/* * Copyright 2012 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include #include #include #include "SkAutoPixmapStorage.h" #include "GrCaps.h" #include "GrContext.h" #include "GrDrawContext.h" #include "GrImageIDTextureAdjuster.h" #include "GrTexturePriv.h" #include "effects/GrYUVEffect.h" #include "SkCanvas.h" #include "SkBitmapCache.h" #include "SkGrPriv.h" #include "SkImage_Gpu.h" #include "SkMipMap.h" #include "SkPixelRef.h" SkImage_Gpu::SkImage_Gpu(int w, int h, uint32_t uniqueID, SkAlphaType at, GrTexture* tex, sk_sp colorSpace, SkBudgeted budgeted) : INHERITED(w, h, uniqueID) , fTexture(SkRef(tex)) , fAlphaType(at) , fBudgeted(budgeted) , fColorSpace(std::move(colorSpace)) , fAddedRasterVersionToCache(false) { SkASSERT(tex->width() == w); SkASSERT(tex->height() == h); } SkImage_Gpu::~SkImage_Gpu() { if (fAddedRasterVersionToCache.load()) { SkNotifyBitmapGenIDIsStale(this->uniqueID()); } } extern void SkTextureImageApplyBudgetedDecision(SkImage* image) { if (image->isTextureBacked()) { ((SkImage_Gpu*)image)->applyBudgetDecision(); } } SkImageInfo SkImage_Gpu::onImageInfo() const { SkColorType ct; if (!GrPixelConfigToColorType(fTexture->config(), &ct)) { ct = kUnknown_SkColorType; } return SkImageInfo::Make(fTexture->width(), fTexture->height(), ct, fAlphaType, fColorSpace); } static SkImageInfo make_info(int w, int h, SkAlphaType at, sk_sp colorSpace) { return SkImageInfo::MakeN32(w, h, at, std::move(colorSpace)); } bool SkImage_Gpu::getROPixels(SkBitmap* dst, CachingHint chint) const { if (SkBitmapCache::Find(this->uniqueID(), dst)) { SkASSERT(dst->getGenerationID() == this->uniqueID()); SkASSERT(dst->isImmutable()); SkASSERT(dst->getPixels()); return true; } if (!dst->tryAllocPixels(make_info(this->width(), this->height(), this->alphaType(), this->fColorSpace))) { return false; } if (!fTexture->readPixels(0, 0, dst->width(), dst->height(), kSkia8888_GrPixelConfig, dst->getPixels(), dst->rowBytes())) { return false; } dst->pixelRef()->setImmutableWithID(this->uniqueID()); if (kAllow_CachingHint == chint) { SkBitmapCache::Add(this->uniqueID(), *dst); fAddedRasterVersionToCache.store(true); } return true; } GrTexture* SkImage_Gpu::asTextureRef(GrContext* ctx, const GrTextureParams& params, SkSourceGammaTreatment gammaTreatment) const { GrTextureAdjuster adjuster(this->peekTexture(), this->alphaType(), this->bounds(), this->uniqueID(), this->onImageInfo().colorSpace()); return adjuster.refTextureSafeForParams(params, gammaTreatment, nullptr); } static void apply_premul(const SkImageInfo& info, void* pixels, size_t rowBytes) { switch (info.colorType()) { case kRGBA_8888_SkColorType: case kBGRA_8888_SkColorType: break; default: return; // nothing to do } // SkColor is not necesarily RGBA or BGRA, but it is one of them on little-endian, // and in either case, the alpha-byte is always in the same place, so we can safely call // SkPreMultiplyColor() // SkColor* row = (SkColor*)pixels; for (int y = 0; y < info.height(); ++y) { for (int x = 0; x < info.width(); ++x) { row[x] = SkPreMultiplyColor(row[x]); } } } bool SkImage_Gpu::onReadPixels(const SkImageInfo& info, void* pixels, size_t rowBytes, int srcX, int srcY, CachingHint) const { GrPixelConfig config = SkImageInfo2GrPixelConfig(info, *fTexture->getContext()->caps()); uint32_t flags = 0; if (kUnpremul_SkAlphaType == info.alphaType() && kPremul_SkAlphaType == fAlphaType) { // let the GPU perform this transformation for us flags = GrContext::kUnpremul_PixelOpsFlag; } if (!fTexture->readPixels(srcX, srcY, info.width(), info.height(), config, pixels, rowBytes, flags)) { return false; } // do we have to manually fix-up the alpha channel? // src dst // unpremul premul fix manually // premul unpremul done by kUnpremul_PixelOpsFlag // all other combos need to change. // // Should this be handled by Ganesh? todo:? // if (kPremul_SkAlphaType == info.alphaType() && kUnpremul_SkAlphaType == fAlphaType) { apply_premul(info, pixels, rowBytes); } return true; } sk_sp SkImage_Gpu::onMakeSubset(const SkIRect& subset) const { GrContext* ctx = fTexture->getContext(); GrSurfaceDesc desc = fTexture->desc(); desc.fWidth = subset.width(); desc.fHeight = subset.height(); sk_sp subTx(ctx->textureProvider()->createTexture(desc, fBudgeted)); if (!subTx) { return nullptr; } ctx->copySurface(subTx.get(), fTexture, subset, SkIPoint::Make(0, 0)); return sk_make_sp(desc.fWidth, desc.fHeight, kNeedNewImageUniqueID, fAlphaType, subTx.get(), fColorSpace, fBudgeted); } /////////////////////////////////////////////////////////////////////////////////////////////////// static sk_sp new_wrapped_texture_common(GrContext* ctx, const GrBackendTextureDesc& desc, SkAlphaType at, sk_sp colorSpace, GrWrapOwnership ownership, SkImage::TextureReleaseProc releaseProc, SkImage::ReleaseContext releaseCtx) { if (desc.fWidth <= 0 || desc.fHeight <= 0) { return nullptr; } SkAutoTUnref tex(ctx->textureProvider()->wrapBackendTexture(desc, ownership)); if (!tex) { return nullptr; } if (releaseProc) { tex->setRelease(releaseProc, releaseCtx); } const SkBudgeted budgeted = SkBudgeted::kNo; return sk_make_sp(desc.fWidth, desc.fHeight, kNeedNewImageUniqueID, at, tex, colorSpace, budgeted); } sk_sp SkImage::MakeFromTexture(GrContext* ctx, const GrBackendTextureDesc& desc, SkAlphaType at, sk_sp cs, TextureReleaseProc releaseP, ReleaseContext releaseC) { return new_wrapped_texture_common(ctx, desc, at, std::move(cs), kBorrow_GrWrapOwnership, releaseP, releaseC); } sk_sp SkImage::MakeFromAdoptedTexture(GrContext* ctx, const GrBackendTextureDesc& desc, SkAlphaType at, sk_sp cs) { return new_wrapped_texture_common(ctx, desc, at, std::move(cs), kAdopt_GrWrapOwnership, nullptr, nullptr); } static sk_sp make_from_yuv_textures_copy(GrContext* ctx, SkYUVColorSpace colorSpace, bool nv12, const GrBackendObject yuvTextureHandles[], const SkISize yuvSizes[], GrSurfaceOrigin origin, sk_sp imageColorSpace) { const SkBudgeted budgeted = SkBudgeted::kYes; if (yuvSizes[0].fWidth <= 0 || yuvSizes[0].fHeight <= 0 || yuvSizes[1].fWidth <= 0 || yuvSizes[1].fHeight <= 0) { return nullptr; } if (!nv12 && (yuvSizes[2].fWidth <= 0 || yuvSizes[2].fHeight <= 0)) { return nullptr; } const GrPixelConfig kConfig = nv12 ? kRGBA_8888_GrPixelConfig : kAlpha_8_GrPixelConfig; GrBackendTextureDesc yDesc; yDesc.fConfig = kConfig; yDesc.fOrigin = origin; yDesc.fSampleCnt = 0; yDesc.fTextureHandle = yuvTextureHandles[0]; yDesc.fWidth = yuvSizes[0].fWidth; yDesc.fHeight = yuvSizes[0].fHeight; GrBackendTextureDesc uDesc; uDesc.fConfig = kConfig; uDesc.fOrigin = origin; uDesc.fSampleCnt = 0; uDesc.fTextureHandle = yuvTextureHandles[1]; uDesc.fWidth = yuvSizes[1].fWidth; uDesc.fHeight = yuvSizes[1].fHeight; sk_sp yTex( ctx->textureProvider()->wrapBackendTexture(yDesc, kBorrow_GrWrapOwnership)); sk_sp uTex( ctx->textureProvider()->wrapBackendTexture(uDesc, kBorrow_GrWrapOwnership)); sk_sp vTex; if (nv12) { vTex = uTex; } else { GrBackendTextureDesc vDesc; vDesc.fConfig = kConfig; vDesc.fOrigin = origin; vDesc.fSampleCnt = 0; vDesc.fTextureHandle = yuvTextureHandles[2]; vDesc.fWidth = yuvSizes[2].fWidth; vDesc.fHeight = yuvSizes[2].fHeight; vTex = sk_sp( ctx->textureProvider()->wrapBackendTexture(vDesc, kBorrow_GrWrapOwnership)); } if (!yTex || !uTex || !vTex) { return nullptr; } const int width = yuvSizes[0].fWidth; const int height = yuvSizes[0].fHeight; // Needs to be a render target in order to draw to it for the yuv->rgb conversion. sk_sp drawContext(ctx->makeDrawContext(SkBackingFit::kExact, width, height, kRGBA_8888_GrPixelConfig, std::move(imageColorSpace), 0, origin)); if (!drawContext) { return nullptr; } GrPaint paint; paint.setPorterDuffXPFactory(SkXfermode::kSrc_Mode); paint.addColorFragmentProcessor( GrYUVEffect::MakeYUVToRGB(yTex.get(), uTex.get(), vTex.get(), yuvSizes, colorSpace, nv12)); const SkRect rect = SkRect::MakeWH(SkIntToScalar(width), SkIntToScalar(height)); drawContext->drawRect(GrNoClip(), paint, SkMatrix::I(), rect); ctx->flushSurfaceWrites(drawContext->accessRenderTarget()); return sk_make_sp(width, height, kNeedNewImageUniqueID, kOpaque_SkAlphaType, drawContext->asTexture().get(), sk_ref_sp(drawContext->getColorSpace()), budgeted); } sk_sp SkImage::MakeFromYUVTexturesCopy(GrContext* ctx, SkYUVColorSpace colorSpace, const GrBackendObject yuvTextureHandles[3], const SkISize yuvSizes[3], GrSurfaceOrigin origin, sk_sp imageColorSpace) { return make_from_yuv_textures_copy(ctx, colorSpace, false, yuvTextureHandles, yuvSizes, origin, std::move(imageColorSpace)); } sk_sp SkImage::MakeFromNV12TexturesCopy(GrContext* ctx, SkYUVColorSpace colorSpace, const GrBackendObject yuvTextureHandles[2], const SkISize yuvSizes[2], GrSurfaceOrigin origin, sk_sp imageColorSpace) { return make_from_yuv_textures_copy(ctx, colorSpace, true, yuvTextureHandles, yuvSizes, origin, std::move(imageColorSpace)); } static sk_sp create_image_from_maker(GrTextureMaker* maker, SkAlphaType at, uint32_t id) { SkAutoTUnref texture(maker->refTextureForParams(GrTextureParams::ClampNoFilter(), SkSourceGammaTreatment::kRespect)); if (!texture) { return nullptr; } return sk_make_sp(texture->width(), texture->height(), id, at, texture, sk_ref_sp(maker->getColorSpace()), SkBudgeted::kNo); } sk_sp SkImage::makeTextureImage(GrContext *context) const { if (!context) { return nullptr; } if (GrTexture* peek = as_IB(this)->peekTexture()) { return peek->getContext() == context ? sk_ref_sp(const_cast(this)) : nullptr; } if (SkImageCacherator* cacher = as_IB(this)->peekCacherator()) { GrImageTextureMaker maker(context, cacher, this, kDisallow_CachingHint); return create_image_from_maker(&maker, this->alphaType(), this->uniqueID()); } if (const SkBitmap* bmp = as_IB(this)->onPeekBitmap()) { GrBitmapTextureMaker maker(context, *bmp); return create_image_from_maker(&maker, this->alphaType(), this->uniqueID()); } return nullptr; } sk_sp SkImage::makeNonTextureImage() const { if (!this->isTextureBacked()) { return sk_ref_sp(const_cast(this)); } SkImageInfo