/* * Copyright 2007 The Android Open Source Project * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "SkImageDecoder.h" #include "SkImageEncoder.h" #include "SkJpegUtility.h" #include "SkColorPriv.h" #include "SkDither.h" #include "SkScaledBitmapSampler.h" #include "SkStream.h" #include "SkTemplates.h" #include "SkTime.h" #include "SkUtils.h" #include "SkRect.h" #include "SkCanvas.h" #include extern "C" { #include "jpeglib.h" #include "jerror.h" } // These enable timing code that report milliseconds for an encoding/decoding //#define TIME_ENCODE //#define TIME_DECODE // this enables our rgb->yuv code, which is faster than libjpeg on ARM #define WE_CONVERT_TO_YUV // If ANDROID_RGB is defined by in the jpeg headers it indicates that jpeg offers // support for two additional formats (1) JCS_RGBA_8888 and (2) JCS_RGB_565. ////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////// static void overwrite_mem_buffer_size(jpeg_decompress_struct* cinfo) { #ifdef SK_BUILD_FOR_ANDROID /* Check if the device indicates that it has a large amount of system memory * if so, increase the memory allocation to 30MB instead of the default 5MB. */ #ifdef ANDROID_LARGE_MEMORY_DEVICE cinfo->mem->max_memory_to_use = 30 * 1024 * 1024; #else cinfo->mem->max_memory_to_use = 5 * 1024 * 1024; #endif #endif // SK_BUILD_FOR_ANDROID } ////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////// static void initialize_info(jpeg_decompress_struct* cinfo, skjpeg_source_mgr* src_mgr) { SkASSERT(cinfo != NULL); SkASSERT(src_mgr != NULL); jpeg_create_decompress(cinfo); overwrite_mem_buffer_size(cinfo); cinfo->src = src_mgr; } #ifdef SK_BUILD_FOR_ANDROID class SkJPEGImageIndex { public: SkJPEGImageIndex(SkStream* stream, SkImageDecoder* decoder) : fSrcMgr(stream, decoder) , fInfoInitialized(false) , fHuffmanCreated(false) , fDecompressStarted(false) { SkDEBUGCODE(fReadHeaderSucceeded = false;) } ~SkJPEGImageIndex() { if (fHuffmanCreated) { // Set to false before calling the libjpeg function, in case // the libjpeg function calls longjmp. Our setjmp handler may // attempt to delete this SkJPEGImageIndex, thus entering this // destructor again. Setting fHuffmanCreated to false first // prevents an infinite loop. fHuffmanCreated = false; jpeg_destroy_huffman_index(&fHuffmanIndex); } if (fDecompressStarted) { // Like fHuffmanCreated, set to false before calling libjpeg // function to prevent potential infinite loop. fDecompressStarted = false; jpeg_finish_decompress(&fCInfo); } if (fInfoInitialized) { this->destroyInfo(); } } /** * Destroy the cinfo struct. * After this call, if a huffman index was already built, it * can be used after calling initializeInfoAndReadHeader * again. Must not be called after startTileDecompress except * in the destructor. */ void destroyInfo() { SkASSERT(fInfoInitialized); SkASSERT(!fDecompressStarted); // Like fHuffmanCreated, set to false before calling libjpeg // function to prevent potential infinite loop. fInfoInitialized = false; jpeg_destroy_decompress(&fCInfo); SkDEBUGCODE(fReadHeaderSucceeded = false;) } /** * Initialize the cinfo struct. * Calls jpeg_create_decompress, makes customizations, and * finally calls jpeg_read_header. Returns true if jpeg_read_header * returns JPEG_HEADER_OK. * If cinfo was already initialized, destroyInfo must be called to * destroy the old one. Must not be called after startTileDecompress. */ bool initializeInfoAndReadHeader() { SkASSERT(!fInfoInitialized && !fDecompressStarted); initialize_info(&fCInfo, &fSrcMgr); fInfoInitialized = true; const bool success = (JPEG_HEADER_OK == jpeg_read_header(&fCInfo, true)); SkDEBUGCODE(fReadHeaderSucceeded = success;) return success; } jpeg_decompress_struct* cinfo() { return &fCInfo; } huffman_index* huffmanIndex() { return &fHuffmanIndex; } /** * Build the index to be used for tile based decoding. * Must only be called after a successful call to * initializeInfoAndReadHeader and must not be called more * than once. */ bool