/* * Copyright 2012 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include #include #include #include "SkAutoPixmapStorage.h" #include "GrBackendSurface.h" #include "GrBackendTextureImageGenerator.h" #include "GrAHardwareBufferImageGenerator.h" #include "GrBitmapTextureMaker.h" #include "GrCaps.h" #include "GrContext.h" #include "GrContextPriv.h" #include "GrGpu.h" #include "GrImageTextureMaker.h" #include "GrRenderTargetContext.h" #include "GrResourceProvider.h" #include "GrSemaphore.h" #include "GrTextureAdjuster.h" #include "GrTexture.h" #include "GrTextureProxy.h" #include "effects/GrNonlinearColorSpaceXformEffect.h" #include "effects/GrYUVEffect.h" #include "SkCanvas.h" #include "SkBitmapCache.h" #include "SkGr.h" #include "SkImage_Gpu.h" #include "SkImageCacherator.h" #include "SkImageInfoPriv.h" #include "SkMipMap.h" #include "SkPixelRef.h" #include "SkReadPixelsRec.h" SkImage_Gpu::SkImage_Gpu(GrContext* context, uint32_t uniqueID, SkAlphaType at, sk_sp proxy, sk_sp colorSpace, SkBudgeted budgeted) : INHERITED(proxy->width(), proxy->height(), uniqueID) , fContext(context) , fProxy(std::move(proxy)) , fAlphaType(at) , fBudgeted(budgeted) , fColorSpace(std::move(colorSpace)) , fAddedRasterVersionToCache(false) { } SkImage_Gpu::~SkImage_Gpu() { if (fAddedRasterVersionToCache.load()) { SkNotifyBitmapGenIDIsStale(this->uniqueID()); } } SkImageInfo SkImage_Gpu::onImageInfo() const { SkColorType ct; if (!GrPixelConfigToColorType(fProxy->config(), &ct)) { ct = kUnknown_SkColorType; } return SkImageInfo::Make(fProxy->width(), fProxy->height(), ct, fAlphaType, fColorSpace); } bool SkImage_Gpu::getROPixels(SkBitmap* dst, SkColorSpace*, CachingHint chint) const { // The SkColorSpace parameter "dstColorSpace" is really just a hint about how/where the bitmap // will be used. The client doesn't expect that we convert to that color space, it's intended // for codec-backed images, to drive our decoding heuristic. In theory we *could* read directly // into that color space (to save the client some effort in whatever they're about to do), but // that would make our use of the bitmap cache incorrect (or much less efficient, assuming we // rolled the dstColorSpace into the key). const auto desc = SkBitmapCacheDesc::Make(this); if (SkBitmapCache::Find(desc, dst)) { SkASSERT(dst->getGenerationID() == this->uniqueID()); SkASSERT(dst->isImmutable()); SkASSERT(dst->getPixels()); return true; } SkBitmapCache::RecPtr rec = nullptr; SkPixmap pmap; if (kAllow_CachingHint == chint) { rec = SkBitmapCache::Alloc(desc, this->onImageInfo(), &pmap); if (!rec) { return false; } } else { if (!dst->tryAllocPixels(this->onImageInfo()) || !dst->peekPixels(&pmap)) { return false; } } sk_sp sContext = fContext->contextPriv().makeWrappedSurfaceContext( fProxy, fColorSpace); if (!sContext) { return false; } if (!sContext->readPixels(pmap.info(), pmap.writable_addr(), pmap.rowBytes(), 0, 0)) { return false; } if (rec) { SkBitmapCache::Add(std::move(rec), dst); fAddedRasterVersionToCache.store(true); } return true; } sk_sp SkImage_Gpu::asTextureProxyRef(GrContext* context, const GrSamplerParams& params, SkColorSpace* dstColorSpace, sk_sp* texColorSpace, SkScalar scaleAdjust[2]) const { if (context != fContext) { SkASSERT(0); return nullptr; } if (texColorSpace) { *texColorSpace = this->fColorSpace; } GrTextureAdjuster adjuster(fContext, fProxy, this->alphaType(), this->bounds(), this->uniqueID(), this->fColorSpace.get()); return adjuster.refTextureProxySafeForParams(params, nullptr, scaleAdjust); } static void apply_premul(const SkImageInfo& info, void* pixels, size_t rowBytes) { switch (info.colorType()) { case kRGBA_8888_SkColorType: case kBGRA_8888_SkColorType: break; default: return; // nothing to do } // SkColor is not necesarily RGBA or BGRA, but it is one of them on little-endian, // and in either case, the