/* * Copyright 2016 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "GrVkResourceProvider.h" #include "GrTextureParams.h" #include "GrVkCommandBuffer.h" #include "GrVkCopyPipeline.h" #include "GrVkGLSLSampler.h" #include "GrVkPipeline.h" #include "GrVkRenderTarget.h" #include "GrVkSampler.h" #include "GrVkUniformBuffer.h" #include "GrVkUtil.h" #ifdef SK_TRACE_VK_RESOURCES GrVkResource::Trace GrVkResource::fTrace; uint32_t GrVkResource::fKeyCounter = 0; #endif GrVkResourceProvider::GrVkResourceProvider(GrVkGpu* gpu) : fGpu(gpu) , fPipelineCache(VK_NULL_HANDLE) { fPipelineStateCache = new PipelineStateCache(gpu); } GrVkResourceProvider::~GrVkResourceProvider() { SkASSERT(0 == fRenderPassArray.count()); SkASSERT(VK_NULL_HANDLE == fPipelineCache); delete fPipelineStateCache; } void GrVkResourceProvider::init() { VkPipelineCacheCreateInfo createInfo; memset(&createInfo, 0, sizeof(VkPipelineCacheCreateInfo)); createInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_CACHE_CREATE_INFO; createInfo.pNext = nullptr; createInfo.flags = 0; createInfo.initialDataSize = 0; createInfo.pInitialData = nullptr; VkResult result = GR_VK_CALL(fGpu->vkInterface(), CreatePipelineCache(fGpu->device(), &createInfo, nullptr, &fPipelineCache)); SkASSERT(VK_SUCCESS == result); if (VK_SUCCESS != result) { fPipelineCache = VK_NULL_HANDLE; } // Init uniform descriptor objects fDescriptorSetManagers.emplace_back(fGpu, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER); SkASSERT(1 == fDescriptorSetManagers.count()); fUniformDSHandle = GrVkDescriptorSetManager::Handle(0); } GrVkPipeline* GrVkResourceProvider::createPipeline(const GrPipeline& pipeline, const GrStencilSettings& stencil, const GrPrimitiveProcessor& primProc, VkPipelineShaderStageCreateInfo* shaderStageInfo, int shaderStageCount, GrPrimitiveType primitiveType, const GrVkRenderPass& renderPass, VkPipelineLayout layout) { return GrVkPipeline::Create(fGpu, pipeline, stencil, primProc, shaderStageInfo, shaderStageCount, primitiveType, renderPass, layout, fPipelineCache); } GrVkCopyPipeline* GrVkResourceProvider::findOrCreateCopyPipeline( const GrVkRenderTarget* dst, VkPipelineShaderStageCreateInfo* shaderStageInfo, VkPipelineLayout pipelineLayout) { // Find or Create a compatible pipeline GrVkCopyPipeline* pipeline = nullptr; for (int i = 0; i < fCopyPipelines.count() && !pipeline; ++i) { if (fCopyPipelines[i]->isCompatible(*dst->simpleRenderPass())) { pipeline = fCopyPipelines[i]; } } if (!pipeline) { pipeline = GrVkCopyPipeline::Create(fGpu, shaderStageInfo, pipelineLayout, dst->numColorSamples(), *dst->simpleRenderPass(), fPipelineCache); fCopyPipelines.push_back(pipeline); } SkASSERT(pipeline); pipeline->ref(); return pipeline; } // To create framebuffers, we first need to create a simple RenderPass that is // only used for framebuffer creation. When we actually render we will create // RenderPasses as needed that are compatible with the framebuffer. const GrVkRenderPass* GrVkResourceProvider::findCompatibleRenderPass(const GrVkRenderTarget& target, CompatibleRPHandle* compatibleHandle) { for (int i = 0; i < fRenderPassArray.count(); ++i) { if (fRenderPassArray[i].isCompatible(target)) { const GrVkRenderPass* renderPass = fRenderPassArray[i].getCompatibleRenderPass(); renderPass->ref(); if (compatibleHandle) { *compatibleHandle = CompatibleRPHandle(i); } return renderPass; } } const GrVkRenderPass* renderPass = fRenderPassArray.emplace_back(fGpu, target).getCompatibleRenderPass(); renderPass->ref(); if (compatibleHandle) { *compatibleHandle = CompatibleRPHandle(fRenderPassArray.count() - 1); } return renderPass; } const GrVkRenderPass* GrVkResourceProvider::findCompatibleRenderPass(const CompatibleRPHandle& compatibleHandle) { SkASSERT(compatibleHandle.isValid() && compatibleHandle.toIndex() < fRenderPassArray.count()); int index = compatibleHandle.toIndex(); const GrVkRenderPass* renderPass = fRenderPassArray[index].getCompatibleRenderPass(); renderPass->ref(); return renderPass; } const GrVkRenderPass* GrVkResourceProvider::findRenderPass( const GrVkRenderTarget& target, const GrVkRenderPass::LoadStoreOps& colorOps, const GrVkRenderPass::LoadStoreOps& stencilOps, CompatibleRPHandle* compatibleHandle) { GrVkResourceProvider::CompatibleRPHandle tempRPHandle; GrVkResourceProvider::CompatibleRPHandle* pRPHandle = compatibleHandle ? compatibleHandle : &tempRPHandle; *pRPHandle = target.compatibleRenderPassHandle(); // This will get us the handle to (and possible create) the compatible set for the specific // GrVkRenderPass we are looking for. this->findCompatibleRenderPass(target, compatibleHandle); return this->findRenderPass(*pRPHandle, colorOps, stencilOps); } const GrVkRenderPass* GrVkResourceProvider::findRenderPass(const CompatibleRPHandle& compatibleHandle, const GrVkRenderPass::LoadStoreOps& colorOps, const GrVkRenderPass::LoadStoreOps& stencilOps) { SkASSERT(compatibleHandle.isValid() && compatibleHandle.toIndex() < fRenderPassArray.count()); CompatibleRenderPassSet& compatibleSet = fRenderPassArray[compatibleHandle.toIndex()]; const GrVkRenderPass* renderPass = compatibleSet.getRenderPass(fGpu, colorOps, stencilOps); renderPass->ref(); return renderPass; } GrVkDescriptorPool* GrVkResourceProvider::findOrCreateCompatibleDescriptorPool( VkDescriptorType type, uint32_t count) { return new GrVkDescriptorPool(fGpu, type, count); } GrVkSampler* GrVkResourceProvider::findOrCreateCompatibleSampler(const GrTextureParams& params, uint32_t mipLevels) { GrVkSampler* sampler = fSamplers.find(GrVkSampler::GenerateKey(params, mipLevels)); if (!sampler) { sampler = GrVkSampler::Create(fGpu, params, mipLevels); fSamplers.add(sampler); } SkASSERT(sampler); sampler->ref(); return sampler; } sk_sp GrVkResourceProvider::findOrCreateCompatiblePipelineState( const GrPipeline& pipeline, const GrPrimitiveProcessor& proc, GrPrimitiveType primitiveType, const GrVkRenderPass& renderPass) { return fPipelineStateCache->refPipelineState(pipeline, proc, primitiveType, renderPass); } void GrVkResourceProvider::getSamplerDescriptorSetHandle(const GrVkUniformHandler& uniformHandler, GrVkDescriptorSetManager::Handle* handle) { SkASSERT(handle); for (int i = 0; i < fDescriptorSetManagers.count(); ++i) { if (fDescriptorSetManagers[i].isCompatible(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, &uniformHandler)) { *handle = GrVkDescriptorSetManager::Handle(i); return; } } fDescriptorSetManagers.emplace_back(fGpu, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, &uniformHandler); *handle = GrVkDescriptorSetManager::Handle(fDescriptorSetManagers.count() - 1); } void GrVkResourceProvider::getSamplerDescriptorSetHandle(const SkTArray& visibilities, GrVkDescriptorSetManager::Handle* handle) { SkASSERT(handle); for (int i = 0; i < fDescriptorSetManagers.count(); ++i) { if (fDescriptorSetManagers[i].isCompatible(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, visibilities)) { *handle = GrVkDescriptorSetManager::Handle(i); return; } } fDescriptorSetManagers.emplace_back(fGpu, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, visibilities); *handle = GrVkDescriptorSetManager::Handle(fDescriptorSetManagers.count() - 1); } VkDescriptorSetLayout GrVkResourceProvider::getUniformDSLayout() const { SkASSERT(fUniformDSHandle.isValid()); return fDescriptorSetManagers[fUniformDSHandle.toIndex()].layout(); } VkDescriptorSetLayout GrVkResourceProvider::getSamplerDSLayout( const GrVkDescriptorSetManager::Handle& handle) const { SkASSERT(handle.isValid()); return fDescriptorSetManagers[handle.toIndex()].layout(); } const GrVkDescriptorSet* GrVkResourceProvider::getUniformDescriptorSet() { SkASSERT(fUniformDSHandle.isValid()); return fDescriptorSetManagers[fUniformDSHandle.toIndex()].getDescriptorSet(fGpu, fUniformDSHandle); } const GrVkDescriptorSet* GrVkResourceProvider::getSamplerDescriptorSet( const GrVkDescriptorSetManager::Handle& handle) { SkASSERT(handle.isValid()); return fDescriptorSetManagers[handle.toIndex()].getDescriptorSet(fGpu, handle); } void GrVkResourceProvider::recycleDescriptorSet(const GrVkDescriptorSet* descSet, const GrVkDescriptorSetManager::Handle& handle) { SkASSERT(descSet); SkASSERT(handle.isValid()); int managerIdx = handle.toIndex(); SkASSERT(managerIdx < fDescriptorSetManagers.count()); fDescriptorSetManagers[managerIdx].recycleDescriptorSet(descSet); } GrVkPrimaryCommandBuffer* GrVkResourceProvider::findOrCreatePrimaryCommandBuffer() { GrVkPrimaryCommandBuffer* cmdBuffer = nullptr; int count = fAvailableCommandBuffers.count(); if (count > 0) { cmdBuffer = fAvailableCommandBuffers[count - 1]; SkASSERT(cmdBuffer->finished(fGpu)); fAvailableCommandBuffers.removeShuffle(count - 1); } else { cmdBuffer = GrVkPrimaryCommandBuffer::Create(fGpu, fGpu->cmdPool()); } fActiveCommandBuffers.push_back(cmdBuffer); cmdBuffer->ref(); return cmdBuffer; } void GrVkResourceProvider::checkCommandBuffers() { for (int i = fActiveCommandBuffers.count()-1; i >= 0; --i) { if (fActiveCommandBuffers[i]->finished(fGpu)) { GrVkPrimaryCommandBuffer* cmdBuffer = fActiveCommandBuffers[i]; cmdBuffer->reset(fGpu); fAvailableCommandBuffers.push_back(cmdBuffer); fActiveCommandBuffers.removeShuffle(i); } } } GrVkSecondaryCommandBuffer* GrVkResourceProvider::findOrCreateSecondaryCommandBuffer() { GrVkSecondaryCommandBuffer* cmdBuffer = nullptr; int count = fAvailableSecondaryCommandBuffers.count(); if (count > 0) { cmdBuffer = fAvailableSecondaryCommandBuffers[count-1]; fAvailableSecondaryCommandBuffers.removeShuffle(count - 1); } else { cmdBuffer = GrVkSecondaryCommandBuffer::Create(fGpu, fGpu->cmdPool()); } return cmdBuffer; } void GrVkResourceProvider::recycleSecondaryCommandBuffer(GrVkSecondaryCommandBuffer* cb) { cb->reset(fGpu); fAvailableSecondaryCommandBuffers.push_back(cb); } const