buildHuffmanIndex() { SkASSERT(fReadHeaderSucceeded); SkASSERT(!fHuffmanCreated); jpeg_create_huffman_index(&fCInfo, &fHuffmanIndex); SkASSERT(1 == fCInfo.scale_num && 1 == fCInfo.scale_denom); fHuffmanCreated = jpeg_build_huffman_index(&fCInfo, &fHuffmanIndex); return fHuffmanCreated; } /** * Start tile based decoding. Must only be called after a * successful call to buildHuffmanIndex, and must only be * called once. */ bool startTileDecompress() { SkASSERT(fHuffmanCreated); SkASSERT(fReadHeaderSucceeded); SkASSERT(!fDecompressStarted); if (jpeg_start_tile_decompress(&fCInfo)) { fDecompressStarted = true; return true; } return false; } private: skjpeg_source_mgr fSrcMgr; jpeg_decompress_struct fCInfo; huffman_index fHuffmanIndex; bool fInfoInitialized; bool fHuffmanCreated; bool fDecompressStarted; SkDEBUGCODE(bool fReadHeaderSucceeded;) }; #endif class SkJPEGImageDecoder : public SkImageDecoder { public: #ifdef SK_BUILD_FOR_ANDROID SkJPEGImageDecoder() { fImageIndex = NULL; fImageWidth = 0; fImageHeight = 0; } virtual ~SkJPEGImageDecoder() { SkDELETE(fImageIndex); } #endif virtual Format getFormat() const { return kJPEG_Format; } protected: #ifdef SK_BUILD_FOR_ANDROID virtual bool onBuildTileIndex(SkStream *stream, int *width, int *height) SK_OVERRIDE; virtual bool onDecodeSubset(SkBitmap* bitmap, const SkIRect& rect) SK_OVERRIDE; #endif virtual bool onDecode(SkStream* stream, SkBitmap* bm, Mode) SK_OVERRIDE; private: #ifdef SK_BUILD_FOR_ANDROID SkJPEGImageIndex* fImageIndex; int fImageWidth; int fImageHeight; #endif /** * Determine the appropriate bitmap config and out_color_space based on * both the preference of the caller and the jpeg_color_space on the * jpeg_decompress_struct passed in. * Must be called after jpeg_read_header. */ SkBitmap::Config getBitmapConfig(jpeg_decompress_struct*); typedef SkImageDecoder INHERITED; }; ////////////////////////////////////////////////////////////////////////// /* Automatically clean up after throwing an exception */ class JPEGAutoClean { public: JPEGAutoClean(): cinfo_ptr(NULL) {} ~JPEGAutoClean() { if (cinfo_ptr) { jpeg_destroy_decompress(cinfo_ptr); } } void set(jpeg_decompress_struct* info) { cinfo_ptr = info; } private: jpeg_decompress_struct* cinfo_ptr; }; /////////////////////////////////////////////////////////////////////////////// /* If we need to better match the request, we might examine the image and output dimensions, and determine if the downsampling jpeg provided is not sufficient. If so, we can recompute a modified sampleSize value to make up the difference. To skip this additional scaling, just set sampleSize = 1; below. */ static int recompute_sampleSize(int sampleSize, const jpeg_decompress_struct& cinfo) { return sampleSize * cinfo.output_width / cinfo.image_width; } static bool valid_output_dimensions(const jpeg_decompress_struct& cinfo) { /* These are initialized to 0, so if they have non-zero values, we assume they are "valid" (i.e. have been computed by libjpeg) */ return 0 != cinfo.output_width && 0 != cinfo.output_height; } static bool skip_src_rows(jpeg_decompress_struct* cinfo, void* buffer, int count) { for (int i = 0; i < count; i++) { JSAMPLE* rowptr = (JSAMPLE*)buffer; int row_count = jpeg_read_scanlines(cinfo, &rowptr, 1); if (1 != row_count) { return false; } } return true; } #ifdef SK_BUILD_FOR_ANDROID static bool skip_src_rows_tile(jpeg_decompress_struct* cinfo, huffman_index *index, void* buffer, int count) { for (int i = 0; i < count; i++) { JSAMPLE* rowptr = (JSAMPLE*)buffer; int row_count = jpeg_read_tile_scanline(cinfo, index, &rowptr); if (1 != row_count) { return false; } } return true; } #endif // This guy exists just to aid in debugging, as it allows debuggers to just // set a break-point in one place to see all error exists. static bool return_false(const jpeg_decompress_struct& cinfo, const SkBitmap& bm, const char msg[]) { #ifdef SK_DEBUG SkDebugf("libjpeg error %d <%s> from %s [%d %d]\n", cinfo.err->msg_code, cinfo.err->jpeg_message_table[cinfo.err->msg_code], msg, bm.width(), bm.height()); #endif return false; // must always return false } // Convert a scanline of CMYK samples to RGBX in place. Note that this // method moves the "scanline" pointer in its processing static void convert_CMYK_to_RGB(uint8_t* scanline, unsigned int width) { // At this point we've received CMYK pixels from libjpeg. We // perform a crude conversion to RGB (based on the formulae // from easyrgb.com): // CMYK -> CMY // C = ( C * (1 - K) + K ) // for each CMY component // CMY -> RGB // R = ( 1 - C ) * 255 // for each RGB component // Unfortunately we are seeing inverted CMYK so all the original terms // are 1-. This yields: // CMYK -> CMY // C = ( (1-C) * (1 - (1-K) + (1-K) ) -> C = 1 - C*K // The conversion from CMY->RGB remains the same for (unsigned int x = 0; x < width; ++x, scanline += 4) { scanline[0] = SkMulDiv255Round(scanline[0], scanline[3]); scanline[1] = SkMulDiv255Round(scanline[1], scanline[3]); scanline[2] = SkMulDiv255Round(scanline[2], scanline[3]); scanline[3] = 255; } } /** * Common code for setting the error manager. */ static void set_error_mgr(jpeg_decompress_struct* cinfo, skjpeg_error_mgr* errorManager) { SkASSERT(cinfo != NULL); SkASSERT(errorManager != NULL); cinfo->err = jpeg_std_error(errorManager); errorManager->error_exit = skjpeg_error_exit; } /** * Common code for turning off upsampling and smoothing. Turning these * off helps performance without showing noticable differences in the * resulting bitmap. */ static void turn_off_visual_optimizations(jpeg_decompress_struct* cinfo) { SkASSERT(cinfo != NULL); /* this gives about 30% performance improvement. In theory it may reduce the visual quality, in practice I'm not seeing a difference */ cinfo->do_fancy_upsampling = 0; /* this gives another few percents */ cinfo->do_block_smoothing = 0; } /** * Common code for setting the dct method. */ static void set_dct_method(const SkImageDecoder& decoder, jpeg_decompress_struct* cinfo) { SkASSERT(cinfo != NULL); #ifdef DCT_IFAST_SUPPORTED if (decoder.getPreferQualityOverSpeed()) { cinfo->dct_method = JDCT_ISLOW; } else { cinfo->dct_method = JDCT_IFAST; } #else cinfo->dct_method = JDCT_ISLOW; #endif } SkBitmap::Config SkJPEGImageDecoder::getBitmapConfig(jpeg_decompress_struct* cinfo) { SkASSERT(cinfo != NULL); SrcDepth srcDepth = k32Bit_SrcDepth; if (JCS_GRAYSCALE == cinfo->jpeg_color_space) { srcDepth = k8BitGray_SrcDepth; } SkBitmap::Config config = this->getPrefConfig(srcDepth, /*hasAlpha*/ false); switch (config) { case SkBitmap::kA8_Config: // Only respect A8 config if the original is grayscale, // in which case we will treat the grayscale as alpha // values. if (cinfo->jpeg_color_space != JCS_GRAYSCALE) { config = SkBitmap::kARGB_8888_Config; } break; case SkBitmap::kARGB_8888_Config: // Fall through. case SkBitmap::kARGB_4444_Config: // Fall through. case SkBitmap::kRGB_565_Config: // These are acceptable destination configs. break; default: // Force all other configs to 8888. config = SkBitmap::kARGB_8888_Config; break; } switch (cinfo->jpeg_color_space) { case JCS_CMYK: // Fall through. case JCS_YCCK: // libjpeg cannot convert from CMYK or YCCK to RGB - here we set up // so libjpeg will give us CMYK samples back and we will later // manually convert them to RGB cinfo->out_color_space = JCS_CMYK; break; case JCS_GRAYSCALE: if (SkBitmap::kA8_Config == config) { cinfo->out_color_space = JCS_GRAYSCALE; break; } // The data is JCS_GRAYSCALE, but the caller wants some sort of RGB // config. Fall through to set to the default. default: cinfo->out_color_space = JCS_RGB; break; } return config; } #ifdef ANDROID_RGB /** * Based on the config and dither mode, adjust out_color_space and * dither_mode of cinfo. */ static void adjust_out_color_space_and_dither(jpeg_decompress_struct* cinfo, SkBitmap::Config config, const SkImageDecoder& decoder) { SkASSERT(cinfo != NULL); cinfo->dither_mode = JDITHER_NONE; if (JCS_CMYK == cinfo->out_color_space) { return; } switch(config) { case SkBitmap::kARGB_8888_Config: cinfo->out_color_space = JCS_RGBA_8888; break; case SkBitmap::kRGB_565_Config: cinfo->out_color_space = JCS_RGB_565; if (decoder.getDitherImage()) { cinfo->dither_mode = JDITHER_ORDERED; } break; default: break; } } #endif bool SkJPEGImageDecoder::onDecode(SkStream* stream, SkBitmap* bm, Mode mode) { #ifdef TIME_DECODE SkAutoTime atm("JPEG Decode"); #endif JPEGAutoClean autoClean; jpeg_decompress_struct cinfo; skjpeg_source_mgr srcManager(stream, this); skjpeg_error_mgr errorManager; set_error_mgr(&cinfo, &errorManager); // All objects need to be instantiated before this setjmp call so that // they will be cleaned up properly if an error occurs. if (setjmp(errorManager.fJmpBuf)) { return return_false(cinfo, *bm, "setjmp"); } initialize_info(&cinfo, &srcManager); autoClean.set(&cinfo); int status = jpeg_read_header(&cinfo, true); if (status != JPEG_HEADER_OK) { return return_false(cinfo, *bm, "read_header"); } /* Try to fulfill the requested sampleSize. Since jpeg can do it (when it can) much faster that we, just use their num/denom api to approximate the size. */ int sampleSize = this->getSampleSize(); set_dct_method(*this, &cinfo); SkASSERT(1 == cinfo.scale_num); cinfo.scale_denom = sampleSize; turn_off_visual_optimizations(&cinfo); const SkBitmap::Config config = this->getBitmapConfig(&cinfo); #ifdef ANDROID_RGB adjust_out_color_space_and_dither(&cinfo, config, *this); #endif if (1 == sampleSize && SkImageDecoder::kDecodeBounds_Mode == mode) { bm->setConfig(config, cinfo.image_width, cinfo.image_height); bm->setIsOpaque(config != SkBitmap::kA8_Config); return true; } /* image_width and image_height are the original dimensions, available after jpeg_read_header(). To see the scaled dimensions, we have to call jpeg_start_decompress(), and then read output_width and output_height. */ if (!jpeg_start_decompress(&cinfo)) { /* If we failed here, we may still have enough information to return to the caller if they just wanted (subsampled bounds). If sampleSize was 1, then we would have already returned. Thus we just check if we're in kDecodeBounds_Mode, and that we have valid output sizes. One reason to fail here is that we have insufficient stream data to complete the setup. However, output dimensions seem to get computed very early, which is why this special check can pay off. */ if (SkImageDecoder::kDecodeBounds_Mode == mode && valid_output_dimensions(cinfo)) { SkScaledBitmapSampler smpl(cinfo.output_width, cinfo.output_height, recompute_sampleSize(sampleSize, cinfo)); bm->setConfig(config, smpl.scaledWidth(), smpl.scaledHeight()); bm->setIsOpaque(config != SkBitmap::kA8_Config); return true; } else { return return_false(cinfo, *bm, "start_decompress"); } } sampleSize = recompute_sampleSize(sampleSize, cinfo); // should we allow the Chooser (if present) to pick a config for us??? if (!this->chooseFromOneChoice(config, cinfo.output_width, cinfo.output_height)) { return return_false(cinfo, *bm, "chooseFromOneChoice"); } SkScaledBitmapSampler sampler(cinfo.output_width, cinfo.output_height, sampleSize); bm->setConfig(config, sampler.scaledWidth(), sampler.scaledHeight()); bm->setIsOpaque(config != SkBitmap::kA8_Config); if (SkImageDecoder::kDecodeBounds_Mode == mode) { return true; } if (!this->allocPixelRef(bm, NULL)) { return return_false(cinfo, *bm, "allocPixelRef"); } SkAutoLockPixels alp(*bm); #ifdef ANDROID_RGB /* short-circuit the SkScaledBitmapSampler when possible, as this gives a significant performance boost. */ if (sampleSize == 1 && ((config == SkBitmap::kARGB_8888_Config && cinfo.out_color_space == JCS_RGBA_8888) || (config == SkBitmap::kRGB_565_Config && cinfo.out_color_space == JCS_RGB_565))) { JSAMPLE* rowptr = (JSAMPLE*)bm->getPixels(); INT32 const bpr = bm->rowBytes(); while (cinfo.output_scanline < cinfo.output_height) { int row_count = jpeg_read_scanlines(&cinfo, &rowptr, 1); // if row_count == 0, then we didn't