info = as_IB(this)->onImageInfo(); size_t rowBytes = info.minRowBytes(); size_t size = info.getSafeSize(rowBytes); auto data = SkData::MakeUninitialized(size); if (!data) { return nullptr; } SkPixmap pm(info, data->writable_data(), rowBytes); if (!this->readPixels(pm, 0, 0, kDisallow_CachingHint)) { return nullptr; } return MakeRasterData(info, data, rowBytes); } sk_sp SkImage::MakeTextureFromPixmap(GrContext* ctx, const SkPixmap& pixmap, SkBudgeted budgeted) { if (!ctx) { return nullptr; } SkAutoTUnref texture(GrUploadPixmapToTexture(ctx, pixmap, budgeted)); if (!texture) { return nullptr; } return sk_make_sp(texture->width(), texture->height(), kNeedNewImageUniqueID, pixmap.alphaType(), texture, sk_ref_sp(pixmap.info().colorSpace()), budgeted); } /////////////////////////////////////////////////////////////////////////////////////////////////// namespace { struct MipMapLevelData { void* fPixelData; size_t fRowBytes; }; struct DeferredTextureImage { uint32_t fContextUniqueID; // Right now, the gamma treatment is only considered when generating mipmaps SkSourceGammaTreatment fGammaTreatment; // We don't store a SkImageInfo because it contains a ref-counted SkColorSpace. int fWidth; int fHeight; SkColorType fColorType; SkAlphaType fAlphaType; void* fColorSpace; size_t fColorSpaceSize; int fColorTableCnt; uint32_t* fColorTableData; int fMipMapLevelCount; // The fMipMapLevelData array may contain more than 1 element. // It contains fMipMapLevelCount elements. // That means this struct's size is not known at compile-time. MipMapLevelData fMipMapLevelData[1]; }; } // anonymous namespace static bool should_use_mip_maps(const SkImage::DeferredTextureImageUsageParams & param) { bool shouldUseMipMaps = false; // Use mipmaps if either // 1.) it is a perspective matrix, or // 2.) the quality is med/high and the scale is < 1 if (param.fMatrix.hasPerspective()) { shouldUseMipMaps = true; } if (param.fQuality == kMedium_SkFilterQuality || param.fQuality == kHigh_SkFilterQuality) { SkScalar minAxisScale = param.fMatrix.getMinScale(); if (minAxisScale != -1.f && minAxisScale < 1.f) { shouldUseMipMaps = true; } } return shouldUseMipMaps; } namespace { class DTIBufferFiller { public: explicit DTIBufferFiller(char* bufferAsCharPtr) : bufferAsCharPtr_(bufferAsCharPtr) {} void fillMember(const void* source, size_t memberOffset, size_t size) { memcpy(bufferAsCharPtr_ + memberOffset, source, size); } private: char* bufferAsCharPtr_; }; } #define FILL_MEMBER(bufferFiller, member, source) \ bufferFiller.fillMember(source, \ offsetof(DeferredTextureImage, member), \ sizeof(DeferredTextureImage::member)); size_t SkImage::getDeferredTextureImageData(const GrContextThreadSafeProxy& proxy, const DeferredTextureImageUsageParams params[], int paramCnt, void* buffer, SkColorSpace* dstColorSpace) const { // Extract relevant min/max values from the params array. int lowestPreScaleMipLevel = params[0].fPreScaleMipLevel; SkFilterQuality highestFilterQuality = params[0].fQuality; bool useMipMaps = should_use_mip_maps(params[0]); for (int i = 1; i < paramCnt; ++i) { if (lowestPreScaleMipLevel > params[i].fPreScaleMipLevel) lowestPreScaleMipLevel = params[i].fPreScaleMipLevel; if (highestFilterQuality < params[i].fQuality) highestFilterQuality = params[i].fQuality; useMipMaps |= should_use_mip_maps(params[i]); } const bool fillMode = SkToBool(buffer); if (fillMode && !SkIsAlign8(reinterpret_cast(buffer))) { return 0; } // Calculate scaling parameters. bool isScaled = lowestPreScaleMipLevel != 0; SkISize scaledSize; if (isScaled) { // SkMipMap::ComputeLevelSize takes an index into an SkMipMap. SkMipMaps don't contain the // base level, so to get an SkMipMap index we must subtract one from the GL MipMap level. scaledSize = SkMipMap::ComputeLevelSize(this->width(), this->height(), lowestPreScaleMipLevel - 1); } else { scaledSize = SkISize::Make(this->width(), this->height()); } // We never want to scale at higher than SW medium quality, as SW medium matches GPU high. SkFilterQuality scaleFilterQuality = highestFilterQuality; if (scaleFilterQuality > kMedium_SkFilterQuality) { scaleFilterQuality = kMedium_SkFilterQuality; } const int maxTextureSize = proxy.fCaps->maxTextureSize(); if (scaledSize.width() > maxTextureSize || scaledSize.height() > maxTextureSize) { return 0; } SkAutoPixmapStorage pixmap; SkImageInfo info; size_t pixelSize = 0; size_t ctSize = 0; int ctCount = 0; if (!isScaled && this->peekPixels(&pixmap)) { info = pixmap.info(); pixelSize = SkAlign8(pixmap.getSafeSize()); if (pixmap.ctable()) { ctCount = pixmap.ctable()->count(); ctSize = SkAlign8(pixmap.ctable()->count() * 4); } } else { // Here we're just using presence of data to know whether there is a codec behind the image. // In the future we will access the cacherator and get the exact data that we want to (e.g. // yuv planes) upload. sk_sp data(this->refEncoded()); if (!data && !this->peekPixels(nullptr)) { return 0; } info = as_IB(this)->onImageInfo().makeWH(scaledSize.width(), scaledSize.height()); pixelSize = SkAlign8(SkAutoPixmapStorage::AllocSize(info, nullptr)); if (fillMode) { pixmap.alloc(info); if (isScaled) { if (!this->scalePixels(pixmap, scaleFilterQuality, SkImage::kDisallow_CachingHint)) { return 0; } } else { if (!this->readPixels(pixmap, 0, 0, SkImage::kDisallow_CachingHint)) { return 0; } } SkASSERT(!pixmap.ctable()); } } int mipMapLevelCount = 1; if (useMipMaps) { // SkMipMap only deals with the mipmap levels it generates, which does // not include the base level. // That means it generates and holds levels 1-x instead of 0-x. // So the total mipmap level count is 1 more than what // SkMipMap::ComputeLevelCount returns. mipMapLevelCount = SkMipMap::ComputeLevelCount(scaledSize.width(), scaledSize.height()) + 1; // We already initialized pixelSize to the size of the base level. // SkMipMap will generate the extra mipmap levels. Their sizes need to // be added to the total. // Index 0 here does not refer to the base mipmap level -- it is // SkMipMap's first generated mipmap level (level 1). for (int currentMipMapLevelIndex = mipMapLevelCount - 2; currentMipMapLevelIndex >= 0; currentMipMapLevelIndex--) { SkISize mipSize = SkMipMap::ComputeLevelSize(scaledSize.width(), scaledSize.height(), currentMipMapLevelIndex); SkImageInfo mipInfo = info.makeWH(mipSize.fWidth, mipSize.fHeight); pixelSize += SkAlign8(SkAutoPixmapStorage::AllocSize(mipInfo, nullptr)); } } size_t size = 0; size_t dtiSize = SkAlign8(sizeof(DeferredTextureImage)); size += dtiSize; size += (mipMapLevelCount - 1) * sizeof(MipMapLevelData); // We subtract 1 because DeferredTextureImage