/* * Copyright 2006 The Android Open Source Project * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "SkColor.h" #include "SkColorPriv.h" #include "SkColorTable.h" #include "SkImageDecoder.h" #include "SkRTConf.h" #include "SkScaledBitmapSampler.h" #include "SkStream.h" #include "SkTemplates.h" #include "SkUtils.h" #include "gif_lib.h" class SkGIFImageDecoder : public SkImageDecoder { public: Format getFormat() const SK_OVERRIDE { return kGIF_Format; } protected: Result onDecode(SkStream* stream, SkBitmap* bm, Mode mode) SK_OVERRIDE; private: typedef SkImageDecoder INHERITED; }; static const uint8_t gStartingIterlaceYValue[] = { 0, 4, 2, 1 }; static const uint8_t gDeltaIterlaceYValue[] = { 8, 8, 4, 2 }; SK_CONF_DECLARE(bool, c_suppressGIFImageDecoderWarnings, "images.gif.suppressDecoderWarnings", true, "Suppress GIF warnings and errors when calling image decode " "functions."); /* Implement the GIF interlace algorithm in an iterator. 1) grab every 8th line beginning at 0 2) grab every 8th line beginning at 4 3) grab every 4th line beginning at 2 4) grab every 2nd line beginning at 1 */ class GifInterlaceIter { public: GifInterlaceIter(int height) : fHeight(height) { fStartYPtr = gStartingIterlaceYValue; fDeltaYPtr = gDeltaIterlaceYValue; fCurrY = *fStartYPtr++; fDeltaY = *fDeltaYPtr++; } int currY() const { SkASSERT(fStartYPtr); SkASSERT(fDeltaYPtr); return fCurrY; } void next() { SkASSERT(fStartYPtr); SkASSERT(fDeltaYPtr); int y = fCurrY + fDeltaY; // We went from an if statement to a while loop so that we iterate // through fStartYPtr until a valid row is found. This is so that images // that are smaller than 5x5 will not trash memory. while (y >= fHeight) { if (gStartingIterlaceYValue + SK_ARRAY_COUNT(gStartingIterlaceYValue) == fStartYPtr) { // we done SkDEBUGCODE(fStartYPtr = NULL;) SkDEBUGCODE(fDeltaYPtr = NULL;) y = 0; } else { y = *fStartYPtr++; fDeltaY = *fDeltaYPtr++; } } fCurrY = y; } private: const int fHeight; int fCurrY; int fDeltaY; const uint8_t* fStartYPtr; const uint8_t* fDeltaYPtr; }; /////////////////////////////////////////////////////////////////////////////// static int DecodeCallBackProc(GifFileType* fileType, GifByteType* out, int size) { SkStream* stream = (SkStream*) fileType->UserData; return (int) stream->read(out, size); } void CheckFreeExtension(SavedImage* Image) { if (Image->ExtensionBlocks) { #if GIFLIB_MAJOR < 5 FreeExtension(Image); #else GifFreeExtensions(&Image->ExtensionBlockCount, &Image->ExtensionBlocks); #endif } } // return NULL on failure static const ColorMapObject* find_colormap(const GifFileType* gif) { const ColorMapObject* cmap = gif->Image.ColorMap; if (NULL == cmap) { cmap = gif->SColorMap; } if (NULL == cmap) { // no colormap found return NULL; } // some sanity checks if (cmap && ((unsigned)cmap->ColorCount > 256 || cmap->ColorCount != (1 << cmap->BitsPerPixel))) { cmap = NULL; } return cmap; } // return -1 if not found (i.e. we're completely opaque) static int find_transpIndex(const SavedImage& image, int colorCount) { int transpIndex = -1; for (int i = 0; i < image.ExtensionBlockCount; ++i) { const ExtensionBlock* eb = image.ExtensionBlocks + i; if (eb->Function == 0xF9 && eb->ByteCount == 4) { if (eb->Bytes[0] & 1) { transpIndex = (unsigned char)eb->Bytes[3]; // check for valid transpIndex if (transpIndex >= colorCount) { transpIndex = -1; } break; } } } return transpIndex; } static SkImageDecoder::Result error_return(const SkBitmap& bm, const char msg[]) { if (!c_suppressGIFImageDecoderWarnings) { SkDebugf("libgif error [%s] bitmap [%d %d] pixels %p colortable %p\n", msg, bm.width(), bm.height(), bm.getPixels(), bm.getColorTable()); } return SkImageDecoder::kFailure; } static void gif_warning(const SkBitmap& bm, const char msg[]) { if (!c_suppressGIFImageDecoderWarnings) { SkDebugf("libgif warning [%s] bitmap [%d %d] pixels %p colortable %p\n", msg, bm.width(), bm.height(), bm.getPixels(), bm.getColorTable()); } } /** * Skip rows in the source gif image. * @param gif Source image. * @param dst Scratch output needed by gif library call. Must be >= width bytes. * @param width Bytes per row in the source image. * @param rowsToSkip Number of rows to skip. * @return True on success, false on GIF_ERROR. */ static bool skip_src_rows(GifFileType* gif, uint8_t* dst, int width, int rowsToSkip) { for (int i = 0; i < rowsToSkip; i++) { if (DGifGetLine(gif, dst, width) == GIF_ERROR) { return false; } } return true; } /** * GIFs with fewer then 256 color entries will sometimes index out of * bounds of the color table (this is malformed, but libgif does not * check sicne it is rare). This function checks for this error and * fixes it. This makes the output image consistantly deterministic. */ static void sanitize_indexed_bitmap(SkBitmap* bm) { if ((kIndex_8_SkColorType == bm->colorType()) && !(bm->empty())) { SkAutoLockPixels alp(*bm); if (bm->getPixels()) { SkColorTable* ct = bm->getColorTable(); // Index8 must have it. SkASSERT(ct != NULL); uint32_t count = ct->count(); SkASSERT(count > 0); SkASSERT(count <= 0x100); if (count != 0x100) { // Full colortables can't go wrong. // Count is a power of 2; asserted elsewhere. uint8_t byteMask = (~(count - 1)); bool warning = false; uint8_t* addr = static_cast(bm->getPixels()); int height = bm->height(); int width = bm->width(); size_t rowBytes = bm->rowBytes(); while (--height >= 0) { uint8_t* ptr = addr; int x = width; while (--x >= 0) { if (0 != ((*ptr) & byteMask)) { warning = true; *ptr = 0; } ++ptr; } addr += rowBytes; } if (warning) { gif_warning(*bm, "Index out of bounds."); } } } } } namespace { // This function is a template argument, so can't be static. int close_gif(GifFileType* gif) { #if GIFLIB_MAJOR < 5 || (GIFLIB_MAJOR == 5 && GIFLIB_MINOR == 0) return DGifCloseFile(gif); #else return DGifCloseFile(gif, NULL); #endif } }//namespace SkImageDecoder::Result SkGIFImageDecoder::onDecode(SkStream* sk_stream, SkBitmap* bm, Mode mode) { #if GIFLIB_MAJOR < 5 GifFileType* gif = DGifOpen(sk_stream, DecodeCallBackProc); #else GifFileType* gif = DGifOpen(sk_stream, DecodeCallBackProc, NULL); #endif if (NULL == gif) { return error_return(*bm, "DGifOpen"); } SkAutoTCallIProc acp(gif); SavedImage temp_save; temp_save.ExtensionBlocks=NULL; temp_save.ExtensionBlockCount=0; SkAutoTCallVProc acp2(&temp_save); int width, height; GifRecordType recType; GifByteType *extData; #if GIFLIB_MAJOR >= 5 int extFunction; #endif int transpIndex = -1; // -1 means we don't have it (yet) int fillIndex = gif->SBackGroundColor; do { if (DGifGetRecordType(gif, &recType) == GIF_ERROR) { return error_return(*bm, "DGifGetRecordType"); } switch (recType) { case IMAGE_DESC_RECORD_TYPE: { if (DGifGetImageDesc(gif) == GIF_ERROR) { return error_return(*bm, "IMAGE_DESC_RECORD_TYPE"); } if (gif->ImageCount < 1) { // sanity check return error_return(*bm, "ImageCount < 1"); } width = gif->SWidth; height = gif->SHeight; SavedImage* image = &gif->SavedImages[gif->ImageCount-1]; const GifImageDesc& desc = image->ImageDesc; int imageLeft = desc.Left; int imageTop = desc.Top; const int innerWidth = desc.Width; const int