/* * Copyright 2012 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "SkBitmap.h" #include "SkBitmapCache.h" #include "SkCanvas.h" #include "SkColorSpace_Base.h" #include "SkCrossContextImageData.h" #include "SkData.h" #include "SkImageEncoder.h" #include "SkImageFilter.h" #include "SkImageFilterCache.h" #include "SkImageGenerator.h" #include "SkImagePriv.h" #include "SkImageShader.h" #include "SkImage_Base.h" #include "SkNextID.h" #include "SkPicture.h" #include "SkPixelRef.h" #include "SkPixelSerializer.h" #include "SkRGBAToYUV.h" #include "SkReadPixelsRec.h" #include "SkSpecialImage.h" #include "SkStream.h" #include "SkString.h" #include "SkSurface.h" #if SK_SUPPORT_GPU #include "GrTexture.h" #include "GrContext.h" #include "SkImage_Gpu.h" #endif SkImage::SkImage(int width, int height, uint32_t uniqueID) : fWidth(width) , fHeight(height) , fUniqueID(kNeedNewImageUniqueID == uniqueID ? SkNextID::ImageID() : uniqueID) { SkASSERT(width > 0); SkASSERT(height > 0); } bool SkImage::peekPixels(SkPixmap* pm) const { SkPixmap tmp; if (!pm) { pm = &tmp; } return as_IB(this)->onPeekPixels(pm); } bool SkImage::readPixels(const SkImageInfo& dstInfo, void* dstPixels, size_t dstRowBytes, int srcX, int srcY, CachingHint chint) const { return as_IB(this)->onReadPixels(dstInfo, dstPixels, dstRowBytes, srcX, srcY, chint); } bool SkImage::scalePixels(const SkPixmap& dst, SkFilterQuality quality, CachingHint chint) const { if (this->width() == dst.width() && this->height() == dst.height()) { return this->readPixels(dst, 0, 0, chint); } // Idea: If/when SkImageGenerator supports a native-scaling API (where the generator itself // can scale more efficiently) we should take advantage of it here. // SkBitmap bm; if (as_IB(this)->getROPixels(&bm, dst.info().colorSpace(), chint)) { SkPixmap pmap; // Note: By calling the pixmap scaler, we never cache the final result, so the chint // is (currently) only being applied to the getROPixels. If we get a request to // also attempt to cache the final (scaled) result, we would add that logic here. // return bm.peekPixels(&pmap) && pmap.scalePixels(dst, quality); } return false; } /////////////////////////////////////////////////////////////////////////////////////////////////// SkAlphaType SkImage::alphaType() const { return as_IB(this)->onAlphaType(); } SkColorSpace* SkImage::colorSpace() const { return as_IB(this)->onImageInfo().colorSpace(); } sk_sp SkImage::refColorSpace() const { return as_IB(this)->onImageInfo().refColorSpace(); } sk_sp SkImage::makeShader(SkShader::TileMode tileX, SkShader::TileMode tileY, const SkMatrix* localMatrix) const { return SkImageShader::Make(sk_ref_sp(const_cast(this)), tileX, tileY, localMatrix); } SkData* SkImage::encode(SkEncodedImageFormat type, int quality) const { SkBitmap bm; SkColorSpace* legacyColorSpace = nullptr; if (as_IB(this)->getROPixels(&bm, legacyColorSpace)) { SkDynamicMemoryWStream buf; return SkEncodeImage(&buf, bm, type, quality) ? buf.detachAsData().release() : nullptr; } return nullptr; } SkData* SkImage::encode(SkPixelSerializer* serializer) const { sk_sp encoded(this->refEncoded()); if (encoded && (!serializer || serializer->useEncodedData(encoded->data(), encoded->size()))) { return encoded.release(); } SkBitmap bm; SkPixmap pmap; SkColorSpace* legacyColorSpace = nullptr; if (as_IB(this)->getROPixels(&bm, legacyColorSpace) && bm.peekPixels(&pmap)) { if (serializer) { return serializer->encode(pmap); } else { SkDynamicMemoryWStream buf; return SkEncodeImage(&buf, pmap, SkEncodedImageFormat::kPNG, 100) ? buf.detachAsData().release() : nullptr; } } return nullptr; } SkData* SkImage::refEncoded() const { return as_IB(this)->onRefEncoded(); } sk_sp SkImage::MakeFromEncoded(sk_sp encoded, const SkIRect* subset) { if (nullptr == encoded || 0 == encoded->size()) { return nullptr; } return SkImage::MakeFromGenerator(SkImageGenerator::MakeFromEncoded(encoded), subset); } const char* SkImage::toString(SkString* str) const { str->appendf("image: (id:%d (%d, %d) %s)", this->uniqueID(), this->width(), this->height(), this->isOpaque() ? "opaque" : ""); return str->c_str(); } sk_sp SkImage::makeSubset(const SkIRect& subset) const { if (subset.isEmpty()) { return nullptr; } const SkIRect bounds = SkIRect::MakeWH(this->width(), this->height()); if (!bounds.contains(subset)) { return nullptr; } // optimization : return self if the subset == our bounds if (bounds == subset) { return sk_ref_sp(const_cast(this)); } return as_IB(this)->onMakeSubset(subset); } #if SK_SUPPORT_GPU GrTexture* SkImage::getTexture() const { return as_IB(this)->onGetTexture(); } bool SkImage::isTextureBacked() const { return SkToBool(as_IB(this)->peekProxy()); } GrBackendObject SkImage::getTextureHandle(bool flushPendingGrContextIO, GrSurfaceOrigin* origin) const { return as_IB(this)->onGetTextureHandle(flushPendingGrContextIO, origin); } #else GrTexture* SkImage::getTexture() const { return nullptr; } bool SkImage::isTextureBacked() const { return false; } GrBackendObject SkImage::getTextureHandle(bool, GrSurfaceOrigin*) const { return 0; } #endif /////////////////////////////////////////////////////////////////////////////// SkImage_Base::SkImage_Base(int width, int height, uint32_t uniqueID) : INHERITED(width, height, uniqueID) , fAddedToCache(false) {} SkImage_Base::~SkImage_Base() { if (fAddedToCache.load()) { SkNotifyBitmapGenIDIsStale(this->uniqueID()); } } bool SkImage_Base::onReadYUV8Planes(const SkISize sizes[3], void* const planes[3], const size_t rowBytes[3], SkYUVColorSpace colorSpace) const { return SkRGBAToYUV(this, sizes, planes, rowBytes, colorSpace); } /////////////////////////////////////////////////////////////////////////////////////////////////// bool SkImage::readPixels(const SkPixmap& pmap, int srcX, int srcY, CachingHint chint) const { return this->readPixels(pmap.info(), pmap.writable_addr(), pmap.rowBytes(), srcX, srcY, chint); } bool SkImage::readYUV8Planes(const SkISize sizes[3], void* const planes[3], const size_t rowBytes[3], SkYUVColorSpace colorSpace) const { return as_IB(this)->onReadYUV8Planes(sizes, planes, rowBytes, colorSpace); } /////////////////////////////////////////////////////////////////////////////////////////////////// sk_sp SkImage::MakeFromBitmap(const SkBitmap& bm) { SkPixelRef* pr = bm.pixelRef(); if (nullptr == pr) { return nullptr; } return SkMakeImageFromRasterBitmap(bm, kIfMutable_SkCopyPixelsMode); } bool SkImage::asLegacyBitmap(SkBitmap* bitmap, LegacyBitmapMode mode) const { return as_IB(this)->onAsLegacyBitmap(bitmap, mode); } bool SkImage_Base::onAsLegacyBitmap(SkBitmap* bitmap, LegacyBitmapMode mode) const { // As the base-class, all we can do is make a copy (regardless of mode). // Subclasses that want to be more optimal should