GrVkResource* GrVkResourceProvider::findOrCreateStandardUniformBufferResource() { const GrVkResource* resource = nullptr; int count = fAvailableUniformBufferResources.count(); if (count > 0) { resource = fAvailableUniformBufferResources[count - 1]; fAvailableUniformBufferResources.removeShuffle(count - 1); } else { resource = GrVkUniformBuffer::CreateResource(fGpu, GrVkUniformBuffer::kStandardSize); } return resource; } void GrVkResourceProvider::recycleStandardUniformBufferResource(const GrVkResource* resource) { fAvailableUniformBufferResources.push_back(resource); } void GrVkResourceProvider::destroyResources() { // release our active command buffers for (int i = 0; i < fActiveCommandBuffers.count(); ++i) { SkASSERT(fActiveCommandBuffers[i]->finished(fGpu)); SkASSERT(fActiveCommandBuffers[i]->unique()); fActiveCommandBuffers[i]->reset(fGpu); fActiveCommandBuffers[i]->unref(fGpu); } fActiveCommandBuffers.reset(); // release our available command buffers for (int i = 0; i < fAvailableCommandBuffers.count(); ++i) { SkASSERT(fAvailableCommandBuffers[i]->finished(fGpu)); SkASSERT(fAvailableCommandBuffers[i]->unique()); fAvailableCommandBuffers[i]->unref(fGpu); } fAvailableCommandBuffers.reset(); // release our available secondary command buffers for (int i = 0; i < fAvailableSecondaryCommandBuffers.count(); ++i) { SkASSERT(fAvailableSecondaryCommandBuffers[i]->unique()); fAvailableSecondaryCommandBuffers[i]->unref(fGpu); } fAvailableSecondaryCommandBuffers.reset(); // Release all copy pipelines for (int i = 0; i < fCopyPipelines.count(); ++i) { fCopyPipelines[i]->unref(fGpu); } // loop over all render pass sets to make sure we destroy all the internal VkRenderPasses for (int i = 0; i < fRenderPassArray.count(); ++i) { fRenderPassArray[i].releaseResources(fGpu); } fRenderPassArray.reset(); // Iterate through all store GrVkSamplers and unref them before resetting the hash. SkTDynamicHash::Iter iter(&fSamplers); for (; !iter.done(); ++iter) { (*iter).unref(fGpu); } fSamplers.reset(); fPipelineStateCache->release(); GR_VK_CALL(fGpu->vkInterface(), DestroyPipelineCache(fGpu->device(), fPipelineCache, nullptr)); fPipelineCache = VK_NULL_HANDLE; // We must release/destroy all command buffers and pipeline states before releasing the // GrVkDescriptorSetManagers for (int i = 0; i < fDescriptorSetManagers.count(); ++i) { fDescriptorSetManagers[i].release(fGpu); } fDescriptorSetManagers.reset(); // release our uniform buffers for (int i = 0; i < fAvailableUniformBufferResources.count(); ++i) { SkASSERT(fAvailableUniformBufferResources[i]->unique()); fAvailableUniformBufferResources[i]->unref(fGpu); } fAvailableUniformBufferResources.reset(); } void GrVkResourceProvider::abandonResources() { // release our active command buffers for (int i = 0; i < fActiveCommandBuffers.count(); ++i) { SkASSERT(fActiveCommandBuffers[i]->finished(fGpu)); SkASSERT(fActiveCommandBuffers[i]->unique()); fActiveCommandBuffers[i]->unrefAndAbandon(); } fActiveCommandBuffers.reset(); // release our available command buffers for (int i = 0; i < fAvailableCommandBuffers.count(); ++i) { SkASSERT(fAvailableCommandBuffers[i]->finished(fGpu)); SkASSERT(fAvailableCommandBuffers[i]->unique()); fAvailableCommandBuffers[i]->unrefAndAbandon(); } fAvailableCommandBuffers.reset(); // release our available secondary command buffers for (int i = 0; i < fAvailableSecondaryCommandBuffers.count(); ++i) { SkASSERT(fAvailableSecondaryCommandBuffers[i]->unique()); fAvailableSecondaryCommandBuffers[i]->unrefAndAbandon(); } fAvailableSecondaryCommandBuffers.reset(); // Abandon all copy pipelines for (int i = 0; i < fCopyPipelines.count(); ++i) { fCopyPipelines[i]->unrefAndAbandon(); } // loop over all render pass sets to make sure we destroy all the internal VkRenderPasses for (int i = 0; i < fRenderPassArray.count(); ++i) { fRenderPassArray[i].abandonResources(); } fRenderPassArray.reset(); // Iterate through all store GrVkSamplers and unrefAndAbandon them before resetting the hash. SkTDynamicHash::Iter iter(&fSamplers); for (; !iter.done(); ++iter) { (*iter).unrefAndAbandon(); } fSamplers.reset(); fPipelineStateCache->abandon(); fPipelineCache = VK_NULL_HANDLE; // We must abandon all command buffers and pipeline states before abandoning the // GrVkDescriptorSetManagers for (int i = 0; i < fDescriptorSetManagers.count(); ++i) { fDescriptorSetManagers[i].abandon(); } fDescriptorSetManagers.reset(); // release our uniform buffers for (int i = 0; i < fAvailableUniformBufferResources.count(); ++i) { SkASSERT(fAvailableUniformBufferResources[i]->unique()); fAvailableUniformBufferResources[i]->unrefAndAbandon(); } fAvailableUniformBufferResources.reset(); } //////////////////////////////////////////////////////////////////////////////// GrVkResourceProvider::CompatibleRenderPassSet::CompatibleRenderPassSet( const GrVkGpu* gpu, const GrVkRenderTarget& target) : fLastReturnedIndex(0) { fRenderPasses.emplace_back(new GrVkRenderPass()); fRenderPasses[0]->initSimple(gpu, target); } bool GrVkResourceProvider::CompatibleRenderPassSet::isCompatible( const GrVkRenderTarget& target) const { // The first GrVkRenderpass should always exists since we create the basic load store // render pass on create SkASSERT(fRenderPasses[0]); return fRenderPasses[0]->isCompatible(target); } GrVkRenderPass* GrVkResourceProvider::CompatibleRenderPassSet::getRenderPass( const GrVkGpu* gpu, const GrVkRenderPass::LoadStoreOps& colorOps, const GrVkRenderPass::LoadStoreOps& stencilOps) { for (int i = 0; i < fRenderPasses.count(); ++i) { int idx = (i + fLastReturnedIndex) % fRenderPasses.count(); if (fRenderPasses[idx]->equalLoadStoreOps(colorOps, stencilOps)) { fLastReturnedIndex = idx; return fRenderPasses[idx]; } } GrVkRenderPass* renderPass = fRenderPasses.emplace_back(new GrVkRenderPass()); renderPass->init(gpu, *this->getCompatibleRenderPass(), colorOps, stencilOps); fLastReturnedIndex = fRenderPasses.count() - 1; return renderPass; } void GrVkResourceProvider::CompatibleRenderPassSet::releaseResources(const GrVkGpu* gpu) { for (int i = 0; i < fRenderPasses.count(); ++i) { if (fRenderPasses[i]) { fRenderPasses[i]->unref(gpu); fRenderPasses[i] = nullptr; } } } void GrVkResourceProvider::CompatibleRenderPassSet::abandonResources() { for (int i = 0; i < fRenderPasses.count(); ++i) { if (fRenderPasses[i]) { fRenderPasses[i]->unrefAndAbandon(); fRenderPasses[i] = nullptr; } } }