alpha-byte is always in the same place, so we can safely call // SkPreMultiplyColor() // SkColor* row = (SkColor*)pixels; for (int y = 0; y < info.height(); ++y) { for (int x = 0; x < info.width(); ++x) { row[x] = SkPreMultiplyColor(row[x]); } } } GrBackendObject SkImage_Gpu::onGetTextureHandle(bool flushPendingGrContextIO, GrSurfaceOrigin* origin) const { SkASSERT(fProxy); if (!fProxy->instantiate(fContext->resourceProvider())) { return 0; } GrTexture* texture = fProxy->priv().peekTexture(); if (texture) { if (flushPendingGrContextIO) { fContext->contextPriv().prepareSurfaceForExternalIO(fProxy.get()); } if (origin) { *origin = fProxy->origin(); } return texture->getTextureHandle(); } return 0; } GrTexture* SkImage_Gpu::onGetTexture() const { GrTextureProxy* proxy = this->peekProxy(); if (!proxy) { return nullptr; } if (!proxy->instantiate(fContext->resourceProvider())) { return nullptr; } return proxy->priv().peekTexture(); } bool SkImage_Gpu::onReadPixels(const SkImageInfo& dstInfo, void* dstPixels, size_t dstRB, int srcX, int srcY, CachingHint) const { if (!SkImageInfoValidConversion(dstInfo, this->onImageInfo())) { return false; } SkReadPixelsRec rec(dstInfo, dstPixels, dstRB, srcX, srcY); if (!rec.trim(this->width(), this->height())) { return false; } // TODO: this seems to duplicate code in GrTextureContext::onReadPixels and // GrRenderTargetContext::onReadPixels uint32_t flags = 0; if (kUnpremul_SkAlphaType == rec.fInfo.alphaType() && kPremul_SkAlphaType == fAlphaType) { // let the GPU perform this transformation for us flags = GrContextPriv::kUnpremul_PixelOpsFlag; } sk_sp sContext = fContext->contextPriv().makeWrappedSurfaceContext( fProxy, fColorSpace); if (!sContext) { return false; } if (!sContext->readPixels(rec.fInfo, rec.fPixels, rec.fRowBytes, rec.fX, rec.fY, flags)) { return false; } // do we have to manually fix-up the alpha channel? // src dst // unpremul premul fix manually // premul unpremul done by kUnpremul_PixelOpsFlag // all other combos need to change. // // Should this be handled by Ganesh? todo:? // if (kPremul_SkAlphaType == rec.fInfo.alphaType() && kUnpremul_SkAlphaType == fAlphaType) { apply_premul(rec.fInfo, rec.fPixels, rec.fRowBytes); } return true; } sk_sp SkImage_Gpu::onMakeSubset(const SkIRect& subset) const { GrSurfaceDesc desc; desc.fOrigin = fProxy->origin(); desc.fWidth = subset.width(); desc.fHeight = subset.height(); desc.fConfig = fProxy->config(); sk_sp sContext(fContext->contextPriv().makeDeferredSurfaceContext( desc, SkBackingFit::kExact, fBudgeted)); if (!sContext) { return nullptr; } if (!sContext->copy(fProxy.get(), subset, SkIPoint::Make(0, 0))) { return nullptr; } // MDB: this call is okay bc we know 'sContext' was kExact return sk_make_sp(fContext, kNeedNewImageUniqueID, fAlphaType, sContext->asTextureProxyRef(), fColorSpace, fBudgeted); } /////////////////////////////////////////////////////////////////////////////////////////////////// static sk_sp new_wrapped_texture_common(GrContext* ctx, const GrBackendTexture& backendTex, GrSurfaceOrigin origin, SkAlphaType at, sk_sp colorSpace, GrWrapOwnership ownership, SkImage::TextureReleaseProc releaseProc, SkImage::ReleaseContext releaseCtx) { if (backendTex.width() <= 0 || backendTex.height() <= 0) { return nullptr; } sk_sp tex = ctx->resourceProvider()->wrapBackendTexture(backendTex, origin, ownership); if (!tex) { return nullptr; } if (releaseProc) { tex->setRelease(releaseProc, releaseCtx); } const SkBudgeted budgeted = SkBudgeted::kNo; sk_sp proxy(GrSurfaceProxy::MakeWrapped(std::move(tex), origin)); return sk_make_sp(ctx, kNeedNewImageUniqueID, at, std::move(proxy), std::move(colorSpace), budgeted); } sk_sp SkImage::MakeFromTexture(GrContext* ctx, const GrBackendTexture& tex, GrSurfaceOrigin origin, SkAlphaType at, sk_sp cs, TextureReleaseProc releaseP, ReleaseContext