innerHeight = desc.Height; if (innerWidth <= 0 || innerHeight <= 0) { return error_return(*bm, "invalid dimensions"); } // check for valid descriptor if (innerWidth > width) { gif_warning(*bm, "image too wide, expanding output to size"); width = innerWidth; imageLeft = 0; } else if (imageLeft + innerWidth > width) { gif_warning(*bm, "shifting image left to fit"); imageLeft = width - innerWidth; } else if (imageLeft < 0) { gif_warning(*bm, "shifting image right to fit"); imageLeft = 0; } if (innerHeight > height) { gif_warning(*bm, "image too tall, expanding output to size"); height = innerHeight; imageTop = 0; } else if (imageTop + innerHeight > height) { gif_warning(*bm, "shifting image up to fit"); imageTop = height - innerHeight; } else if (imageTop < 0) { gif_warning(*bm, "shifting image down to fit"); imageTop = 0; } SkScaledBitmapSampler sampler(width, height, this->getSampleSize()); bm->setInfo(SkImageInfo::Make(sampler.scaledWidth(), sampler.scaledHeight(), kIndex_8_SkColorType, kPremul_SkAlphaType)); if (SkImageDecoder::kDecodeBounds_Mode == mode) { return kSuccess; } // now we decode the colortable int colorCount = 0; { // Declare colorPtr here for scope. SkPMColor colorPtr[256]; // storage for worst-case const ColorMapObject* cmap = find_colormap(gif); if (cmap != NULL) { SkASSERT(cmap->ColorCount == (1 << (cmap->BitsPerPixel))); colorCount = cmap->ColorCount; if (colorCount > 256) { colorCount = 256; // our kIndex8 can't support more } for (int index = 0; index < colorCount; index++) { colorPtr[index] = SkPackARGB32(0xFF, cmap->Colors[index].Red, cmap->Colors[index].Green, cmap->Colors[index].Blue); } } else { // find_colormap() returned NULL. Some (rare, broken) // GIFs don't have a color table, so we force one. gif_warning(*bm, "missing colormap"); colorCount = 256; sk_memset32(colorPtr, SK_ColorWHITE, colorCount); } transpIndex = find_transpIndex(temp_save, colorCount); if (transpIndex >= 0) { colorPtr[transpIndex] = SK_ColorTRANSPARENT; // ram in a transparent SkPMColor fillIndex = transpIndex; } else if (fillIndex >= colorCount) { // gif->SBackGroundColor should be less than colorCount. fillIndex = 0; // If not, fix it. } SkAutoTUnref ctable(SkNEW_ARGS(SkColorTable, (colorPtr, colorCount))); if (!this->allocPixelRef(bm, ctable)) { return error_return(*bm, "allocPixelRef"); } } // abort if either inner dimension is <= 0 if (innerWidth <= 0 || innerHeight <= 0) { return error_return(*bm, "non-pos inner width/height"); } SkAutoLockPixels alp(*bm); SkAutoMalloc storage(innerWidth); uint8_t* scanline = (uint8_t*) storage.get(); // GIF has an option to store the scanlines of an image, plus a larger background, // filled by a fill color. In this case, we will use a subset of the larger bitmap // for sampling. SkBitmap subset; SkBitmap* workingBitmap; // are we only a subset of the total bounds? if ((imageTop | imageLeft) > 0 || innerWidth < width || innerHeight < height) { // Fill the background. memset(bm->getPixels(), fillIndex, bm->getSize()); // Create a subset of the bitmap. SkIRect subsetRect(SkIRect::MakeXYWH(imageLeft / sampler.srcDX(), imageTop / sampler.srcDY(), innerWidth / sampler.srcDX(), innerHeight / sampler.srcDY())); if (!bm->extractSubset(&subset, subsetRect)) { return error_return(*bm, "Extract failed."); } // Update the sampler. We'll now be only sampling into the subset. sampler = SkScaledBitmapSampler(innerWidth, innerHeight, this->getSampleSize()); workingBitmap = ⊂ } else { workingBitmap = bm; } // bm is already locked, but if we had to take a subset, it