/* * Copyright 2015 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ namespace { // See Sk4px.h inline Sk4px Sk4px::DupPMColor(SkPMColor px) { return Sk16b(_mm_set1_epi32(px)); } inline Sk4px Sk4px::Load4(const SkPMColor px[4]) { return Sk16b(_mm_loadu_si128((const __m128i*)px)); } inline Sk4px Sk4px::Load2(const SkPMColor px[2]) { return Sk16b(_mm_loadl_epi64((const __m128i*)px)); } inline Sk4px Sk4px::Load1(const SkPMColor px[1]) { return Sk16b(_mm_cvtsi32_si128(*px)); } inline void Sk4px::store4(SkPMColor px[4]) const { _mm_storeu_si128((__m128i*)px, this->fVec); } inline void Sk4px::store2(SkPMColor px[2]) const { _mm_storel_epi64((__m128i*)px, this->fVec); } inline void Sk4px::store1(SkPMColor px[1]) const { *px = _mm_cvtsi128_si32(this->fVec); } inline Sk4px::Wide Sk4px::widenLo() const { return Sk16h(_mm_unpacklo_epi8(this->fVec, _mm_setzero_si128()), _mm_unpackhi_epi8(this->fVec, _mm_setzero_si128())); } inline Sk4px::Wide Sk4px::widenHi() const { return Sk16h(_mm_unpacklo_epi8(_mm_setzero_si128(), this->fVec), _mm_unpackhi_epi8(_mm_setzero_si128(), this->fVec)); } inline Sk4px::Wide Sk4px::widenLoHi() const { return Sk16h(_mm_unpacklo_epi8(this->fVec, this->fVec), _mm_unpackhi_epi8(this->fVec, this->fVec)); } inline Sk4px::Wide Sk4px::mulWiden(const Sk16b& other) const { return this->widenLo() * Sk4px(other).widenLo(); } inline Sk4px Sk4px::Wide::addNarrowHi(const Sk16h& other) const { Sk4px::Wide r = (*this + other) >> 8; return Sk4px(_mm_packus_epi16(r.fLo.fVec, r.fHi.fVec)); } // Load4Alphas and Load2Alphas use possibly-unaligned loads (SkAlpha[] -> uint16_t or uint32_t). // These are safe on x86, often with no speed penalty. #if SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSSE3 inline Sk4px Sk4px::alphas() const { static_assert(SK_A32_SHIFT == 24, "Intel's always little-endian."); __m128i splat = _mm_set_epi8(15,15,15,15, 11,11,11,11, 7,7,7,7, 3,3,3,3); return Sk16b(_mm_shuffle_epi8(this->fVec, splat)); } inline Sk4px Sk4px::Load4Alphas(const SkAlpha a[4]) { uint32_t as = *(const uint32_t*)a; __m128i splat = _mm_set_epi8(3,3,3,3, 2,2,2,2, 1,1,1,1, 0,0,0,0); return Sk16b(_mm_shuffle_epi8(_mm_cvtsi32_si128(as), splat)); } #else inline Sk4px Sk4px::alphas() const { static_assert(SK_A32_SHIFT == 24, "Intel's always little-endian."); __m128i as = _mm_srli_epi32(this->fVec, 24); // ___3 ___2 ___1 ___0 as = _mm_or_si128(as, _mm_slli_si128(as, 1)); // __33 __22 __11 __00 as = _mm_or_si128(as, _mm_slli_si128(as, 2)); // 3333 2222 1111 0000 return Sk16b(as); } inline Sk4px Sk4px::Load4Alphas(const SkAlpha a[4]) { __m128i as = _mm_cvtsi32_si128(*(const uint32_t*)a); // ____ ____ ____ 3210 as = _mm_unpacklo_epi8 (as, _mm_setzero_si128()); // ____ ____ _3_2 _1_0 as = _mm_unpacklo_epi16(as, _mm_setzero_si128()); // ___3 ___2 ___1 ___0 as = _mm_or_si128(as, _mm_slli_si128(as, 1)); // __33 __22 __11 __00 as = _mm_or_si128(as, _mm_slli_si128(as, 2)); // 3333 2222 1111 0000 return Sk16b(as); } #endif inline Sk4px Sk4px::Load2Alphas(const SkAlpha a[2]) { uint32_t as = *(const uint16_t*)a; // Aa -> Aa00 return Load4Alphas((const SkAlpha*)&as); } inline Sk4px Sk4px::zeroColors() const { return Sk16b(_mm_and_si128(_mm_set1_epi32(0xFF << SK_A32_SHIFT), this->fVec)); } inline Sk4px Sk4px::zeroAlphas() const { // andnot(a,b) == ~a & b return Sk16b(_mm_andnot_si128(_mm_set1_epi32(0xFF << SK_A32_SHIFT), this->fVec)); } static inline __m128i widen_low_half_to_8888(__m128i v) { // RGB565 format: |R....