releaseC) { return new_wrapped_texture_common(ctx, tex, origin, at, std::move(cs), kBorrow_GrWrapOwnership, releaseP, releaseC); } sk_sp SkImage::MakeFromAdoptedTexture(GrContext* ctx, const GrBackendTexture& tex, GrSurfaceOrigin origin, SkAlphaType at, sk_sp cs) { return new_wrapped_texture_common(ctx, tex, origin, at, std::move(cs), kAdopt_GrWrapOwnership, nullptr, nullptr); } static GrBackendTexture make_backend_texture_from_handle(GrBackend backend, int width, int height, GrPixelConfig config, GrBackendObject handle) { switch (backend) { case kOpenGL_GrBackend: { const GrGLTextureInfo* glInfo = (const GrGLTextureInfo*)(handle); return GrBackendTexture(width, height, config, *glInfo); } #ifdef SK_VULKAN case kVulkan_GrBackend: { const GrVkImageInfo* vkInfo = (const GrVkImageInfo*)(handle); return GrBackendTexture(width, height, *vkInfo); } #endif case kMock_GrBackend: { const GrMockTextureInfo* mockInfo = (const GrMockTextureInfo*)(handle); return GrBackendTexture(width, height, config, *mockInfo); } default: return GrBackendTexture(); } } static sk_sp make_from_yuv_textures_copy(GrContext* ctx, SkYUVColorSpace colorSpace, bool nv12, const GrBackendObject yuvTextureHandles[], const SkISize yuvSizes[], GrSurfaceOrigin origin, sk_sp imageColorSpace) { const SkBudgeted budgeted = SkBudgeted::kYes; if (yuvSizes[0].fWidth <= 0 || yuvSizes[0].fHeight <= 0 || yuvSizes[1].fWidth <= 0 || yuvSizes[1].fHeight <= 0) { return nullptr; } if (!nv12 && (yuvSizes[2].fWidth <= 0 || yuvSizes[2].fHeight <= 0)) { return nullptr; } const GrPixelConfig kConfig = nv12 ? kRGBA_8888_GrPixelConfig : kAlpha_8_GrPixelConfig; GrBackend backend = ctx->contextPriv().getBackend(); GrBackendTexture yTex = make_backend_texture_from_handle(backend, yuvSizes[0].fWidth, yuvSizes[0].fHeight, kConfig, yuvTextureHandles[0]); GrBackendTexture uTex = make_backend_texture_from_handle(backend, yuvSizes[1].fWidth, yuvSizes[1].fHeight, kConfig, yuvTextureHandles[1]); sk_sp yProxy = GrSurfaceProxy::MakeWrappedBackend(ctx, yTex, origin); sk_sp uProxy = GrSurfaceProxy::MakeWrappedBackend(ctx, uTex, origin); sk_sp vProxy; if (nv12) { vProxy = uProxy; } else { GrBackendTexture vTex = make_backend_texture_from_handle(backend, yuvSizes[2].fWidth, yuvSizes[2].fHeight, kConfig, yuvTextureHandles[2]); vProxy = GrSurfaceProxy::MakeWrappedBackend(ctx, vTex, origin); } if (!yProxy || !uProxy || !vProxy) { return nullptr; } const int width = yuvSizes[0].fWidth; const int height = yuvSizes[0].fHeight; // Needs to be a render target in order to draw to it for the yuv->rgb conversion. sk_sp renderTargetContext(ctx->makeDeferredRenderTargetContext( SkBackingFit::kExact, width, height, kRGBA_8888_GrPixelConfig, std::move(imageColorSpace), 0, origin)); if (!renderTargetContext) { return nullptr; } GrPaint paint; paint.setPorterDuffXPFactory(SkBlendMode::kSrc); paint.addColorFragmentProcessor(GrYUVEffect::MakeYUVToRGB(yProxy, uProxy, vProxy, yuvSizes, colorSpace, nv12)); const SkRect rect = SkRect::MakeIWH(width, height); renderTargetContext->drawRect(GrNoClip(), std::move(paint), GrAA::kNo, SkMatrix::I(), rect); if (!renderTargetContext->asSurfaceProxy()) { return nullptr; } ctx->contextPriv().flushSurfaceWrites(renderTargetContext->asSurfaceProxy()); // MDB: this call is okay bc we know 'renderTargetContext' was exact return sk_make_sp(ctx, kNeedNewImageUniqueID, kOpaque_SkAlphaType, renderTargetContext->asTextureProxyRef(), renderTargetContext->refColorSpace(), budgeted); } sk_sp SkImage::MakeFromYUVTexturesCopy(GrContext* ctx, SkYUVColorSpace colorSpace, const GrBackendObject yuvTextureHandles[3], const SkISize yuvSizes[3], GrSurfaceOrigin origin, sk_sp imageColorSpace) { return make_from_yuv_textures_copy(ctx, colorSpace, false, yuvTextureHandles, yuvSizes, origin, std::move(imageColorSpace)); } sk_sp SkImage::MakeFromNV12TexturesCopy(GrContext* ctx, SkYUVColorSpace