/* * Copyright 2007 The Android Open Source Project * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "SkImageDecoder.h" #include "SkImageEncoder.h" #include "SkJpegUtility.h" #include "SkColorPriv.h" #include "SkDither.h" #include "SkScaledBitmapSampler.h" #include "SkStream.h" #include "SkTemplates.h" #include "SkUtils.h" #include extern "C" { #include "jpeglib.h" #include "jerror.h" } // this enables timing code to report milliseconds for an encode //#define TIME_ENCODE //#define TIME_DECODE // this enables our rgb->yuv code, which is faster than libjpeg on ARM // disable for the moment, as we have some glitches when width != multiple of 4 #define WE_CONVERT_TO_YUV ////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////// class SkJPEGImageDecoder : public SkImageDecoder { public: virtual Format getFormat() const { return kJPEG_Format; } protected: virtual bool onDecode(SkStream* stream, SkBitmap* bm, Mode); }; ////////////////////////////////////////////////////////////////////////// #include "SkTime.h" class AutoTimeMillis { public: AutoTimeMillis(const char label[]) : fLabel(label) { if (!fLabel) { fLabel = ""; } fNow = SkTime::GetMSecs(); } ~AutoTimeMillis() { SkDebugf("---- Time (ms): %s %d\n", fLabel, SkTime::GetMSecs() - fNow); } private: const char* fLabel; SkMSec fNow; }; /* Automatically clean up after throwing an exception */ class JPEGAutoClean { public: JPEGAutoClean(): cinfo_ptr(NULL) {} ~JPEGAutoClean() { if (cinfo_ptr) { jpeg_destroy_decompress(cinfo_ptr); } } void set(jpeg_decompress_struct* info) { cinfo_ptr = info; } private: jpeg_decompress_struct* cinfo_ptr; }; #ifdef SK_BUILD_FOR_ANDROID /* For non-ndk builds we could look at the system's jpeg memory cap and use it * if it is set. However, for now we will use the NDK compliant hardcoded values */ //#include //static const char KEY_MEM_CAP[] = "ro.media.dec.jpeg.memcap"; static void overwrite_mem_buffer_size(j_decompress_ptr cinfo) { #ifdef ANDROID_LARGE_MEMORY_DEVICE cinfo->mem->max_memory_to_use = 30 * 1024 * 1024; #else cinfo->mem->max_memory_to_use = 5 * 1024 * 1024; #endif } #endif /////////////////////////////////////////////////////////////////////////////// /* If we need to better match the request, we might examine the image and output dimensions, and determine if the downsampling jpeg provided is not sufficient. If so, we can recompute a modified sampleSize value to make up the difference. To skip this additional scaling, just set sampleSize = 1; below. */ static int recompute_sampleSize(int sampleSize, const jpeg_decompress_struct& cinfo) { return sampleSize * cinfo.output_width / cinfo.image_width; } static bool valid_output_dimensions(const jpeg_decompress_struct& cinfo) { /* These are initialized to 0, so if they have non-zero values, we assume they are "valid" (i.e. have been computed by libjpeg) */ return cinfo.output_width != 0 && cinfo.output_height != 0; } static bool skip_src_rows(jpeg_decompress_struct* cinfo, void* buffer, int count) { for (int i = 0; i < count; i++) { JSAMPLE* rowptr = (JSAMPLE*)buffer; int row_count = jpeg_read_scanlines(cinfo, &rowptr, 1); if (row_count != 1) { return false; } } return true; } // This guy exists just to aid in debugging, as it allows debuggers to just // set a break-point in one place to see all error exists. static bool return_false(const jpeg_decompress_struct& cinfo, const SkBitmap& bm, const char msg[]) { #if 0 SkDebugf("libjpeg error %d <%s> from %s [%d %d]", cinfo.err->msg_code, cinfo.err->jpeg_message_table[cinfo.err->msg_code], msg, bm.width(), bm.height()); #endif return false; // must always return false } // Convert a scanline of CMYK samples to RGBX in place. Note that this // method moves the "scanline" pointer in its processing static void convert_CMYK_to_RGB(uint8_t* scanline, unsigned int width) { // At this point we've received CMYK pixels from libjpeg. We // perform a crude conversion to RGB (based on the formulae // from easyrgb.com): // CMYK -> CMY // C = ( C * (1 - K) + K ) // for each CMY component // CMY -> RGB // R = ( 1 - C ) * 255 // for each RGB component // Unfortunately we are seeing inverted CMYK so all the original terms // are 1-. This yields: // CMYK -> CMY // C = ( (1-C) * (1 - (1-K) + (1-K) ) -> C = 1 - C*K // The conversion from CMY->RGB remains the same for (unsigned int x = 0; x < width; ++x, scanline += 4) { scanline[0] = SkMulDiv255Round(scanline[0], scanline[3]); scanline[1] = SkMulDiv255Round(scanline[1], scanline[3]); scanline[2] = SkMulDiv255Round(scanline[2], scanline[3]); scanline[3] = 255; } } bool SkJPEGImageDecoder::onDecode(SkStream* stream, SkBitmap* bm, Mode mode) { #ifdef TIME_DECODE AutoTimeMillis atm("JPEG Decode"); #endif SkAutoMalloc srcStorage; JPEGAutoClean autoClean; jpeg_decompress_struct cinfo; skjpeg_error_mgr sk_err; skjpeg_source_mgr sk_stream(stream, this, false); cinfo.err = jpeg_std_error(&sk_err); sk_err.error_exit = skjpeg_error_exit; // All objects need to be instantiated before this setjmp call so that // they will be cleaned up properly if an error occurs. if (setjmp(sk_err.fJmpBuf)) { return return_false(cinfo, *bm, "setjmp"); } jpeg_create_decompress(&cinfo); autoClean.set(&cinfo); #ifdef SK_BUILD_FOR_ANDROID overwrite_mem_buffer_size(&cinfo); #endif //jpeg_stdio_src(&cinfo, file); cinfo.src = &sk_stream; int status = jpeg_read_header(&cinfo, true); if (status != JPEG_HEADER_OK) { return return_false(cinfo, *bm, "read_header"); } /* Try to fulfill the requested sampleSize. Since jpeg can do it (when it can) much faster that we, just use their num/denom api to approximate the size. */ int sampleSize = this->getSampleSize(); cinfo.dct_method = JDCT_IFAST; cinfo.scale_num = 1; cinfo.scale_denom = sampleSize; /* this gives about 30% performance improvement. In theory it may reduce the visual quality, in practice I'm not seeing a difference */ cinfo.do_fancy_upsampling = 0; /* this gives another few percents */ cinfo.do_block_smoothing = 0; /* default format is RGB */ if (cinfo.jpeg_color_space == JCS_CMYK) { // libjpeg cannot convert from CMYK to RGB - here we set up // so libjpeg will give us CMYK samples back and we will // later manually convert them to RGB cinfo.out_color_space = JCS_CMYK; } else { cinfo.out_color_space = JCS_RGB; } SkBitmap::Config config = this->getPrefConfig(k32Bit_SrcDepth, false); // only these make sense for jpegs if (config != SkBitmap::kARGB_8888_Config && config != SkBitmap::kARGB_4444_Config && config != SkBitmap::kRGB_565_Config) { config = SkBitmap::kARGB_8888_Config; } #ifdef ANDROID_RGB cinfo.dither_mode = JDITHER_NONE; if (SkBitmap::kARGB_8888_Config == config && JCS_CMYK != cinfo.out_color_space) { cinfo.out_color_space = JCS_RGBA_8888; } else if (SkBitmap::kRGB_565_Config == config && JCS_CMYK != cinfo.out_color_space) { cinfo.out_color_space = JCS_RGB_565; if (this->getDitherImage()) { cinfo.dither_mode = JDITHER_ORDERED; } } #endif if (sampleSize == 1 && mode == SkImageDecoder::kDecodeBounds_Mode) { bm->setConfig(config, cinfo.image_width, cinfo.image_height); bm->setIsOpaque(true); return true; } /* image_width and image_height are the original dimensions, available after jpeg_read_header(). To see the scaled dimensions, we have to call jpeg_start_decompress(), and then read output_width and output_height. */ if (!jpeg_start_decompress(&cinfo)) { /* If we failed here, we may still have enough information to return to the caller if they just