get a scanline, so abort. // if we supported partial images, we might return true in this case if (0 == row_count) { return return_false(cinfo, *bm, "read_scanlines"); } if (this->shouldCancelDecode()) { return return_false(cinfo, *bm, "shouldCancelDecode"); } rowptr += bpr; } jpeg_finish_decompress(&cinfo); return true; } #endif // check for supported formats SkScaledBitmapSampler::SrcConfig sc; if (JCS_CMYK == cinfo.out_color_space) { // In this case we will manually convert the CMYK values to RGB sc = SkScaledBitmapSampler::kRGBX; } else if (3 == cinfo.out_color_components && JCS_RGB == cinfo.out_color_space) { sc = SkScaledBitmapSampler::kRGB; #ifdef ANDROID_RGB } else if (JCS_RGBA_8888 == cinfo.out_color_space) { sc = SkScaledBitmapSampler::kRGBX; } else if (JCS_RGB_565 == cinfo.out_color_space) { sc = SkScaledBitmapSampler::kRGB_565; #endif } else if (1 == cinfo.out_color_components && JCS_GRAYSCALE == cinfo.out_color_space) { sc = SkScaledBitmapSampler::kGray; } else { return return_false(cinfo, *bm, "jpeg colorspace"); } if (!sampler.begin(bm, sc, this->getDitherImage())) { return return_false(cinfo, *bm, "sampler.begin"); } // The CMYK work-around relies on 4 components per pixel here SkAutoMalloc srcStorage(cinfo.output_width * 4); uint8_t* srcRow = (uint8_t*)srcStorage.get(); // Possibly skip initial rows [sampler.srcY0] if (!skip_src_rows(&cinfo, srcRow, sampler.srcY0())) { return return_false(cinfo, *bm, "skip rows"); } // now loop through scanlines until y == bm->height() - 1 for (int y = 0;; y++) { JSAMPLE* rowptr = (JSAMPLE*)srcRow; int row_count = jpeg_read_scanlines(&cinfo, &rowptr, 1); if (0 == row_count) { return return_false(cinfo, *bm, "read_scanlines"); } if (this->shouldCancelDecode()) { return return_false(cinfo, *bm, "shouldCancelDecode"); } if (JCS_CMYK == cinfo.out_color_space) { convert_CMYK_to_RGB(srcRow, cinfo.output_width); } sampler.next(srcRow); if (bm->height() - 1 == y) { // we're done break; } if (!skip_src_rows(&cinfo, srcRow, sampler.srcDY() - 1)) { return return_false(cinfo, *bm, "skip rows"); } } // we formally skip the rest, so we don't get a complaint from libjpeg if (!skip_src_rows(&cinfo, srcRow, cinfo.output_height - cinfo.output_scanline)) { return return_false(cinfo, *bm, "skip rows"); } jpeg_finish_decompress(&cinfo); return true; } #ifdef SK_BUILD_FOR_ANDROID bool SkJPEGImageDecoder::onBuildTileIndex(SkStream* stream, int *width, int *height) { SkAutoTDelete imageIndex(SkNEW_ARGS(SkJPEGImageIndex, (stream, this))); jpeg_decompress_struct* cinfo = imageIndex->cinfo(); skjpeg_error_mgr sk_err; set_error_mgr(cinfo, &sk_err); // All objects need to be instantiated before this setjmp call so that // they will be cleaned up properly if an error occurs. if (setjmp(sk_err.fJmpBuf)) { return false; } // create the cinfo used to create/build the huffmanIndex if (!imageIndex->initializeInfoAndReadHeader()) { return false; } if (!imageIndex->buildHuffmanIndex()) { return false; } // destroy the cinfo used to create/build the huffman index imageIndex->destroyInfo(); // Init decoder to image decode mode if (!imageIndex->initializeInfoAndReadHeader()) { return false; } // FIXME: This sets cinfo->out_color_space, which we may change later // based on the config in onDecodeSubset. This should be fine, since // jpeg_init_read_tile_scanline will check out_color_space again after // that change (when it calls jinit_color_deconverter). (void) this->getBitmapConfig(cinfo); turn_off_visual_optimizations(cinfo); // instead of jpeg_start_decompress() we start a tiled decompress if (!imageIndex->startTileDecompress()) { return false; } SkASSERT(1 == cinfo->scale_num); fImageWidth = cinfo->output_width; fImageHeight = cinfo->output_height; if (width) { *width = fImageWidth; } if (height) { *height = fImageHeight; } SkDELETE(fImageIndex); fImageIndex = imageIndex.detach(); return true; } bool SkJPEGImageDecoder::onDecodeSubset(SkBitmap* bm, const SkIRect& region) { if (NULL == fImageIndex) { return false; } jpeg_decompress_struct* cinfo = fImageIndex->cinfo(); SkIRect rect = SkIRect::MakeWH(fImageWidth, fImageHeight); if (!rect.intersect(region)) { // If the requested region is entirely outside the image return false return false; } skjpeg_error_mgr errorManager; set_error_mgr(cinfo, &errorManager); if (setjmp(errorManager.fJmpBuf)) { return false; } int requestedSampleSize = this->getSampleSize(); cinfo->scale_denom = requestedSampleSize; set_dct_method(*this, cinfo); const SkBitmap::Config config = this->getBitmapConfig(cinfo); #ifdef ANDROID_RGB adjust_out_color_space_and_dither(cinfo, config, *this); #endif int startX = rect.fLeft; int startY = rect.fTop; int width = rect.width(); int height = rect.height(); jpeg_init_read_tile_scanline(cinfo, fImageIndex->huffmanIndex(), &startX, &startY, &width, &height); int skiaSampleSize = recompute_sampleSize(requestedSampleSize, *cinfo); int actualSampleSize = skiaSampleSize * (DCTSIZE / cinfo->min_DCT_scaled_size); SkScaledBitmapSampler sampler(width, height, skiaSampleSize); SkBitmap bitmap; bitmap.setConfig(config, sampler.scaledWidth(), sampler.scaledHeight()); bitmap.setIsOpaque(true); // Check ahead of time if the swap(dest, src) is possible or not. // If yes, then we will stick to AllocPixelRef since it's cheaper with the // swap happening. If no, then we will use alloc to allocate pixels to // prevent garbage collection. int w = rect.width() / actualSampleSize; int h = rect.height() / actualSampleSize; bool swapOnly = (rect == region) && bm->isNull() && (w == bitmap.width()) && (h == bitmap.height()) && ((startX - rect.x()) / actualSampleSize == 0) && ((startY - rect.y()) / actualSampleSize == 0); if (swapOnly) { if (!this->allocPixelRef(&bitmap, NULL)) { return return_false(*cinfo, bitmap, "allocPixelRef"); } } else { if (!bitmap.allocPixels()) { return return_false(*cinfo, bitmap, "allocPixels"); } } SkAutoLockPixels alp(bitmap); #ifdef ANDROID_RGB /* short-circuit the SkScaledBitmapSampler when possible, as this gives a significant performance boost. */ if (skiaSampleSize == 1 && ((config == SkBitmap::kARGB_8888_Config && cinfo->out_color_space == JCS_RGBA_8888) || (config == SkBitmap::kRGB_565_Config && cinfo->out_color_space == JCS_RGB_565))) { JSAMPLE* rowptr = (JSAMPLE*)bitmap.getPixels(); INT32 const bpr = bitmap.rowBytes(); int rowTotalCount = 0; while (rowTotalCount < height) { int rowCount = jpeg_read_tile_scanline(cinfo, fImageIndex->huffmanIndex(), &rowptr); // if row_count == 0, then we didn't get a scanline, so abort. // if we supported partial images, we might return true in this case if (0 == rowCount) { return return_false(*cinfo, bitmap, "read_scanlines"); } if (this->shouldCancelDecode()) { return return_false(*cinfo, bitmap, "shouldCancelDecode"); } rowTotalCount += rowCount; rowptr += bpr; } if (swapOnly) { bm->swap(bitmap); } else { cropBitmap(bm, &bitmap, actualSampleSize, region.x(), region.y(), region.width(), region.height(), startX, startY); } return true; } #endif // check for supported formats SkScaledBitmapSampler::SrcConfig sc; if (JCS_CMYK == cinfo->out_color_space) { // In this case we will manually convert the CMYK values to RGB sc = SkScaledBitmapSampler::kRGBX; } else if (3 == cinfo->out_color_components && JCS_RGB == cinfo->out_color_space) { sc = SkScaledBitmapSampler::kRGB; #ifdef ANDROID_RGB } else if (JCS_RGBA_8888 == cinfo->out_color_space) { sc = SkScaledBitmapSampler::kRGBX; } else if (JCS_RGB_565 == cinfo->out_color_space) { sc = SkScaledBitmapSampler::kRGB_565; #endif } else if (1 == cinfo->out_color_components && JCS_GRAYSCALE == cinfo->out_color_space) { sc = SkScaledBitmapSampler::kGray; } else { return return_false(*cinfo, *bm, "jpeg colorspace"); } if (!sampler.begin(&bitmap, sc, this->getDitherImage())) { return return_false(*cinfo, bitmap, "sampler.begin"); } // The CMYK work-around relies on 4 components per pixel here SkAutoMalloc srcStorage(width * 4); uint8_t* srcRow = (uint8_t*)srcStorage.get(); // Possibly skip initial rows [sampler.srcY0] if (!skip_src_rows_tile(cinfo, fImageIndex->huffmanIndex(), srcRow, sampler.srcY0())) { return return_false(*cinfo, bitmap, "skip rows"); } // now loop through scanlines until y == bitmap->height() - 1 for (int y = 0;; y++) { JSAMPLE* rowptr = (JSAMPLE*)srcRow; int row_count = jpeg_read_tile_scanline(cinfo, fImageIndex->huffmanIndex(), &rowptr); if (0 == row_count) { return return_false(*cinfo, bitmap, "read_scanlines"); } if (this->shouldCancelDecode()) { return return_false(*cinfo, bitmap, "shouldCancelDecode"); } if (JCS_CMYK == cinfo->out_color_space) { convert_CMYK_to_RGB(srcRow, width); } sampler.next(srcRow); if (bitmap.height() - 1 == y) { // we're done break; } if (!skip_src_rows_tile(cinfo, fImageIndex->huffmanIndex(), srcRow, sampler.srcDY() - 1)) { return return_false(*cinfo, bitmap, "skip rows"); } } if (swapOnly) { bm->swap(bitmap); } else { cropBitmap(bm, &bitmap, actualSampleSize, region.x(), region.y(), region.width(), region.height(), startX, startY); } return true; } #endif /////////////////////////////////////////////////////////////////////////////// #include "SkColorPriv.h" // taken from jcolor.c in libjpeg #if 0 // 16bit - precise but slow #define CYR 19595 // 0.299 #define CYG 38470 // 0.587 #define CYB 7471 // 0.114 #define CUR -11059 // -0.16874 #define CUG -21709 // -0.33126 #define CUB 32768 // 0.5 #define CVR 32768 // 0.5 #define CVG -27439 // -0.41869 #define CVB -5329 // -0.08131 #define CSHIFT 16 #else // 8bit - fast, slightly less precise #define CYR 77 // 0.299 #define CYG 150 // 0.587 #define CYB 29 // 0.114 #define CUR -43 // -0.16874 #define CUG -85 // -0.33126 #define CUB 128 // 0.5 #define CVR 128 // 0.5 #define CVG -107 // -0.41869 #define CVB -21 // -0.08131 #define CSHIFT 8 #endif static void rgb2yuv_32(uint8_t dst[], SkPMColor c) { int r = SkGetPackedR32(c); int g = SkGetPackedG32(c); int b = SkGetPackedB32(c); int y = ( CYR*r + CYG*g + CYB*b ) >> CSHIFT; int u = ( CUR*r + CUG*g + CUB*b ) >> CSHIFT; int v = ( CVR*r + CVG*g + CVB*b ) >> CSHIFT; dst[0] = SkToU8(y); dst[1] = SkToU8(u + 128); dst[2] = SkToU8(v + 128); } static void rgb2yuv_4444(uint8_t dst[], U16CPU c) { int r = SkGetPackedR4444(c); int g = SkGetPackedG4444(c); int b = SkGetPackedB4444(c); int y = ( CYR*r + CYG*g + CYB*b ) >> (CSHIFT - 4); int u = ( CUR*r + CUG*g + CUB*b ) >> (CSHIFT - 4); int v = ( CVR*r + CVG*g + CVB*b ) >> (CSHIFT - 4); dst[0] = SkToU8(y); dst[1] = SkToU8(u + 128); dst[2] = SkToU8(v + 128); } static void rgb2yuv_16(uint8_t dst[], U16CPU c) { int r = SkGetPackedR16(c); int g = SkGetPackedG16(c); int b = SkGetPackedB16(c); int y = ( 2*CYR*r + CYG*g + 2*CYB*b ) >> (CSHIFT - 2); int u = ( 2*CUR*r + CUG*g + 2*CUB*b ) >> (CSHIFT - 2); int v = ( 2*CVR*r + CVG*g + 2*CVB*b ) >> (CSHIFT - 2); dst[0] = SkToU8(y); dst[1] = SkToU8(u + 128); dst[2] = SkToU8(v + 128); } /////////////////////////////////////////////////////////////////////////////// typedef void (*WriteScanline)(uint8_t* SK_RESTRICT dst, const void* SK_RESTRICT src, int width, const SkPMColor* SK_RESTRICT ctable); static void Write_32_YUV(uint8_t* SK_RESTRICT dst, const void* SK_RESTRICT srcRow, int width, const SkPMColor*) { const uint32_t* SK_RESTRICT src = (const uint32_t*)srcRow; while (--width >= 0) { #ifdef WE_CONVERT_TO_YUV rgb2yuv_32(dst, *src++); #else uint32_t c = *src++; dst[0] = SkGetPackedR32(c); dst[1] = SkGetPackedG32(c); dst[2] = SkGetPackedB32(c); #endif dst += 3; } } static void Write_4444_YUV(uint8_t* SK_RESTRICT dst, const void* SK_RESTRICT srcRow, int width, const SkPMColor*) { const SkPMColor16* SK_RESTRICT src = (const SkPMColor16*)srcRow; while (--width >= 0) { #ifdef WE_CONVERT_TO_YUV rgb2yuv_4444(dst, *src++); #else SkPMColor16 c = *src++; dst[0] = SkPacked4444ToR32(c); dst[1] = SkPacked4444ToG32(c); dst[2] = SkPacked4444ToB32(c); #endif dst += 3; } } static void Write_16_YUV(uint8_t* SK_RESTRICT dst, const void* SK_RESTRICT srcRow, int