|G.....|B....| // Bit: 16 11 5 0 // First get each pixel into its own 32-bit lane. // v == ____ ____ ____ ____ rgb3 rgb2 rgb1 rgb0 // spread == 0000 rgb3 0000 rgb2 0000 rgb1 0000 rgb0 auto spread = _mm_unpacklo_epi16(v, _mm_setzero_si128()); // Get each color independently, still in 565 precison but down at bit 0. auto r5 = _mm_srli_epi32(spread, 11), g6 = _mm_and_si128(_mm_set1_epi32(63), _mm_srli_epi32(spread, 5)), b5 = _mm_and_si128(_mm_set1_epi32(31), spread); // Scale 565 precision up to 8-bit each, filling low 323 bits with high bits of each component. auto r8 = _mm_or_si128(_mm_slli_epi32(r5, 3), _mm_srli_epi32(r5, 2)), g8 = _mm_or_si128(_mm_slli_epi32(g6, 2), _mm_srli_epi32(g6, 4)), b8 = _mm_or_si128(_mm_slli_epi32(b5, 3), _mm_srli_epi32(b5, 2)); // Now put all the 8-bit components into SkPMColor order. return _mm_or_si128(_mm_slli_epi32(r8, SK_R32_SHIFT), // TODO: one of these shifts is zero... _mm_or_si128(_mm_slli_epi32(g8, SK_G32_SHIFT), _mm_or_si128(_mm_slli_epi32(b8, SK_B32_SHIFT), _mm_set1_epi32(0xFF << SK_A32_SHIFT)))); } static inline __m128i narrow_to_565(__m128i w) { // Extract out top RGB 565 bits of each pixel, with no rounding. auto r5 = _mm_and_si128(_mm_set1_epi32(31), _mm_srli_epi32(w, SK_R32_SHIFT + 3)), g6 = _mm_and_si128(_mm_set1_epi32(63), _mm_srli_epi32(w, SK_G32_SHIFT + 2)), b5 = _mm_and_si128(_mm_set1_epi32(31), _mm_srli_epi32(w, SK_B32_SHIFT + 3)); // Now put the bits in place in the low 16-bits of each 32-bit lane. auto spread = _mm_or_si128(_mm_slli_epi32(r5, 11), _mm_or_si128(_mm_slli_epi32(g6, 5), b5)); // We want to pack the bottom 16-bits of spread down into the low half of the register, v. // spread == 0000 rgb3 0000 rgb2 0000 rgb1 0000 rgb0 // v == ____ ____ ____ ____ rgb3 rgb2 rgb1 rgb0 // Ideally now we'd use _mm_packus_epi32(spread, ) to pack v. But that's from SSE4. // With only SSE2, we need to use _mm_packs_epi32. That does signed saturation, and // we need to preserve all 16 bits. So we pretend our data is signed by sign-extending first. // TODO: is it faster to just _mm_shuffle_epi8 this when we have SSSE3? auto signExtended = _mm_srai_epi32(_mm_slli_epi32(spread, 16), 16); auto v = _mm_packs_epi32(signExtended, signExtended); return v; } inline Sk4px Sk4px::Load4(const SkPMColor16 src[4]) { return Sk16b(widen_low_half_to_8888(_mm_loadl_epi64((const __m128i*)src))); } inline Sk4px Sk4px::Load2(const SkPMColor16 src[2]) { auto src2 = ((uint32_t)src[0] ) | ((uint32_t)src[1] << 16); return Sk16b(widen_low_half_to_8888(_mm_cvtsi32_si128(src2))); } inline Sk4px Sk4px::Load1(const SkPMColor16 src[1]) { return Sk16b(widen_low_half_to_8888(_mm_insert_epi16(_mm_setzero_si128(), src[0], 0))); } inline void Sk4px::store4(SkPMColor16 dst[4]) const { _mm_storel_epi64((__m128i*)dst, narrow_to_565(this->fVec)); } inline void Sk4px::store2(SkPMColor16 dst[2]) const { uint32_t dst2 = _mm_cvtsi128_si32(narrow_to_565(this->fVec)); dst[0] = dst2; dst[1] = dst2 >> 16; } inline void Sk4px::store1(SkPMColor16 dst[1]) const { uint32_t dst2 = _mm_cvtsi128_si32(narrow_to_565(this->fVec)); dst[0] = dst2; } } // namespace