wanted (subsampled bounds). If sampleSize was 1, then we would have already returned. Thus we just check if we're in kDecodeBounds_Mode, and that we have valid output sizes. One reason to fail here is that we have insufficient stream data to complete the setup. However, output dimensions seem to get computed very early, which is why this special check can pay off. */ if (SkImageDecoder::kDecodeBounds_Mode == mode && valid_output_dimensions(cinfo)) { SkScaledBitmapSampler smpl(cinfo.output_width, cinfo.output_height, recompute_sampleSize(sampleSize, cinfo)); bm->setConfig(config, smpl.scaledWidth(), smpl.scaledHeight()); bm->setIsOpaque(true); return true; } else { return return_false(cinfo, *bm, "start_decompress"); } } sampleSize = recompute_sampleSize(sampleSize, cinfo); // should we allow the Chooser (if present) to pick a config for us??? if (!this->chooseFromOneChoice(config, cinfo.output_width, cinfo.output_height)) { return return_false(cinfo, *bm, "chooseFromOneChoice"); } #ifdef ANDROID_RGB /* short-circuit the SkScaledBitmapSampler when possible, as this gives a significant performance boost. */ if (sampleSize == 1 && ((config == SkBitmap::kARGB_8888_Config && cinfo.out_color_space == JCS_RGBA_8888) || (config == SkBitmap::kRGB_565_Config && cinfo.out_color_space == JCS_RGB_565))) { bm->setConfig(config, cinfo.output_width, cinfo.output_height); bm->setIsOpaque(true); if (SkImageDecoder::kDecodeBounds_Mode == mode) { return true; } if (!this->allocPixelRef(bm, NULL)) { return return_false(cinfo, *bm, "allocPixelRef"); } SkAutoLockPixels alp(*bm); JSAMPLE* rowptr = (JSAMPLE*)bm->getPixels(); INT32 const bpr = bm->rowBytes(); while (cinfo.output_scanline < cinfo.output_height) { int row_count = jpeg_read_scanlines(&cinfo, &rowptr, 1); // if row_count == 0, then we didn't get a scanline, so abort. // if we supported partial images, we might return true in this case if (0 == row_count) { return return_false(cinfo, *bm, "read_scanlines"); } if (this->shouldCancelDecode()) { return return_false(cinfo, *bm, "shouldCancelDecode"); } rowptr += bpr; } jpeg_finish_decompress(&cinfo); return true; } #endif // check for supported formats SkScaledBitmapSampler::SrcConfig sc; if (JCS_CMYK == cinfo.out_color_space) { // In this case we will manually convert the CMYK values to RGB sc = SkScaledBitmapSampler::kRGBX; } else if (3 == cinfo.out_color_components && JCS_RGB == cinfo.out_color_space) { sc = SkScaledBitmapSampler::kRGB; #ifdef ANDROID_RGB } else if (JCS_RGBA_8888 == cinfo.out_color_space) { sc = SkScaledBitmapSampler::kRGBX; } else if (JCS_RGB_565 == cinfo.out_color_space) { sc = SkScaledBitmapSampler::kRGB_565; #endif } else if (1 == cinfo.out_color_components && JCS_GRAYSCALE == cinfo.out_color_space) { sc = SkScaledBitmapSampler::kGray; } else { return return_false(cinfo, *bm, "jpeg colorspace"); } SkScaledBitmapSampler sampler(cinfo.output_width, cinfo.output_height, sampleSize); bm->setConfig(config, sampler.scaledWidth(), sampler.scaledHeight()); // jpegs are always opaque (i.e. have no per-pixel alpha) bm->setIsOpaque(true); if (SkImageDecoder::kDecodeBounds_Mode == mode) { return true; } if (!this->allocPixelRef(bm, NULL)) { return return_false(cinfo, *bm, "allocPixelRef"); } SkAutoLockPixels alp(*bm); if (!sampler.begin(bm, sc, this->getDitherImage())) { return return_false(cinfo, *bm, "sampler.begin"); } // The CMYK work-around relies on 4 components per pixel here uint8_t* srcRow = (uint8_t*)srcStorage.reset(cinfo.output_width * 4); // Possibly skip initial rows [sampler.srcY0] if (!skip_src_rows(&cinfo, srcRow, sampler.srcY0())) { return return_false(cinfo, *bm, "skip rows"); } // now loop through scanlines until y == bm->height() - 