colorSpace, const GrBackendObject yuvTextureHandles[2], const SkISize yuvSizes[2], GrSurfaceOrigin origin, sk_sp imageColorSpace) { return make_from_yuv_textures_copy(ctx, colorSpace, true, yuvTextureHandles, yuvSizes, origin, std::move(imageColorSpace)); } static sk_sp create_image_from_maker(GrContext* context, GrTextureMaker* maker, SkAlphaType at, uint32_t id, SkColorSpace* dstColorSpace) { sk_sp texColorSpace; sk_sp proxy(maker->refTextureProxyForParams(GrSamplerParams::ClampNoFilter(), dstColorSpace, &texColorSpace, nullptr)); if (!proxy) { return nullptr; } return sk_make_sp(context, id, at, std::move(proxy), std::move(texColorSpace), SkBudgeted::kNo); } sk_sp SkImage::makeTextureImage(GrContext* context, SkColorSpace* dstColorSpace) const { if (!context) { return nullptr; } if (GrContext* incumbent = as_IB(this)->context()) { return incumbent == context ? sk_ref_sp(const_cast(this)) : nullptr; } if (this->isLazyGenerated()) { GrImageTextureMaker maker(context, this, kDisallow_CachingHint); return create_image_from_maker(context, &maker, this->alphaType(), this->uniqueID(), dstColorSpace); } if (const SkBitmap* bmp = as_IB(this)->onPeekBitmap()) { GrBitmapTextureMaker maker(context, *bmp); return create_image_from_maker(context, &maker, this->alphaType(), this->uniqueID(), dstColorSpace); } return nullptr; } sk_sp SkImage::MakeCrossContextFromEncoded(GrContext* context, sk_sp encoded, bool buildMips, SkColorSpace* dstColorSpace) { sk_sp codecImage = SkImage::MakeFromEncoded(std::move(encoded)); if (!codecImage) { return nullptr; } // Some backends or drivers don't support (safely) moving resources between contexts if (!context || !context->caps()->crossContextTextureSupport()) { return codecImage; } // Turn the codec image into a GrTextureProxy GrImageTextureMaker maker(context, codecImage.get(), kDisallow_CachingHint); sk_sp texColorSpace; GrSamplerParams params(SkShader::kClamp_TileMode, buildMips ? GrSamplerParams::kMipMap_FilterMode : GrSamplerParams::kBilerp_FilterMode); sk_sp proxy(maker.refTextureProxyForParams(params, dstColorSpace, &texColorSpace, nullptr)); if (!proxy) { return codecImage; } if (!proxy->instantiate(context->resourceProvider())) { return codecImage; } sk_sp texture = sk_ref_sp(proxy->priv().peekTexture()); // Flush any writes or uploads context->contextPriv().prepareSurfaceForExternalIO(proxy.get()); sk_sp sema = context->getGpu()->prepareTextureForCrossContextUsage(texture.get()); auto gen = GrBackendTextureImageGenerator::Make(std::move(texture), std::move(sema), codecImage->alphaType(), std::move(texColorSpace)); return SkImage::MakeFromGenerator(std::move(gen)); } #if defined(SK_BUILD_FOR_ANDROID) && __ANDROID_API__ >= 26 sk_sp SkImage::MakeFromAHardwareBuffer(AHardwareBuffer* graphicBuffer, SkAlphaType at, sk_sp cs) { auto gen = GrAHardwareBufferImageGenerator::Make(graphicBuffer, at, cs); return SkImage::MakeFromGenerator(std::move(gen)); } #endif sk_sp SkImage::makeNonTextureImage() const { if (!this->isTextureBacked()) { return sk_ref_sp(const_cast(this)); } SkImageInfo info = as_IB(this)->onImageInfo(); size_t rowBytes = info.minRowBytes(); size_t size = info.getSafeSize(rowBytes); auto data = SkData::MakeUninitialized(size); if (!data) { return nullptr; } SkPixmap pm(info, data->writable_data(), rowBytes); if (!this->readPixels(pm, 0, 0, kDisallow_CachingHint)) { return nullptr; } return MakeRasterData(info, data, rowBytes); } /////////////////////////////////////////////////////////////////////////////////////////////////// namespace { struct MipMapLevelData { void* fPixelData; size_t fRowBytes; }; struct DeferredTextureImage { uint32_t fContextUniqueID; // Right now, the destination color mode is only considered when generating mipmaps SkDestinationSurfaceColorMode fColorMode; // We don't store a SkImageInfo because