/* * Copyright 2016 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "GrVkUniformHandler.h" #include "glsl/GrGLSLProgramBuilder.h" // To determine whether a current offset is aligned, we can just 'and' the lowest bits with the // alignment mask. A value of 0 means aligned, any other value is how many bytes past alignment we // are. This works since all alignments are powers of 2. The mask is always (alignment - 1). // This alignment mask will give correct alignments for using the std430 block layout. If you want // the std140 alignment, you can use this, but then make sure if you have an array type it is // aligned to 16 bytes (i.e. has mask of 0xF). uint32_t grsltype_to_alignment_mask(GrSLType type) { SkASSERT(GrSLTypeIsFloatType(type)); static const uint32_t kAlignments[kGrSLTypeCount] = { 0x0, // kVoid_GrSLType, should never return this 0x3, // kFloat_GrSLType 0x7, // kVec2f_GrSLType 0xF, // kVec3f_GrSLType 0xF, // kVec4f_GrSLType 0x7, // kMat22f_GrSLType 0xF, // kMat33f_GrSLType 0xF, // kMat44f_GrSLType 0x0, // Sampler2D_GrSLType, should never return this 0x0, // SamplerExternal_GrSLType, should never return this }; GR_STATIC_ASSERT(0 == kVoid_GrSLType); GR_STATIC_ASSERT(1 == kFloat_GrSLType); GR_STATIC_ASSERT(2 == kVec2f_GrSLType); GR_STATIC_ASSERT(3 == kVec3f_GrSLType); GR_STATIC_ASSERT(4 == kVec4f_GrSLType); GR_STATIC_ASSERT(5 == kMat22f_GrSLType); GR_STATIC_ASSERT(6 == kMat33f_GrSLType); GR_STATIC_ASSERT(7 == kMat44f_GrSLType); GR_STATIC_ASSERT(8 == kSampler2D_GrSLType); GR_STATIC_ASSERT(9 == kSamplerExternal_GrSLType); GR_STATIC_ASSERT(SK_ARRAY_COUNT(kAlignments) == kGrSLTypeCount); return kAlignments[type]; } /** Returns the size in bytes taken up in vulkanbuffers for floating point GrSLTypes. For non floating point type returns 0 */ static inline uint32_t grsltype_to_vk_size(GrSLType type) { SkASSERT(GrSLTypeIsFloatType(type)); SkASSERT(kMat22f_GrSLType != type); // TODO: handle mat2 differences between std140 and std430. static const uint32_t kSizes[] = { 0, // kVoid_GrSLType sizeof(float), // kFloat_GrSLType 2 * sizeof(float), // kVec2f_GrSLType 3 * sizeof(float), // kVec3f_GrSLType 4 * sizeof(float), // kVec4f_GrSLType 8 * sizeof(float), // kMat22f_GrSLType. TODO: this will be 4 * szof(float) on std430. 12 * sizeof(float), // kMat33f_GrSLType 16 * sizeof(float), // kMat44f_GrSLType 0, // kSampler2D_GrSLType 0, // kSamplerExternal_GrSLType 0, // kSampler2DRect_GrSLType 0, // kBool_GrSLType 0, // kInt_GrSLType 0, // kUint_GrSLType }; return kSizes[type]; GR_STATIC_ASSERT(0 == kVoid_GrSLType); GR_STATIC_ASSERT(1 == kFloat_GrSLType); GR_STATIC_ASSERT(2 == kVec2f_GrSLType); GR_STATIC_ASSERT(3 == kVec3f_GrSLType); GR_STATIC_ASSERT(4 == kVec4f_GrSLType); GR_STATIC_ASSERT(5 == kMat22f_GrSLType); GR_STATIC_ASSERT(6 == kMat33f_GrSLType); GR_STATIC_ASSERT(7 == kMat44f_GrSLType); GR_STATIC_ASSERT(8 == kSampler2D_GrSLType); GR_STATIC_ASSERT(9 == kSamplerExternal_GrSLType); GR_STATIC_ASSERT(10 == kSampler2DRect_GrSLType); GR_STATIC_ASSERT(11 == kBool_GrSLType); GR_STATIC_ASSERT(12 == kInt_GrSLType); GR_STATIC_ASSERT(13 == kUint_GrSLType); GR_STATIC_ASSERT(SK_ARRAY_COUNT(kSizes) == kGrSLTypeCount); } // Given the current offset into the ubo, calculate the offset for the uniform we're trying to add // taking into consideration all alignment requirements. The uniformOffset is set to the offset for // the new uniform, and currentOffset is updated to be the offset to the end of the new uniform. void get_ubo_aligned_offset(uint32_t* uniformOffset, uint32_t* currentOffset, GrSLType type, int arrayCount) { uint32_t alignmentMask = grsltype_to_alignment_mask(type); // We want to use the std140 layout here, so we must make arrays align to 16 bytes. SkASSERT(type != kMat22f_GrSLType); // TODO: support mat2. if (arrayCount) { alignmentMask = 0xF; } uint32_t offsetDiff = *currentOffset & alignmentMask; if (offsetDiff != 0) { offsetDiff = alignmentMask - offsetDiff + 1; } *uniformOffset = *currentOffset + offsetDiff; SkASSERT(sizeof(float) == 4); if (arrayCount) { uint32_t elementSize = SkTMax(16, grsltype_to_vk_size(type)); SkASSERT(0 == (elementSize & 0xF)); *currentOffset = *uniformOffset + elementSize * arrayCount; } else { *currentOffset = *uniformOffset + grsltype_to_vk_size(type); } } GrGLSLUniformHandler::UniformHandle GrVkUniformHandler::internalAddUniformArray( uint32_t visibility, GrSLType type, GrSLPrecision precision, const char* name, bool mangleName, int arrayCount, const char** outName) { SkASSERT(name && strlen(name)); SkDEBUGCODE(static const uint32_t kVisibilityMask = kVertex_GrShaderFlag|kFragment_GrShaderFlag); SkASSERT(0 == (~kVisibilityMask & visibility)); SkASSERT(0 != visibility); SkASSERT(kDefault_GrSLPrecision == precision || GrSLTypeIsFloatType(type)); UniformInfo& uni = fUniforms.push_back(); uni.fVariable.setType(type); // TODO this is a bit hacky, lets think of a better way. Basically we need to be able to use // the uniform view matrix name in the GP, and the GP is immutable so it has to tell the PB // exactly what name it wants to use for the uniform view matrix. If we prefix anythings, then // the names will mismatch. I think the correct solution is to have all GPs which need the // uniform view matrix, they should upload the view matrix in their setData along with regular // uniforms. char prefix = 'u'; if ('u' == name[0]) { prefix = '\0'; } fProgramBuilder->nameVariable(uni.fVariable.accessName(), prefix, name, mangleName); uni.fVariable.setArrayCount(arrayCount); // For now asserting the the visibility is either only vertex or only fragment SkASSERT(kVertex_GrShaderFlag == visibility || kFragment_GrShaderFlag == visibility); uni.fVisibility = visibility; uni.fVariable.setPrecision(precision); if (GrSLTypeIsFloatType(type)) { // When outputing the GLSL, only the outer uniform block will get the Uniform modifier. Thus // we set the modifier to none for all uniforms declared inside the block. uni.fVariable.setTypeModifier(GrGLSLShaderVar::kNone_TypeModifier); uint32_t* currentOffset = kVertex_GrShaderFlag == visibility ? &fCurrentVertexUBOOffset : &fCurrentFragmentUBOOffset; get_ubo_aligned_offset(&uni.fUBOffset, currentOffset, type, arrayCount); uni.fSetNumber = kUniformBufferDescSet; uni.fBinding = kVertex_GrShaderFlag == visibility ? kVertexBinding : kFragBinding; if (outName) { *outName = uni.fVariable.c_str(); } } else { SkASSERT(type == kSampler2D_GrSLType); uni.fVariable.setTypeModifier(GrGLSLShaderVar::kUniform_TypeModifier); uni.fSetNumber = kSamplerDescSet; uni.fBinding = fCurrentSamplerBinding++; uni.fUBOffset = 0; // This value will be ignored, but initializing to avoid any errors. SkString layoutQualifier; layoutQualifier.appendf("set=%d, binding=%d", uni.fSetNumber, uni.fBinding); uni.fVariable.setLayoutQualifier(layoutQualifier.c_str()); } return GrGLSLUniformHandler::UniformHandle(fUniforms.count() - 1); } void GrVkUniformHandler::appendUniformDecls(GrShaderFlags visibility, SkString* out) const { SkTArray uniformBufferUniform; // Used to collect all the variables that will be place inside the uniform buffer SkString uniformsString; SkASSERT(kVertex_GrShaderFlag == visibility || kFragment_GrShaderFlag == visibility); uint32_t uniformBinding = (visibility == kVertex_GrShaderFlag) ? kVertexBinding : kFragBinding; for (int i = 0; i < fUniforms.count(); ++i) { const UniformInfo& localUniform = fUniforms[i]; if (visibility == localUniform.fVisibility) { if (GrSLTypeIsFloatType(localUniform.fVariable.getType())) { SkASSERT(uniformBinding == localUniform.fBinding); SkASSERT(kUniformBufferDescSet == localUniform.fSetNumber); localUniform.fVariable.appendDecl(fProgramBuilder->glslCaps(), &uniformsString); uniformsString.append(";\n"); } else { SkASSERT(localUniform.fVariable.getType() == kSampler2D_GrSLType); SkASSERT(kSamplerDescSet == localUniform.fSetNumber); localUniform.fVariable.appendDecl(fProgramBuilder->glslCaps(), out); out->append(";\n"); } } } if (!uniformsString.isEmpty()) { const char* stage = (visibility == kVertex_GrShaderFlag) ? "vertex" : "fragment"; out->appendf("layout (set=%d, binding=%d) uniform %sUniformBuffer\n{\n", kUniformBufferDescSet, uniformBinding, stage); out->appendf("%s\n};\n", uniformsString.c_str()); } }