must be locked also, // so that getPixels() will point to its pixels. SkAutoLockPixels alpWorking(*workingBitmap); if (!sampler.begin(workingBitmap, SkScaledBitmapSampler::kIndex, *this)) { return error_return(*bm, "Sampler failed to begin."); } // now decode each scanline if (gif->Image.Interlace) { // Iterate over the height of the source data. The sampler will // take care of skipping unneeded rows. GifInterlaceIter iter(innerHeight); for (int y = 0; y < innerHeight; y++) { if (DGifGetLine(gif, scanline, innerWidth) == GIF_ERROR) { gif_warning(*bm, "interlace DGifGetLine"); memset(scanline, fillIndex, innerWidth); for (; y < innerHeight; y++) { sampler.sampleInterlaced(scanline, iter.currY()); iter.next(); } return kPartialSuccess; } sampler.sampleInterlaced(scanline, iter.currY()); iter.next(); } } else { // easy, non-interlace case const int outHeight = workingBitmap->height(); skip_src_rows(gif, scanline, innerWidth, sampler.srcY0()); for (int y = 0; y < outHeight; y++) { if (DGifGetLine(gif, scanline, innerWidth) == GIF_ERROR) { gif_warning(*bm, "DGifGetLine"); memset(scanline, fillIndex, innerWidth); for (; y < outHeight; y++) { sampler.next(scanline); } return kPartialSuccess; } // scanline now contains the raw data. Sample it. sampler.next(scanline); if (y < outHeight - 1) { skip_src_rows(gif, scanline, innerWidth, sampler.srcDY() - 1); } } // skip the rest of the rows (if any) int read = (outHeight - 1) * sampler.srcDY() + sampler.srcY0() + 1; SkASSERT(read <= innerHeight); skip_src_rows(gif, scanline, innerWidth, innerHeight - read); } sanitize_indexed_bitmap(bm); return kSuccess; } break; case EXTENSION_RECORD_TYPE: #if GIFLIB_MAJOR < 5 if (DGifGetExtension(gif, &temp_save.Function, &extData) == GIF_ERROR) { #else if (DGifGetExtension(gif, &extFunction, &extData) == GIF_ERROR) { #endif return error_return(*bm, "DGifGetExtension"); } while (extData != NULL) { /* Create an extension block with our data */ #if GIFLIB_MAJOR < 5 if (AddExtensionBlock(&temp_save, extData[0], &extData[1]) == GIF_ERROR) { #else if (GifAddExtensionBlock(&temp_save.ExtensionBlockCount, &temp_save.ExtensionBlocks, extFunction, extData[0], &extData[1]) == GIF_ERROR) { #endif return error_return(*bm, "AddExtensionBlock"); } if (DGifGetExtensionNext(gif, &extData) == GIF_ERROR) { return error_return(*bm, "DGifGetExtensionNext"); } #if GIFLIB_MAJOR < 5 temp_save.Function = 0; #endif } break; case TERMINATE_RECORD_TYPE: break; default: /* Should be trapped by DGifGetRecordType */ break; } } while (recType != TERMINATE_RECORD_TYPE); sanitize_indexed_bitmap(bm); return kSuccess; } /////////////////////////////////////////////////////////////////////////////// DEFINE_DECODER_CREATOR(GIFImageDecoder); /////////////////////////////////////////////////////////////////////////////// static bool is_gif(SkStreamRewindable* stream) { char buf[GIF_STAMP_LEN]; if (stream->read(buf, GIF_STAMP_LEN) == GIF_STAMP_LEN) { if (memcmp(GIF_STAMP, buf, GIF_STAMP_LEN) == 0 || memcmp(GIF87_STAMP, buf, GIF_STAMP_LEN) == 0 || memcmp(GIF89_STAMP, buf, GIF_STAMP_LEN) == 0) { return true; } } return false; } static SkImageDecoder* sk_libgif_dfactory(SkStreamRewindable* stream) { if (is_gif(stream)) { return SkNEW(SkGIFImageDecoder); } return NULL; } static SkImageDecoder_DecodeReg gReg(sk_libgif_dfactory); static SkImageDecoder::Format get_format_gif(SkStreamRewindable* stream) { if (is_gif(stream)) { return SkImageDecoder::kGIF_Format; } return SkImageDecoder::kUnknown_Format; } static SkImageDecoder_FormatReg gFormatReg(get_format_gif);