 3, 2, 2)); coeff16 = _mm_unpacklo_epi16(coeff16, coeff16); mul_hi = _mm_mulhi_epi16(src16, coeff16); mul_lo = _mm_mullo_epi16(src16, coeff16); t = _mm_unpacklo_epi16(mul_lo, mul_hi); accum = _mm_add_epi32(accum, t); } // Shift right for fixed point implementation. accum = _mm_srai_epi32(accum, SkConvolutionFilter1D::kShiftBits); // Packing 32 bits |accum| to 16 bits per channel (signed saturation). accum = _mm_packs_epi32(accum, zero); // Packing 16 bits |accum| to 8 bits per channel (unsigned saturation). accum = _mm_packus_epi16(accum, zero); // Store the pixel value of 32 bits. *(reinterpret_cast(out_row)) = _mm_cvtsi128_si32(accum); out_row += 4; } } // Convolves horizontally along four rows. The row data is given in // |src_data| and continues for the num_values() of the filter. // The algorithm is almost same as |ConvolveHorizontally_SSE2|. Please // refer to that function for detailed comments. void convolve4RowsHorizontally_SSE2(const unsigned char* src_data[4], const SkConvolutionFilter1D& filter, unsigned char* out_row[4]) { int num_values = filter.numValues(); int filter_offset, filter_length; __m128i zero = _mm_setzero_si128(); __m128i mask[4]; // |mask| will be used to decimate all extra filter coefficients that are // loaded by SIMD when |filter_length| is not divisible by 4. // mask[0] is not used in following algorithm. mask[1] = _mm_set_epi16(0, 0, 0, 0, 0, 0, 0, -1); mask[2] = _mm_set_epi16(0, 0, 0, 0, 0, 0, -1, -1); mask[3] = _mm_set_epi16(0, 0, 0, 0, 0, -1, -1, -1); // Output one pixel each iteration, calculating all channels (RGBA) together. for (int out_x = 0; out_x < num_values; out_x++) { const SkConvolutionFilter1D::ConvolutionFixed* filter_values = filter.FilterForValue(out_x, &filter_offset, &filter_length); // four pixels in a column per iteration. __m128i accum0 = _mm_setzero_si128(); __m128i accum1 = _mm_setzero_si128(); __m128i accum2 = _mm_setzero_si128(); __m128i accum3 = _mm_setzero_si128(); int start = (filter_offset<<2); // We will load and accumulate with four coefficients per iteration. for (int filter_x = 0; filter_x < (filter_length >> 2); filter_x++) { __m128i coeff, coeff16lo, coeff16hi; // [16] xx xx xx xx c3 c2 c1 c0 coeff = _mm_loadl_epi64(reinterpret_cast(filter_values)); // [16] xx xx xx xx c1 c1 c0 c0 coeff16lo = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(1, 1, 0, 0)); // [16] c1 c1 c1 c1 c0 c0 c0 c0 coeff16lo = _mm_unpacklo_epi16(coeff16lo, coeff16lo); // [16] xx xx xx xx c3 c3 c2 c2 coeff16hi = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(3, 3, 2, 2)); // [16] c3 c3 c3 c3 c2 c2 c2 c2 coeff16hi = _mm_unpacklo_epi16(coeff16hi, coeff16hi); __m128i src8, src16, mul_hi, mul_lo, t; #define ITERATION(src, accum) \ src8 = _mm_loadu_si128(reinterpret_cast(src)); \ src16 = _mm_unpacklo_epi8(src8, zero); \ mul_hi = _mm_mulhi_epi16(src16, coeff16lo); \ mul_lo = _mm_mullo_epi16(src16, coeff16lo); \ t = _mm_unpacklo_epi16(mul_lo, mul_hi); \ accum = _mm_add_epi32(accum, t); \ t = _mm_unpackhi_epi16(mul_lo, mul_hi); \ accum = _mm_add_epi32(accum, t); \ src16 = _mm_unpackhi_epi8(src8, zero); \ mul_hi = _mm_mulhi_epi16(src16, coeff16hi); \ mul_lo = _mm_mullo_epi16(src16, coeff16hi); \ t = _mm_unpacklo_epi16(mul_lo, mul_hi); \ accum = _mm_add_epi32(accum, t); \ t = _mm_unpackhi_epi16(mul_lo, mul_hi); \ accum = _mm_add_epi32(accum, t) ITERATION(src_data[0] + start, accum0); ITERATION(src_data[1] + start, accum1); ITERATION(src_data[2] + start, accum2); ITERATION(src_data[3] + start, accum3); start += 16; filter_values += 4; } int r = filter_length & 3; if (r) { // Note: filter_values must be padded to align_up(filter_offset, 8); __m128i coeff; coeff = _mm_loadl_epi64(reinterpret_cast(filter_values)); // Mask out extra filter taps. coeff = _mm_and_si128(coeff, mask[r]); __m128i coeff16lo = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(1, 1, 0, 0)); /* c1 c1 c1 c1 c0 c0 c0 c0 */ coeff16lo = _mm_unpacklo_epi16(coeff16lo, coeff16lo); __m128i coeff16hi = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(3, 3, 2, 2)); coeff16hi = _mm_unpacklo_epi16(coeff16hi, coeff16hi); __m128i src8, src16, mul_hi, mul_lo, t; ITERATION(src_data[0] + start, accum0); ITERATION(src_data[1] + start, accum1); ITERATION(src_data[2] + start, accum2); ITERATION(src_data[3] + start, accum3); } accum0 = _mm_srai_epi32(accum0, SkConvolutionFilter1D::kShiftBits); accum0 = _mm_packs_epi32(accum0, zero); accum0 = _mm_packus_epi16(accum0, zero); accum1 = _mm_srai_epi32(accum1, SkConvolutionFilter1D::kShiftBits); accum1 = _mm_packs_epi32(accum1, zero); accum1 = _mm_packus_epi16(accum1, zero); accum2 = _mm_srai_epi32(accum2, SkConvolutionFilter1D::kShiftBits); accum2 = _mm_packs_epi32(accum2, zero); accum2 = _mm_packus_epi16(accum2, zero); accum3 = _mm_srai_epi32(accum3, SkConvolutionFilter1D::kShiftBits); accum3 = _mm_packs_epi32(accum3, zero); accum3 = _mm_packus_epi16(accum3, zero); *(reinterpret_cast(out_row[0])) = _mm_cvtsi128_si32(accum0); *(reinterpret_cast(out_row[1])) = _mm_cvtsi128_si32(accum1); *(reinterpret_cast(out_row[2])) = _mm_cvtsi128_si32(accum2); *(reinterpret_cast(out_row[3])) = _mm_cvtsi128_si32(accum3); out_row[0] += 4; out_row[1] += 4; out_row[2] += 4; out_row[3] += 4; } } // Does vertical convolution to produce one output row. The filter values and // length are given in the first two parameters. These are applied to each // of the rows pointed to in the |source_data_rows| array, with each row // being |pixel_width| wide. // // The output must have room for |pixel_width * 4| bytes. template void convolveVertically_SSE2(const SkConvolutionFilter1D::ConvolutionFixed* filter_values, int filter_length, unsigned char* const* source_data_rows, int pixel_width, unsigned char* out_row) { int width = pixel_width & ~3; __m128i zero = _mm_setzero_si128(); __m128i accum0, accum1, accum2, accum3, coeff16; const __m128i* src; // Output four pixels per iteration (16 bytes). for (int out_x = 0; out_x < width; out_x += 4) { // Accumulated result for each pixel. 