it contains a ref-counted SkColorSpace. int fWidth; int fHeight; SkColorType fColorType; SkAlphaType fAlphaType; void* fColorSpace; size_t fColorSpaceSize; int fMipMapLevelCount; // The fMipMapLevelData array may contain more than 1 element. // It contains fMipMapLevelCount elements. // That means this struct's size is not known at compile-time. MipMapLevelData fMipMapLevelData[1]; }; } // anonymous namespace static bool should_use_mip_maps(const SkImage::DeferredTextureImageUsageParams & param) { // There is a bug in the mipmap pre-generation logic in use in getDeferredTextureImageData. // This can cause runaway memory leaks, so we are disabling this path until we can // investigate further. crbug.com/669775 return false; } namespace { class DTIBufferFiller { public: explicit DTIBufferFiller(char* bufferAsCharPtr) : bufferAsCharPtr_(bufferAsCharPtr) {} void fillMember(const void* source, size_t memberOffset, size_t size) { memcpy(bufferAsCharPtr_ + memberOffset, source, size); } private: char* bufferAsCharPtr_; }; } #define FILL_MEMBER(bufferFiller, member, source) \ bufferFiller.fillMember(source, \ offsetof(DeferredTextureImage, member), \ sizeof(DeferredTextureImage::member)); static bool SupportsColorSpace(SkColorType colorType) { switch (colorType) { case kRGBA_8888_SkColorType: case kBGRA_8888_SkColorType: case kRGBA_F16_SkColorType: return true; default: return false; } } size_t SkImage::getDeferredTextureImageData(const GrContextThreadSafeProxy& proxy, const DeferredTextureImageUsageParams params[], int paramCnt, void* buffer, SkColorSpace* dstColorSpace, SkColorType dstColorType) const { // Some quick-rejects where is makes no sense to return CPU data // e.g. // - texture backed // - picture backed // if (this->isTextureBacked()) { return 0; } if (as_IB(this)->onCanLazyGenerateOnGPU()) { return 0; } bool supportsColorSpace = SupportsColorSpace(dstColorType); // Quick reject if the caller requests a color space with an unsupported color type. if (SkToBool(dstColorSpace) && !supportsColorSpace) { return 0; } // Extract relevant min/max values from the params array. int lowestPreScaleMipLevel = params[0].fPreScaleMipLevel; SkFilterQuality highestFilterQuality = params[0].fQuality; bool useMipMaps = should_use_mip_maps(params[0]); for (int i = 1; i < paramCnt; ++i) { if (lowestPreScaleMipLevel > params[i].fPreScaleMipLevel) lowestPreScaleMipLevel = params[i].fPreScaleMipLevel; if (highestFilterQuality < params[i].fQuality) highestFilterQuality = params[i].fQuality; useMipMaps |= should_use_mip_maps(params[i]); } const bool fillMode = SkToBool(buffer); if (fillMode && !SkIsAlign8(reinterpret_cast(buffer))) { return 0; } // Calculate scaling parameters. bool isScaled = lowestPreScaleMipLevel != 0; SkISize scaledSize; if (isScaled) { // SkMipMap::ComputeLevelSize takes an index into an SkMipMap. SkMipMaps don't contain the // base level, so to get an SkMipMap index we must subtract one from the GL MipMap level. scaledSize = SkMipMap::ComputeLevelSize(this->width(), this->height(), lowestPreScaleMipLevel - 1); } else { scaledSize = SkISize::Make(this->width(), this->height()); } // We never want to scale at higher than SW medium quality, as SW medium matches GPU high. SkFilterQuality scaleFilterQuality = highestFilterQuality; if (scaleFilterQuality > kMedium_SkFilterQuality) { scaleFilterQuality = kMedium_SkFilterQuality; } const int maxTextureSize = proxy.fCaps->maxTextureSize(); if (scaledSize.width() > maxTextureSize || scaledSize.height() > maxTextureSize) { return 0; } SkAutoPixmapStorage pixmap; SkImageInfo info; size_t pixelSize = 0; if (!isScaled && this->peekPixels(&pixmap) && pixmap.info().colorType() == dstColorType) { info = pixmap.info(); pixelSize = SkAlign8(pixmap.getSafeSize()); if (!dstColorSpace) { pixmap.setColorSpace(nullptr); info = info.makeColorSpace(nullptr); } } else { if (!this->isLazyGenerated() && !this->peekPixels(nullptr)) { return 0; } if (SkImageCacherator* cacher = as_IB(this)->peekCacherator()) { // Generator backed image. Tweak info to trigger correct kind of decode. SkImageCacherator::CachedFormat cacheFormat = cacher->chooseCacheFormat( dstColorSpace, proxy.fCaps.get()); info = cacher->buildCacheInfo(cacheFormat).makeWH(scaledSize.width(), scaledSize.height()); } else { info = as_IB(this)->onImageInfo().makeWH(scaledSize.width(), scaledSize.height()); if (!dstColorSpace) { info = info.makeColorSpace(nullptr); } } // Force color type to be the requested type. info = info.makeColorType(dstColorType); pixelSize = SkAlign8(SkAutoPixmapStorage::AllocSize(info, nullptr)); if (fillMode) { // Always decode to N32 and convert to the requested type if necessary. SkImageInfo decodeInfo = info.makeColorType(kN32_SkColorType); SkAutoPixmapStorage decodePixmap; decodePixmap.alloc(decodeInfo); if (isScaled) { if (!this->scalePixels(decodePixmap, scaleFilterQuality, SkImage::kDisallow_CachingHint)) { return 0; } } else { if (!this->readPixels(decodePixmap, 0, 0, SkImage::kDisallow_CachingHint)) { return 0; } } if (decodeInfo.colorType() != info.colorType()) { pixmap.alloc(info); // Convert and copy the decoded pixmap to the target pixmap. decodePixmap.readPixels(pixmap.info(), pixmap.writable_addr(), pixmap.rowBytes(), 0, 0); } else { pixmap = std::move(decodePixmap); } } } int mipMapLevelCount = 1; if (useMipMaps) { // SkMipMap only deals with the mipmap levels it generates, which does // not include the base level. // That means it generates and holds levels 1-x instead of 0-x. // So the total mipmap level count is 1 more than what // SkMipMap::ComputeLevelCount returns. mipMapLevelCount = SkMipMap::ComputeLevelCount(scaledSize.width(), scaledSize.height()) + 1; // We already initialized pixelSize to the size of the base level. // SkMipMap will generate the extra mipmap levels. Their sizes need to // be added to the total. // Index 0 here does not refer to the base mipmap level -- it is // SkMipMap's first generated mipmap level (level 1). for (int currentMipMapLevelIndex = mipMapLevelCount - 2; currentMipMapLevelIndex >= 0; currentMipMapLevelIndex--) { SkISize mipSize = SkMipMap::ComputeLevelSize(scaledSize.width(), scaledSize.height(), currentMipMapLevelIndex); SkImageInfo mipInfo = info.makeWH(mipSize.fWidth, mipSize.fHeight); pixelSize += SkAlign8(SkAutoPixmapStorage::AllocSize(mipInfo, nullptr)); } } size_t size = 0; size_t dtiSize = SkAlign8(sizeof(DeferredTextureImage)); size += dtiSize; size += (mipMapLevelCount - 1) * sizeof(MipMapLevelData); // We subtract 1 because DeferredTextureImage already includes the base // level in its size size_t pixelOffset = size; size += pixelSize; size_t colorSpaceOffset = 0; size_t colorSpaceSize = 0; SkColorSpaceTransferFn fn; if (info.colorSpace()) { SkASSERT(dstColorSpace); SkASSERT(supportsColorSpace); colorSpaceOffset = size; colorSpaceSize = info.colorSpace()->writeToMemory(nullptr); size += colorSpaceSize; } else if (supportsColorSpace && this->colorSpace() && this->colorSpace()->isNumericalTransferFn(&fn)) { // In legacy mode, preserve the color space tag on the SkImage. This is only // supported if the color space has a parametric transfer function. SkASSERT(!dstColorSpace); colorSpaceOffset = size; colorSpaceSize = this->colorSpace()->writeToMemory(nullptr); size += colorSpaceSize; } if (!fillMode) { return size; } char* bufferAsCharPtr = reinterpret_cast(buffer); char* pixelsAsCharPtr = bufferAsCharPtr + pixelOffset; void* pixels = pixelsAsCharPtr; memcpy(reinterpret_cast(SkAlign8(reinterpret_cast(pixelsAsCharPtr))), pixmap.addr(), pixmap.getSafeSize()); // If the context has sRGB support, and we're intending to render to a surface with an attached // color space, and the image has