1 for (int y = 0;; y++) { JSAMPLE* rowptr = (JSAMPLE*)srcRow; int row_count = jpeg_read_scanlines(&cinfo, &rowptr, 1); if (0 == row_count) { return return_false(cinfo, *bm, "read_scanlines"); } if (this->shouldCancelDecode()) { return return_false(cinfo, *bm, "shouldCancelDecode"); } if (JCS_CMYK == cinfo.out_color_space) { convert_CMYK_to_RGB(srcRow, cinfo.output_width); } sampler.next(srcRow); if (bm->height() - 1 == y) { // we're done break; } if (!skip_src_rows(&cinfo, srcRow, sampler.srcDY() - 1)) { return return_false(cinfo, *bm, "skip rows"); } } // we formally skip the rest, so we don't get a complaint from libjpeg if (!skip_src_rows(&cinfo, srcRow, cinfo.output_height - cinfo.output_scanline)) { return return_false(cinfo, *bm, "skip rows"); } jpeg_finish_decompress(&cinfo); // SkDebugf("------------------- bm2 size %d [%d %d] %d\n", bm->getSize(), bm->width(), bm->height(), bm->config()); return true; } /////////////////////////////////////////////////////////////////////////////// #include "SkColorPriv.h" // taken from jcolor.c in libjpeg #if 0 // 16bit - precise but slow #define CYR 19595 // 0.299 #define CYG 38470 // 0.587 #define CYB 7471 // 0.114 #define CUR -11059 // -0.16874 #define CUG -21709 // -0.33126 #define CUB 32768 // 0.5 #define CVR 32768 // 0.5 #define CVG -27439 // -0.41869 #define CVB -5329 // -0.08131 #define CSHIFT 16 #else // 8bit - fast, slightly less precise #define CYR 77 // 0.299 #define CYG 150 // 0.587 #define CYB 29 // 0.114 #define CUR -43 // -0.16874 #define CUG -85 // -0.33126 #define CUB 128 // 0.5 #define CVR 128 // 0.5 #define CVG -107 // -0.41869 #define CVB -21 // -0.08131 #define CSHIFT 8 #endif static void rgb2yuv_32(uint8_t dst[], SkPMColor c) { int r = SkGetPackedR32(c); int g = SkGetPackedG32(c); int b = SkGetPackedB32(c); int y = ( CYR*r + CYG*g + CYB*b ) >> CSHIFT; int u = ( CUR*r + CUG*g + CUB*b ) >> CSHIFT; int v = ( CVR*r + CVG*g + CVB*b ) >> CSHIFT; dst[0] = SkToU8(y); dst[1] = SkToU8(u + 128); dst[2] = SkToU8(v + 128); } static void rgb2yuv_4444(uint8_t dst[], U16CPU c) { int r = SkGetPackedR4444(c); int g = SkGetPackedG4444(c); int b = SkGetPackedB4444(c); int y = ( CYR*r + CYG*g + CYB*b ) >> (CSHIFT - 4); int u = ( CUR*r + CUG*g + CUB*b ) >> (CSHIFT - 4); int v = ( CVR*r + CVG*g + CVB*b ) >> (CSHIFT - 4); dst[0] = SkToU8(y); dst[1] = SkToU8(u + 128); dst[2] = SkToU8(v + 128); } static void rgb2yuv_16(uint8_t dst[], U16CPU c) { int r = SkGetPackedR16(c); int g = SkGetPackedG16(c); int b = SkGetPackedB16(c); int y = ( 2*CYR*r + CYG*g + 2*CYB*b ) >> (CSHIFT - 2); int u = ( 2*CUR*r + CUG*g + 2*CUB*b ) >> (CSHIFT - 2); int v = ( 2*CVR*r + CVG*g + 2*CVB*b ) >> (CSHIFT - 2); dst[0] = SkToU8(y); dst[1] = SkToU8(u + 128); dst[2] = SkToU8(v + 128); } /////////////////////////////////////////////////////////////////////////////// typedef void (*WriteScanline)(uint8_t* SK_RESTRICT dst, const void* SK_RESTRICT src, int width, const SkPMColor* SK_RESTRICT ctable); static void Write_32_YUV(uint8_t* SK_RESTRICT dst, const void* SK_RESTRICT srcRow, int width, const SkPMColor*) { const uint32_t* SK_RESTRICT src = (const uint32_t*)srcRow; while (--width >= 0) { #ifdef WE_CONVERT_TO_YUV rgb2yuv_32(dst, *src++); #else uint32_t c = *src++; dst[0] = SkGetPackedR32(c); dst[1] = SkGetPackedG32(c); dst[2] = SkGetPackedB32(c); #endif dst += 3; } } static void Write_4444_YUV(uint8_t* SK_RESTRICT dst, const void* SK_RESTRICT srcRow, int width, const SkPMColor*) { const SkPMColor16* SK_RESTRICT src = (const SkPMColor16*)srcRow; while (--width >= 0) { #ifdef WE_CONVERT_TO_YUV rgb2yuv_4444(dst, *src++); #else SkPMColor16 c = *src++; dst[0] = SkPacked4444ToR32(c); dst[1] = SkPacked4444ToG32(c); dst[2] = SkPacked4444ToB32(c); #endif