width, const SkPMColor*) { const uint16_t* SK_RESTRICT src = (const uint16_t*)srcRow; while (--width >= 0) { #ifdef WE_CONVERT_TO_YUV rgb2yuv_16(dst, *src++); #else uint16_t c = *src++; dst[0] = SkPacked16ToR32(c); dst[1] = SkPacked16ToG32(c); dst[2] = SkPacked16ToB32(c); #endif dst += 3; } } static void Write_Index_YUV(uint8_t* SK_RESTRICT dst, const void* SK_RESTRICT srcRow, int width, const SkPMColor* SK_RESTRICT ctable) { const uint8_t* SK_RESTRICT src = (const uint8_t*)srcRow; while (--width >= 0) { #ifdef WE_CONVERT_TO_YUV rgb2yuv_32(dst, ctable[*src++]); #else uint32_t c = ctable[*src++]; dst[0] = SkGetPackedR32(c); dst[1] = SkGetPackedG32(c); dst[2] = SkGetPackedB32(c); #endif dst += 3; } } static WriteScanline ChooseWriter(const SkBitmap& bm) { switch (bm.config()) { case SkBitmap::kARGB_8888_Config: return Write_32_YUV; case SkBitmap::kRGB_565_Config: return Write_16_YUV; case SkBitmap::kARGB_4444_Config: return Write_4444_YUV; case SkBitmap::kIndex8_Config: return Write_Index_YUV; default: return NULL; } } class SkJPEGImageEncoder : public SkImageEncoder { protected: virtual bool onEncode(SkWStream* stream, const SkBitmap& bm, int quality) { #ifdef TIME_ENCODE SkAutoTime atm("JPEG Encode"); #endif SkAutoLockPixels alp(bm); if (NULL == bm.getPixels()) { return false; } jpeg_compress_struct cinfo; skjpeg_error_mgr sk_err; skjpeg_destination_mgr sk_wstream(stream); // allocate these before set call setjmp SkAutoMalloc oneRow; SkAutoLockColors ctLocker; cinfo.err = jpeg_std_error(&sk_err); sk_err.error_exit = skjpeg_error_exit; if (setjmp(sk_err.fJmpBuf)) { return false; } // Keep after setjmp or mark volatile. const WriteScanline writer = ChooseWriter(bm); if (NULL == writer) { return false; } jpeg_create_compress(&cinfo); cinfo.dest = &sk_wstream; cinfo.image_width = bm.width(); cinfo.image_height = bm.height(); cinfo.input_components = 3; #ifdef WE_CONVERT_TO_YUV cinfo.in_color_space = JCS_YCbCr; #else cinfo.in_color_space = JCS_RGB; #endif cinfo.input_gamma = 1; jpeg_set_defaults(&cinfo); jpeg_set_quality(&cinfo, quality, TRUE /* limit to baseline-JPEG values */); #ifdef DCT_IFAST_SUPPORTED cinfo.dct_method = JDCT_IFAST; #endif jpeg_start_compress(&cinfo, TRUE); const int width = bm.width(); uint8_t* oneRowP = (uint8_t*)oneRow.reset(width * 3); const SkPMColor* colors = ctLocker.lockColors(bm); const void* srcRow = bm.getPixels(); while (cinfo.next_scanline < cinfo.image_height) { JSAMPROW row_pointer[1]; /* pointer to JSAMPLE row[s] */ writer(oneRowP, srcRow, width, colors); row_pointer[0] = oneRowP; (void) jpeg_write_scanlines(&cinfo, row_pointer, 1); srcRow = (const void*)((const char*)srcRow + bm.rowBytes()); } jpeg_finish_compress(&cinfo); jpeg_destroy_compress(&cinfo); return true; } }; /////////////////////////////////////////////////////////////////////////////// DEFINE_DECODER_CREATOR(JPEGImageDecoder); DEFINE_ENCODER_CREATOR(JPEGImageEncoder); /////////////////////////////////////////////////////////////////////////////// static bool is_jpeg(SkStream* stream) { static const unsigned char gHeader[] = { 0xFF, 0xD8, 0xFF }; static const size_t HEADER_SIZE = sizeof(gHeader); char buffer[HEADER_SIZE]; size_t len = stream->read(buffer, HEADER_SIZE); if (len != HEADER_SIZE) { return false; // can't read enough } if (memcmp(buffer, gHeader, HEADER_SIZE)) { return false; } return true; } #include "SkTRegistry.h" static SkImageDecoder* sk_libjpeg_dfactory(SkStream* stream) { if (is_jpeg(stream)) { return SkNEW(SkJPEGImageDecoder); } return NULL; } static SkImageDecoder::Format get_format_jpeg(SkStream* stream) { if (is_jpeg(stream)) { return SkImageDecoder::kJPEG_Format; } return SkImageDecoder::kUnknown_Format; } static SkImageEncoder* sk_libjpeg_efactory(SkImageEncoder::Type t) { return (SkImageEncoder::kJPEG_Type == t) ? SkNEW(SkJPEGImageEncoder) : NULL; } static SkTRegistry gDReg(sk_libjpeg_dfactory); static SkTRegistry gFormatReg(get_format_jpeg); static SkTRegistry gEReg(sk_libjpeg_efactory);