an sRGB-like color space attached, then use our gamma (sRGB) // aware mip-mapping. SkDestinationSurfaceColorMode colorMode = SkDestinationSurfaceColorMode::kLegacy; if (proxy.fCaps->srgbSupport() && SkToBool(dstColorSpace) && info.colorSpace() && info.colorSpace()->gammaCloseToSRGB()) { SkASSERT(supportsColorSpace); colorMode = SkDestinationSurfaceColorMode::kGammaAndColorSpaceAware; } SkASSERT(info == pixmap.info()); size_t rowBytes = pixmap.rowBytes(); static_assert(std::is_standard_layout::value, "offsetof, which we use below, requires the type have standard layout"); auto dtiBufferFiller = DTIBufferFiller{bufferAsCharPtr}; FILL_MEMBER(dtiBufferFiller, fColorMode, &colorMode); FILL_MEMBER(dtiBufferFiller, fContextUniqueID, &proxy.fContextUniqueID); int width = info.width(); FILL_MEMBER(dtiBufferFiller, fWidth, &width); int height = info.height(); FILL_MEMBER(dtiBufferFiller, fHeight, &height); SkColorType colorType = info.colorType(); FILL_MEMBER(dtiBufferFiller, fColorType, &colorType); SkAlphaType alphaType = info.alphaType(); FILL_MEMBER(dtiBufferFiller, fAlphaType, &alphaType); FILL_MEMBER(dtiBufferFiller, fMipMapLevelCount, &mipMapLevelCount); memcpy(bufferAsCharPtr + offsetof(DeferredTextureImage, fMipMapLevelData[0].fPixelData), &pixels, sizeof(pixels)); memcpy(bufferAsCharPtr + offsetof(DeferredTextureImage, fMipMapLevelData[0].fRowBytes), &rowBytes, sizeof(rowBytes)); if (colorSpaceSize) { void* colorSpace = bufferAsCharPtr + colorSpaceOffset; FILL_MEMBER(dtiBufferFiller, fColorSpace, &colorSpace); FILL_MEMBER(dtiBufferFiller, fColorSpaceSize, &colorSpaceSize); if (info.colorSpace()) { info.colorSpace()->writeToMemory(bufferAsCharPtr + colorSpaceOffset); } else { SkASSERT(this->colorSpace() && this->colorSpace()->isNumericalTransferFn(&fn)); SkASSERT(!dstColorSpace); this->colorSpace()->writeToMemory(bufferAsCharPtr + colorSpaceOffset); } } else { memset(bufferAsCharPtr + offsetof(DeferredTextureImage, fColorSpace), 0, sizeof(DeferredTextureImage::fColorSpace)); memset(bufferAsCharPtr + offsetof(DeferredTextureImage, fColorSpaceSize), 0, sizeof(DeferredTextureImage::fColorSpaceSize)); } // Fill in the mipmap levels if they exist char* mipLevelPtr = pixelsAsCharPtr + SkAlign8(pixmap.getSafeSize()); if (useMipMaps) { static_assert(std::is_standard_layout::value, "offsetof, which we use below, requires the type have a standard layout"); std::unique_ptr mipmaps(SkMipMap::Build(pixmap, colorMode, nullptr)); // SkMipMap holds only the mipmap levels it generates. // A programmer can use the data they provided to SkMipMap::Build as level 0. // So the SkMipMap provides levels 1-x but it stores them in its own // range 0-(x-1). for (int generatedMipLevelIndex = 0; generatedMipLevelIndex < mipMapLevelCount - 1; generatedMipLevelIndex++) { SkMipMap::Level mipLevel; mipmaps->getLevel(generatedMipLevelIndex, &mipLevel); // Make sure the mipmap data is after the start of the buffer SkASSERT(mipLevelPtr > bufferAsCharPtr); // Make sure the mipmap data starts before the end of the buffer SkASSERT(mipLevelPtr < bufferAsCharPtr + pixelOffset + pixelSize); // Make sure the mipmap data ends before the end of the buffer SkASSERT(mipLevelPtr + mipLevel.fPixmap.getSafeSize() <= bufferAsCharPtr + pixelOffset + pixelSize); // getSafeSize includes rowbyte padding except for the last row, // right? memcpy(mipLevelPtr, mipLevel.fPixmap.addr(), mipLevel.fPixmap.getSafeSize()); memcpy(bufferAsCharPtr + offsetof(DeferredTextureImage, fMipMapLevelData) + sizeof(MipMapLevelData) * (generatedMipLevelIndex + 1) + offsetof(MipMapLevelData, fPixelData), &mipLevelPtr, sizeof(void*)); size_t rowBytes = mipLevel.fPixmap.rowBytes(); memcpy(bufferAsCharPtr + offsetof(DeferredTextureImage, fMipMapLevelData) + sizeof(MipMapLevelData) * (generatedMipLevelIndex + 1) + offsetof(MipMapLevelData, fRowBytes), &rowBytes, sizeof(rowBytes)); mipLevelPtr += SkAlign8(mipLevel.fPixmap.getSafeSize()); } } return size; } sk_sp SkImage::MakeFromDeferredTextureImageData(GrContext* context, const void* data, SkBudgeted budgeted) { if (!data) { return nullptr; } const DeferredTextureImage* dti = reinterpret_cast(data); if (!context || context->uniqueID() != dti->fContextUniqueID || context->abandoned()) { return nullptr; } int mipLevelCount = dti->fMipMapLevelCount; SkASSERT(mipLevelCount >= 1); sk_sp colorSpace; if (dti->fColorSpaceSize) { colorSpace = SkColorSpace::Deserialize(dti->fColorSpace, dti->fColorSpaceSize); } SkImageInfo info = SkImageInfo::Make(dti->fWidth, dti->fHeight, dti->fColorType, dti->fAlphaType, colorSpace); if (mipLevelCount == 1) { SkPixmap pixmap; pixmap.reset(info, dti->fMipMapLevelData[0].fPixelData, dti->fMipMapLevelData[0].fRowBytes); // Pass nullptr for the |dstColorSpace|. This opts in to more lenient color space // verification. This is ok because we've already verified the color space in // getDeferredTextureImageData(). sk_sp proxy(GrUploadPixmapToTextureProxy( context->resourceProvider(), pixmap, budgeted, nullptr)); if (!proxy) { return nullptr; } return sk_make_sp(context, kNeedNewImageUniqueID, pixmap.alphaType(), std::move(proxy), std::move(colorSpace), budgeted); } else { std::unique_ptr texels(new GrMipLevel[mipLevelCount]); for (int i = 0; i < mipLevelCount; i++) { texels[i].fPixels = dti->fMipMapLevelData[i].fPixelData; texels[i].fRowBytes = dti->fMipMapLevelData[i].fRowBytes; } return SkImage::MakeTextureFromMipMap(context, info, texels.get(), mipLevelCount, SkBudgeted::kYes, dti->fColorMode); } } /////////////////////////////////////////////////////////////////////////////////////////////////// sk_sp SkImage::MakeTextureFromMipMap(GrContext* ctx, const SkImageInfo& info, const GrMipLevel texels[], int mipLevelCount, SkBudgeted budgeted, SkDestinationSurfaceColorMode colorMode) { SkASSERT(mipLevelCount >= 1); if (!ctx) { return nullptr; } sk_sp proxy(GrUploadMipMapToTextureProxy(ctx, info, texels, mipLevelCount, colorMode)); if (!proxy) { return nullptr; } SkASSERT(proxy->priv().isExact()); return sk_make_sp(ctx, kNeedNewImageUniqueID, info.alphaType(), std::move(proxy), info.refColorSpace(), budgeted); } sk_sp SkImage_Gpu::onMakeColorSpace(sk_sp target, SkColorType, SkTransferFunctionBehavior premulBehavior) const { if (SkTransferFunctionBehavior::kRespect == premulBehavior) { // TODO: Implement this. return nullptr; } sk_sp srcSpace = fColorSpace; if (!fColorSpace) { if (target->isSRGB()) { return sk_ref_sp(const_cast((SkImage*)this)); } srcSpace = SkColorSpace::MakeSRGB(); } auto xform = GrNonlinearColorSpaceXformEffect::Make(srcSpace.get(), target.get()); if (!xform) { return sk_ref_sp(const_cast(this)); } sk_sp renderTargetContext(fContext->makeDeferredRenderTargetContext( SkBackingFit::kExact, this->width(), this->height(), kRGBA_8888_GrPixelConfig, nullptr)); if (!renderTargetContext) { return nullptr; } GrPaint paint; paint.setPorterDuffXPFactory(SkBlendMode::kSrc); paint.addColorTextureProcessor(fProxy, nullptr, SkMatrix::I()); paint.addColorFragmentProcessor(std::move(xform)); const SkRect rect = SkRect::MakeIWH(this->width(), this->height()); renderTargetContext->drawRect(GrNoClip(), std::move(paint), GrAA::kNo, SkMatrix::I(), rect); if (!renderTargetContext->asTextureProxy()) { return nullptr; } // MDB: this call is okay bc we know 'renderTargetContext' was exact return sk_make_sp(fContext, kNeedNewImageUniqueID, fAlphaType, renderTargetContext->asTextureProxyRef(), std::move(target), fBudgeted); } bool SkImage_Gpu::onIsValid(GrContext* context) const { // The base class has already checked that context isn't abandoned (if it's not nullptr) if (fContext->abandoned()) { return false; } if (context && context != fContext) { return false; } return true; }