already includes the base // level in its size size_t pixelOffset = size; size += pixelSize; size_t ctOffset = size; size += ctSize; size_t colorSpaceOffset = 0; size_t colorSpaceSize = 0; if (info.colorSpace()) { colorSpaceOffset = size; colorSpaceSize = info.colorSpace()->writeToMemory(nullptr); size += colorSpaceSize; } if (!fillMode) { return size; } char* bufferAsCharPtr = reinterpret_cast(buffer); char* pixelsAsCharPtr = bufferAsCharPtr + pixelOffset; void* pixels = pixelsAsCharPtr; void* ct = nullptr; if (ctSize) { ct = bufferAsCharPtr + ctOffset; } memcpy(reinterpret_cast(SkAlign8(reinterpret_cast(pixelsAsCharPtr))), pixmap.addr(), pixmap.getSafeSize()); if (ctSize) { memcpy(ct, pixmap.ctable()->readColors(), ctSize); } // If the context has sRGB support, and we're intending to render to a surface with an attached // color space, and the image has an sRGB-like color space attached, then use our gamma (sRGB) // aware mip-mapping. SkSourceGammaTreatment gammaTreatment = SkSourceGammaTreatment::kIgnore; if (proxy.fCaps->srgbSupport() && SkToBool(dstColorSpace) && info.colorSpace() && info.colorSpace()->gammaCloseToSRGB()) { gammaTreatment = SkSourceGammaTreatment::kRespect; } SkASSERT(info == pixmap.info()); size_t rowBytes = pixmap.rowBytes(); static_assert(std::is_standard_layout::value, "offsetof, which we use below, requires the type have standard layout"); auto dtiBufferFiller = DTIBufferFiller{bufferAsCharPtr}; FILL_MEMBER(dtiBufferFiller, fGammaTreatment, &gammaTreatment); FILL_MEMBER(dtiBufferFiller, fContextUniqueID, &proxy.fContextUniqueID); int width = info.width(); FILL_MEMBER(dtiBufferFiller, fWidth, &width); int height = info.height(); FILL_MEMBER(dtiBufferFiller, fHeight, &height); SkColorType colorType = info.colorType(); FILL_MEMBER(dtiBufferFiller, fColorType, &colorType); SkAlphaType alphaType = info.alphaType(); FILL_MEMBER(dtiBufferFiller, fAlphaType, &alphaType); FILL_MEMBER(dtiBufferFiller, fColorTableCnt, &ctCount); FILL_MEMBER(dtiBufferFiller, fColorTableData, &ct); FILL_MEMBER(dtiBufferFiller, fMipMapLevelCount, &mipMapLevelCount); memcpy(bufferAsCharPtr + offsetof(DeferredTextureImage, fMipMapLevelData[0].fPixelData), &pixels, sizeof(pixels)); memcpy(bufferAsCharPtr + offsetof(DeferredTextureImage, fMipMapLevelData[0].fRowBytes), &rowBytes, sizeof(rowBytes)); if (colorSpaceSize) { void* colorSpace = bufferAsCharPtr + colorSpaceOffset; FILL_MEMBER(dtiBufferFiller, fColorSpace, &colorSpace); FILL_MEMBER(dtiBufferFiller, fColorSpaceSize, &colorSpaceSize); info.colorSpace()->writeToMemory(bufferAsCharPtr + colorSpaceOffset); } else { memset(bufferAsCharPtr + offsetof(DeferredTextureImage, fColorSpace), 0, sizeof(DeferredTextureImage::fColorSpace)); memset(bufferAsCharPtr + offsetof(DeferredTextureImage, fColorSpaceSize), 0, sizeof(DeferredTextureImage::fColorSpaceSize)); } // Fill in the mipmap levels if they exist char* mipLevelPtr = pixelsAsCharPtr + SkAlign8(pixmap.getSafeSize()); if (useMipMaps) { static_assert(std::is_standard_layout::value, "offsetof, which we use below, requires the type have a standard layout"); SkAutoTDelete mipmaps(SkMipMap::Build(pixmap, gammaTreatment, nullptr)); // SkMipMap holds only the mipmap levels it generates. // A programmer can use the data they provided to SkMipMap::Build as level 0. // So