32 bits per RGBA channel. accum0 = _mm_setzero_si128(); accum1 = _mm_setzero_si128(); accum2 = _mm_setzero_si128(); accum3 = _mm_setzero_si128(); // Convolve with one filter coefficient per iteration. for (int filter_y = 0; filter_y < filter_length; filter_y++) { // Duplicate the filter coefficient 8 times. // [16] cj cj cj cj cj cj cj cj coeff16 = _mm_set1_epi16(filter_values[filter_y]); // Load four pixels (16 bytes) together. // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0 src = reinterpret_cast( &source_data_rows[filter_y][out_x << 2]); __m128i src8 = _mm_loadu_si128(src); // Unpack 1st and 2nd pixels from 8 bits to 16 bits for each channels => // multiply with current coefficient => accumulate the result. // [16] a1 b1 g1 r1 a0 b0 g0 r0 __m128i src16 = _mm_unpacklo_epi8(src8, zero); __m128i mul_hi = _mm_mulhi_epi16(src16, coeff16); __m128i mul_lo = _mm_mullo_epi16(src16, coeff16); // [32] a0 b0 g0 r0 __m128i t = _mm_unpacklo_epi16(mul_lo, mul_hi); accum0 = _mm_add_epi32(accum0, t); // [32] a1 b1 g1 r1 t = _mm_unpackhi_epi16(mul_lo, mul_hi); accum1 = _mm_add_epi32(accum1, t); // Unpack 3rd and 4th pixels from 8 bits to 16 bits for each channels => // multiply with current coefficient => accumulate the result. // [16] a3 b3 g3 r3 a2 b2 g2 r2 src16 = _mm_unpackhi_epi8(src8, zero); mul_hi = _mm_mulhi_epi16(src16, coeff16); mul_lo = _mm_mullo_epi16(src16, coeff16); // [32] a2 b2 g2 r2 t = _mm_unpacklo_epi16(mul_lo, mul_hi); accum2 = _mm_add_epi32(accum2, t); // [32] a3 b3 g3 r3 t = _mm_unpackhi_epi16(mul_lo, mul_hi); accum3 = _mm_add_epi32(accum3, t); } // Shift right for fixed point implementation. accum0 = _mm_srai_epi32(accum0, SkConvolutionFilter1D::kShiftBits); accum1 = _mm_srai_epi32(accum1, SkConvolutionFilter1D::kShiftBits); accum2 = _mm_srai_epi32(accum2, SkConvolutionFilter1D::kShiftBits); accum3 = _mm_srai_epi32(accum3, SkConvolutionFilter1D::kShiftBits); // Packing 32 bits |accum| to 16 bits per channel (signed saturation). // [16] a1 b1 g1 r1 a0 b0 g0 r0 accum0 = _mm_packs_epi32(accum0, accum1); // [16] a3 b3 g3 r3 a2 b2 g2 r2 accum2 = _mm_packs_epi32(accum2, accum3); // Packing 16 bits |accum| to 8 bits per channel (unsigned saturation). // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0 accum0 = _mm_packus_epi16(accum0, accum2); if (has_alpha) { // Compute the max(ri, gi, bi) for each pixel. // [8] xx a3 b3 g3 xx a2 b2 g2 xx a1 b1 g1 xx a0 b0 g0 __m128i a = _mm_srli_epi32(accum0, 8); // [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0 __m128i b = _mm_max_epu8(a, accum0); // Max of r and g. // [8] xx xx a3 b3 xx xx a2 b2 xx xx a1 b1 xx xx a0 b0 a = _mm_srli_epi32(accum0, 16); // [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0 b = _mm_max_epu8(a, b); // Max of r and g and b. // [8] max3 00 00 00 max2 00 00 00 max1 00 00 00 max0 00 00 00 b = _mm_slli_epi32(b, 24); // Make sure the value of alpha channel is always larger than maximum // value of color channels. accum0 = _mm_max_epu8(b, accum0); } else { // Set value of alpha channels to 0xFF. __m128i mask = _mm_set1_epi32(0xff000000); accum0 = _mm_or_si128(accum0, mask); } // Store the convolution result (16 bytes) and advance the pixel pointers. _mm_storeu_si128(reinterpret_cast<__m128i*>(out_row), accum0); out_row += 16; } // When the width of the output is not divisible by 4, We need to save one // pixel (4 bytes) each time. And also the fourth pixel is always absent. if (pixel_width & 3) { accum0 = _mm_setzero_si128(); accum1 = _mm_setzero_si128(); accum2 = _mm_setzero_si128(); for (int filter_y = 0; filter_y < filter_length; ++filter_y) { coeff16 = _mm_set1_epi16(filter_values[filter_y]); // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0 src = reinterpret_cast( &source_data_rows[filter_y][width<<2]); __m128i src8 = _mm_loadu_si128(src); // [16] a1 b1 g1 r1 a0 b0 g0 r0 __m128i src16 = _mm_unpacklo_epi8(src8, zero); __m128i mul_hi = _mm_mulhi_epi16(src16, coeff16); __m128i mul_lo = _mm_mullo_epi16(src16, coeff16); // [32] a0 b0 g0 r0 __m128i t = _mm_unpacklo_epi16(mul_lo, mul_hi); accum0 = _mm_add_epi32(accum0, t); // [32] a1 b1 g1 r1 t = _mm_unpackhi_epi16(mul_lo, mul_hi); accum1 = _mm_add_epi32(accum1, t); // [16] a3 b3 g3 r3 a2 b2 g2 r2 src16 = _mm_unpackhi_epi8(src8, zero); mul_hi = _mm_mulhi_epi16(src16, coeff16); mul_lo = _mm_mullo_epi16(src16, coeff16); // [32] a2 b2 g2 r2 t = _mm_unpacklo_epi16(mul_lo, mul_hi); accum2 = _mm_add_epi32(accum2, t); } accum0 = _mm_srai_epi32(accum0, SkConvolutionFilter1D::kShiftBits); accum1 = _mm_srai_epi32(accum1, SkConvolutionFilter1D::kShiftBits); accum2 = _mm_srai_epi32(accum2, SkConvolutionFilter1D::kShiftBits); // [16] a1 b1 g1 r1 a0 b0 g0 r0 accum0 = _mm_packs_epi32(accum0, accum1); // [16] a3 b3 g3 r3 a2 b2 g2 r2 accum2 = _mm_packs_epi32(accum2, zero); // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0 accum0 = _mm_packus_epi16(accum0, accum2); if (has_alpha) { // [8] xx a3 b3 g3 xx a2 b2 g2 xx a1 b1 g1 xx a0 b0 g0 __m128i a = _mm_srli_epi32(accum0, 8); // [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0 __m128i b = _mm_max_epu8(a, accum0); // Max of r and g. // [8] xx xx a3 b3 xx xx a2 b2 xx xx a1 b1 xx xx a0 b0 a = _mm_srli_epi32(accum0, 16); // [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0 b = _mm_max_epu8(a, b); // Max of r and g and b. // [8] max3 00 00 00 max2 00 00 00 max1 00 00 00 max0 00 00 00 b = _mm_slli_epi32(b, 24); accum0 = _mm_max_epu8(b, accum0); } else { __m128i mask = _mm_set1_epi32(0xff000000); accum0 = _mm_or_si128(accum0, mask); } for (int out_x = width; out_x < pixel_width; out_x++) { *(reinterpret_cast(out_row)) = _mm_cvtsi128_si32(accum0); accum0 = _mm_srli_si128(accum0, 4); out_row += 4; } } } void convolveVertically_SSE2(const SkConvolutionFilter1D::ConvolutionFixed* filter_values, int filter_length, unsigned char* const* source_data_rows, int pixel_width, unsigned char* out_row, bool has_alpha) { if (has_alpha) { convolveVertically_SSE2(filter_values, filter_length, source_data_rows, pixel_width, out_row); } else { convolveVertically_SSE2(filter_values, filter_length, source_data_rows, pixel_width, out_row); } } void applySIMDPadding_SSE2(SkConvolutionFilter1D *filter) { // Padding |paddingCount| of more dummy coefficients after the coefficients // of last filter to prevent SIMD instructions which load 8 or 16 bytes // together to access invalid memory areas. We are not trying to align the // coefficients right now due to the opaqueness of implementation. // This has to be done after all |AddFilter| calls. for (int i = 0; i < 8; ++i) { filter->addFilterValue(static_cast(0)); } }