override. SkImageInfo info = this->onImageInfo().makeColorType(kN32_SkColorType).makeColorSpace(nullptr); if (!bitmap->tryAllocPixels(info)) { return false; } if (!this->readPixels(bitmap->info(), bitmap->getPixels(), bitmap->rowBytes(), 0, 0)) { bitmap->reset(); return false; } if (kRO_LegacyBitmapMode == mode) { bitmap->setImmutable(); } return true; } sk_sp SkImage::MakeFromPicture(sk_sp picture, const SkISize& dimensions, const SkMatrix* matrix, const SkPaint* paint, BitDepth bitDepth, sk_sp colorSpace) { return MakeFromGenerator(SkImageGenerator::MakeFromPicture(dimensions, std::move(picture), matrix, paint, bitDepth, std::move(colorSpace))); } sk_sp SkImage::makeWithFilter(const SkImageFilter* filter, const SkIRect& subset, const SkIRect& clipBounds, SkIRect* outSubset, SkIPoint* offset) const { if (!filter || !outSubset || !offset || !this->bounds().contains(subset)) { return nullptr; } SkColorSpace* colorSpace = as_IB(this)->onImageInfo().colorSpace(); sk_sp srcSpecialImage = SkSpecialImage::MakeFromImage( subset, sk_ref_sp(const_cast(this)), colorSpace); if (!srcSpecialImage) { return nullptr; } sk_sp cache( SkImageFilterCache::Create(SkImageFilterCache::kDefaultTransientSize)); SkImageFilter::OutputProperties outputProperties(colorSpace); SkImageFilter::Context context(SkMatrix::I(), clipBounds, cache.get(), outputProperties); sk_sp result = filter->filterImage(srcSpecialImage.get(), context, offset); if (!result) { return nullptr; } *outSubset = SkIRect::MakeWH(result->width(), result->height()); if (!outSubset->intersect(clipBounds.makeOffset(-offset->x(), -offset->y()))) { return nullptr; } offset->fX += outSubset->x(); offset->fY += outSubset->y(); // Note that here we're returning the special image's entire backing store, loose padding // and all! return result->asImage(); } bool SkImage::isLazyGenerated() const { return as_IB(this)->onIsLazyGenerated(); } bool SkImage::isAlphaOnly() const { return as_IB(this)->onImageInfo().colorType() == kAlpha_8_SkColorType; } sk_sp SkImage::makeColorSpace(sk_sp target, SkTransferFunctionBehavior premulBehavior) const { if (SkTransferFunctionBehavior::kRespect == premulBehavior) { // TODO (msarett, brianosman): Implement this. return nullptr; } SkColorSpaceTransferFn fn; if (!target || !target->isNumericalTransferFn(&fn)) { return nullptr; } // No need to create a new image if: // (1) The color spaces are equal (nullptr is considered to be sRGB). // (2) The color type is kAlpha8. if ((!this->colorSpace() && target->isSRGB()) || SkColorSpace::Equals(this->colorSpace(), target.get()) || kAlpha_8_SkColorType == as_IB(this)->onImageInfo().colorType()) { return sk_ref_sp(const_cast(this)); } // TODO: We might consider making this a deferred conversion? return as_IB(this)->onMakeColorSpace(std::move(target)); } ////////////////////////////////////////////////////////////////////////////////////// #if !SK_SUPPORT_GPU sk_sp MakeTextureFromMipMap(GrContext*, const SkImageInfo&, const GrMipLevel* texels, int mipLevelCount, SkBudgeted, SkDestinationSurfaceColorMode) { return nullptr; } sk_sp SkImage::MakeFromTexture(GrContext*, const GrBackendTextureDesc&, SkAlphaType, sk_sp, TextureReleaseProc, ReleaseContext) { return nullptr; } sk_sp SkImage::MakeFromTexture(GrContext* ctx, const GrBackendTexture& tex, GrSurfaceOrigin origin, SkAlphaType at, sk_sp cs, TextureReleaseProc