the SkMipMap provides levels 1-x but it stores them in its own // range 0-(x-1). for (int generatedMipLevelIndex = 0; generatedMipLevelIndex < mipMapLevelCount - 1; generatedMipLevelIndex++) { SkMipMap::Level mipLevel; mipmaps->getLevel(generatedMipLevelIndex, &mipLevel); // Make sure the mipmap data is after the start of the buffer SkASSERT(mipLevelPtr > bufferAsCharPtr); // Make sure the mipmap data starts before the end of the buffer SkASSERT(mipLevelPtr < bufferAsCharPtr + pixelOffset + pixelSize); // Make sure the mipmap data ends before the end of the buffer SkASSERT(mipLevelPtr + mipLevel.fPixmap.getSafeSize() <= bufferAsCharPtr + pixelOffset + pixelSize); // getSafeSize includes rowbyte padding except for the last row, // right? memcpy(mipLevelPtr, mipLevel.fPixmap.addr(), mipLevel.fPixmap.getSafeSize()); memcpy(bufferAsCharPtr + offsetof(DeferredTextureImage, fMipMapLevelData) + sizeof(MipMapLevelData) * (generatedMipLevelIndex + 1) + offsetof(MipMapLevelData, fPixelData), &mipLevelPtr, sizeof(void*)); size_t rowBytes = mipLevel.fPixmap.rowBytes(); memcpy(bufferAsCharPtr + offsetof(DeferredTextureImage, fMipMapLevelData) + sizeof(MipMapLevelData) * (generatedMipLevelIndex + 1) + offsetof(MipMapLevelData, fRowBytes), &rowBytes, sizeof(rowBytes)); mipLevelPtr += SkAlign8(mipLevel.fPixmap.getSafeSize()); } } return size; } sk_sp SkImage::MakeFromDeferredTextureImageData(GrContext* context, const void* data, SkBudgeted budgeted) { if (!data) { return nullptr; } const DeferredTextureImage* dti = reinterpret_cast(data); if (!context || context->uniqueID() != dti->fContextUniqueID) { return nullptr; } SkAutoTUnref colorTable; if (dti->fColorTableCnt) { SkASSERT(dti->fColorTableData); colorTable.reset(new SkColorTable(dti->fColorTableData, dti->fColorTableCnt)); } int mipLevelCount = dti->fMipMapLevelCount; SkASSERT(mipLevelCount >= 1); sk_sp colorSpace; if (dti->fColorSpaceSize) { colorSpace = SkColorSpace::Deserialize(dti->fColorSpace, dti->fColorSpaceSize); } SkImageInfo info = SkImageInfo::Make(dti->fWidth, dti->fHeight, dti->fColorType, dti->fAlphaType, colorSpace); if (mipLevelCount == 1) { SkPixmap pixmap; pixmap.reset(info, dti->fMipMapLevelData[0].fPixelData, dti->fMipMapLevelData[0].fRowBytes, colorTable.get()); return SkImage::MakeTextureFromPixmap(context, pixmap, budgeted); } else { SkAutoTDeleteArray texels(new GrMipLevel[mipLevelCount]); for (int i = 0; i < mipLevelCount; i++) { texels[i].fPixels = dti->fMipMapLevelData[i].fPixelData; texels[i].fRowBytes = dti->fMipMapLevelData[i].fRowBytes; } return SkImage::MakeTextureFromMipMap(context, info, texels.get(), mipLevelCount, SkBudgeted::kYes, dti->fGammaTreatment); } } /////////////////////////////////////////////////////////////////////////////////////////////////// sk_sp SkImage::MakeTextureFromMipMap(GrContext* ctx, const SkImageInfo& info, const GrMipLevel* texels, int mipLevelCount, SkBudgeted budgeted, SkSourceGammaTreatment gammaTreatment) { if (!ctx) { return nullptr; } SkAutoTUnref texture(GrUploadMipMapToTexture(ctx, info, texels, mipLevelCount)); if (!texture) { return nullptr; } texture->texturePriv().setGammaTreatment(gammaTreatment); return sk_make_sp(texture->width(), texture->height(), kNeedNewImageUniqueID, info.alphaType(), texture, sk_ref_sp(info.colorSpace()), budgeted); }