dst += 3; } } static void Write_16_YUV(uint8_t* SK_RESTRICT dst, const void* SK_RESTRICT srcRow, int width, const SkPMColor*) { const uint16_t* SK_RESTRICT src = (const uint16_t*)srcRow; while (--width >= 0) { #ifdef WE_CONVERT_TO_YUV rgb2yuv_16(dst, *src++); #else uint16_t c = *src++; dst[0] = SkPacked16ToR32(c); dst[1] = SkPacked16ToG32(c); dst[2] = SkPacked16ToB32(c); #endif dst += 3; } } static void Write_Index_YUV(uint8_t* SK_RESTRICT dst, const void* SK_RESTRICT srcRow, int width, const SkPMColor* SK_RESTRICT ctable) { const uint8_t* SK_RESTRICT src = (const uint8_t*)srcRow; while (--width >= 0) { #ifdef WE_CONVERT_TO_YUV rgb2yuv_32(dst, ctable[*src++]); #else uint32_t c = ctable[*src++]; dst[0] = SkGetPackedR32(c); dst[1] = SkGetPackedG32(c); dst[2] = SkGetPackedB32(c); #endif dst += 3; } } static WriteScanline ChooseWriter(const SkBitmap& bm) { switch (bm.config()) { case SkBitmap::kARGB_8888_Config: return Write_32_YUV; case SkBitmap::kRGB_565_Config: return Write_16_YUV; case SkBitmap::kARGB_4444_Config: return Write_4444_YUV; case SkBitmap::kIndex8_Config: return Write_Index_YUV; default: return NULL; } } class SkJPEGImageEncoder : public SkImageEncoder { protected: virtual bool onEncode(SkWStream* stream, const SkBitmap& bm, int quality) { #ifdef TIME_ENCODE AutoTimeMillis atm("JPEG Encode"); #endif const WriteScanline writer = ChooseWriter(bm); if (NULL == writer) { return false; } SkAutoLockPixels alp(bm); if (NULL == bm.getPixels()) { return false; } jpeg_compress_struct cinfo; skjpeg_error_mgr sk_err; skjpeg_destination_mgr sk_wstream(stream); // allocate these before set call setjmp SkAutoMalloc oneRow; SkAutoLockColors ctLocker; cinfo.err = jpeg_std_error(&sk_err); sk_err.error_exit = skjpeg_error_exit; if (setjmp(sk_err.fJmpBuf)) { return false; } jpeg_create_compress(&cinfo); cinfo.dest = &sk_wstream; cinfo.image_width = bm.width(); cinfo.image_height = bm.height(); cinfo.input_components = 3; #ifdef WE_CONVERT_TO_YUV cinfo.in_color_space = JCS_YCbCr; #else cinfo.in_color_space = JCS_RGB; #endif cinfo.input_gamma = 1; jpeg_set_defaults(&cinfo); jpeg_set_quality(&cinfo, quality, TRUE /* limit to baseline-JPEG values */); cinfo.dct_method = JDCT_IFAST; jpeg_start_compress(&cinfo, TRUE); const int width = bm.width(); uint8_t* oneRowP = (uint8_t*)oneRow.reset(width * 3); const SkPMColor* colors = ctLocker.lockColors(bm); const void* srcRow = bm.getPixels(); while (cinfo.next_scanline < cinfo.image_height) { JSAMPROW row_pointer[1]; /* pointer to JSAMPLE row[s] */ writer(oneRowP, srcRow, width, colors); row_pointer[0] = oneRowP; (void) jpeg_write_scanlines(&cinfo, row_pointer, 1); srcRow = (const void*)((const char*)srcRow + bm.rowBytes()); } jpeg_finish_compress(&cinfo); jpeg_destroy_compress(&cinfo); return true; } }; /////////////////////////////////////////////////////////////////////////////// DEFINE_DECODER_CREATOR(JPEGImageDecoder); DEFINE_ENCODER_CREATOR(JPEGImageEncoder); /////////////////////////////////////////////////////////////////////////////// #include "SkTRegistry.h" static SkImageDecoder* sk_libjpeg_dfactory(SkStream* stream) { static const unsigned char gHeader[] = { 0xFF, 0xD8, 0xFF }; static const size_t HEADER_SIZE = sizeof(gHeader); char buffer[HEADER_SIZE]; size_t len = stream->read(buffer, HEADER_SIZE); if (len != HEADER_SIZE) { return NULL; // can't read enough } if (memcmp(buffer, gHeader, HEADER_SIZE)) { return NULL; } return SkNEW(SkJPEGImageDecoder); } static SkImageEncoder* sk_libjpeg_efactory(SkImageEncoder::Type t) { return (SkImageEncoder::kJPEG_Type == t) ? SkNEW(SkJPEGImageEncoder) : NULL; } static SkTRegistry gDReg(sk_libjpeg_dfactory); static SkTRegistry gEReg(sk_libjpeg_efactory);