releaseP, ReleaseContext releaseC) { return nullptr; } size_t SkImage::getDeferredTextureImageData(const GrContextThreadSafeProxy&, const DeferredTextureImageUsageParams[], int paramCnt, void* buffer, SkColorSpace* dstColorSpace) const { return 0; } sk_sp SkImage::MakeFromDeferredTextureImageData(GrContext* context, const void*, SkBudgeted) { return nullptr; } sk_sp SkImage::MakeFromAdoptedTexture(GrContext*, const GrBackendTextureDesc&, SkAlphaType, sk_sp) { return nullptr; } sk_sp SkImage::MakeFromAdoptedTexture(GrContext* ctx, const GrBackendTexture& tex, GrSurfaceOrigin origin, SkAlphaType at, sk_sp cs) { return nullptr; } sk_sp SkImage::MakeFromYUVTexturesCopy(GrContext* ctx, SkYUVColorSpace space, const GrBackendObject yuvTextureHandles[3], const SkISize yuvSizes[3], GrSurfaceOrigin origin, sk_sp imageColorSpace) { return nullptr; } sk_sp SkImage::makeTextureImage(GrContext*, SkColorSpace* dstColorSpace) const { return nullptr; } std::unique_ptr SkCrossContextImageData::MakeFromEncoded( GrContext*, sk_sp encoded, SkColorSpace* dstColorSpace) { sk_sp image = SkImage::MakeFromEncoded(std::move(encoded)); if (!image) { return nullptr; } // TODO: Force decode to raster here? return std::unique_ptr(new SkCCIDImage(std::move(image))); } sk_sp SkImage::MakeFromCrossContextImageData( GrContext*, std::unique_ptr ccid) { return ccid->makeImage(nullptr); } sk_sp SkImage::makeNonTextureImage() const { return sk_ref_sp(const_cast(this)); } #endif /////////////////////////////////////////////////////////////////////////////////////////////////// sk_sp MakeTextureFromMipMap(GrContext*, const SkImageInfo&, const GrMipLevel* texels, int mipLevelCount, SkBudgeted) { return nullptr; } /////////////////////////////////////////////////////////////////////////////////////////////////// #include "SkImageDeserializer.h" sk_sp SkImageDeserializer::makeFromData(SkData* data, const SkIRect* subset) { return SkImage::MakeFromEncoded(sk_ref_sp(data), subset); } sk_sp SkImageDeserializer::makeFromMemory(const void* data, size_t length, const SkIRect* subset) { return SkImage::MakeFromEncoded(SkData::MakeWithCopy(data, length), subset); } /////////////////////////////////////////////////////////////////////////////////////////////////// bool SkImage_pinAsTexture(const SkImage* image, GrContext* ctx) { SkASSERT(image); SkASSERT(ctx); return as_IB(image)->onPinAsTexture(ctx); } void SkImage_unpinAsTexture(const SkImage* image, GrContext* ctx) { SkASSERT(image); SkASSERT(ctx); as_IB(image)->onUnpinAsTexture(ctx); } /////////////////////////////////////////////////////////////////////////////////////////////////// sk_sp SkImageMakeRasterCopyAndAssignColorSpace(const SkImage* src, SkColorSpace* colorSpace) { // Read the pixels out of the source image, with no conversion SkImageInfo info = as_IB(src)->onImageInfo(); if (kUnknown_SkColorType == info.colorType()) { SkDEBUGFAIL("Unexpected color type"); return nullptr; } size_t rowBytes = info.minRowBytes(); size_t size = info.getSafeSize(rowBytes); auto data = SkData::MakeUninitialized(size); if (!data) { return nullptr; } SkPixmap pm(info, data->writable_data(), rowBytes); if (!src->readPixels(pm, 0, 0, SkImage::kDisallow_CachingHint)) { return nullptr; } // Wrap them in a new image with a different color space return SkImage::MakeRasterData(info.makeColorSpace(sk_ref_sp(colorSpace)), data, rowBytes); }