/* * Copyright 2016 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #ifndef GrVkPipelineState_DEFINED #define GrVkPipelineState_DEFINED #include "GrVkImage.h" #include "GrVkProgramDesc.h" #include "GrVkPipelineStateDataManager.h" #include "glsl/GrGLSLProgramBuilder.h" #include "vk/GrVkDefines.h" class GrPipeline; class GrVkCommandBuffer; class GrVkDescriptorPool; class GrVkGpu; class GrVkImageView; class GrVkPipeline; class GrVkSampler; class GrVkUniformBuffer; /** * This class holds onto a GrVkPipeline object that we use for draws. Besides storing the acutal * GrVkPipeline object, this class is also responsible handling all uniforms, descriptors, samplers, * and other similar objects that are used along with the VkPipeline in the draw. This includes both * allocating and freeing these objects, as well as updating their values. */ class GrVkPipelineState : public SkRefCnt { public: typedef GrGLSLProgramBuilder::BuiltinUniformHandles BuiltinUniformHandles; ~GrVkPipelineState(); GrVkPipeline* vkPipeline() const { return fPipeline; } void setData(GrVkGpu*, const GrPrimitiveProcessor&, const GrPipeline&); void bind(const GrVkGpu* gpu, GrVkCommandBuffer* commandBuffer); void addUniformResources(GrVkCommandBuffer&); void freeGPUResources(const GrVkGpu* gpu); // This releases resources that only a given instance of a GrVkPipelineState needs to hold onto // and don't need to survive across new uses of the GrVkPipelineState. void freeTempResources(const GrVkGpu* gpu); void abandonGPUResources(); // The key is composed of two parts: // 1. uint32_t for total key length // 2. Pipeline state data enum StateKeyOffsets { // Part 1. kLength_StateKeyOffset = 0, // Part 2. kData_StateKeyOffset = kLength_StateKeyOffset + sizeof(uint32_t), }; static void BuildStateKey(const GrPipeline&, GrPrimitiveType primitiveType, SkTArray* key); /** * For Vulkan we want to cache the entire VkPipeline for reuse of draws. The Desc here holds all * the information needed to differentiate one pipeline from another. * * The GrVkProgramDesc contains all the information need to create the actual shaders for the * pipeline. * * The fStateKey is used to store all the inputs for the rest of the state stored on the * pipeline. This includes stencil settings, blending information, render pass format, draw face * information, and primitive type. Note that some state is set dynamically on the pipeline for * each draw and thus is not included in this descriptor. This includes the viewport, scissor, * and blend constant. * * A checksum which includes the fProgramDesc and fStateKey is included at the top of the Desc * for caching purposes and faster equality checks. */ struct Desc { uint32_t fChecksum; GrVkProgramDesc fProgramDesc; enum { kRenderPassKeyAlloc = 12, // This is typical color attachment with no stencil or msaa kStencilKeyAlloc = sizeof(GrStencilSettings), kDrawFaceKeyAlloc = 4, kBlendingKeyAlloc = 4, kPrimitiveTypeKeyAlloc = 4, kPreAllocSize = kData_StateKeyOffset + kRenderPassKeyAlloc + kStencilKeyAlloc + kDrawFaceKeyAlloc + kBlendingKeyAlloc + kPrimitiveTypeKeyAlloc, }; SkSTArray fStateKey; bool operator== (const Desc& that) const { if (fChecksum != that.fChecksum || fProgramDesc != that.fProgramDesc) { return false; } // We store the keyLength at the start of fVkKey. Thus we don't have to worry about // different length keys since we will fail on the comparison immediately. Therefore we // just use this PipelineDesc to get the length to iterate over. int keyLength = fStateKey.count(); SkASSERT(SkIsAlign4(keyLength)); int l = keyLength >> 2; const uint32_t* aKey = reinterpret_cast(fStateKey.begin()); const uint32_t* bKey = reinterpret_cast(that.fStateKey.begin()); for (int i = 0; i < l; ++i) { if (aKey[i] != bKey[i]) { return false; } } return true; } static bool Less(const Desc& a, const Desc& b) { if (a.fChecksum != b.fChecksum) { return a.fChecksum < b.fChecksum ? true : false; } bool progDescLess = GrProgramDesc::Less(a.fProgramDesc, b.fProgramDesc); if (progDescLess || a.fProgramDesc != b.fProgramDesc) { return progDescLess; } int keyLength = a.fStateKey.count(); SkASSERT(SkIsAlign4(keyLength)); int l = keyLength >> 2; const uint32_t* aKey = reinterpret_cast(a.fStateKey.begin()); const uint32_t* bKey = reinterpret_cast(b.fStateKey.begin()); for (int i = 0; i < l; ++i) { if (aKey[i] != bKey[i]) { return aKey[i] < bKey[i] ? true : false; } } return false; } }; const Desc& getDesc() { return fDesc; } private: typedef GrVkPipelineStateDataManager::UniformInfoArray UniformInfoArray; typedef GrGLSLProgramDataManager::UniformHandle UniformHandle; GrVkPipelineState(GrVkGpu* gpu, const GrVkPipelineState::Desc&, GrVkPipeline* pipeline, VkPipelineLayout layout, VkDescriptorSetLayout dsLayout[2], const BuiltinUniformHandles& builtinUniformHandles, const UniformInfoArray& uniforms, uint32_t vertexUniformSize, uint32_t fragmentUniformSize, uint32_t numSamplers, GrGLSLPrimitiveProcessor* geometryProcessor, GrGLSLXferProcessor* xferProcessor, const GrGLSLFragProcs& fragmentProcessors); // Each pool will manage one type of descriptor. Thus each descriptor set we use will all be of // one VkDescriptorType. struct DescriptorPoolManager { DescriptorPoolManager(VkDescriptorSetLayout layout, VkDescriptorType type, uint32_t descCount, GrVkGpu* gpu) : fDescLayout(layout) , fDescType(type) , fCurrentDescriptorSet(0) , fPool(nullptr) { SkASSERT(descCount < (SK_MaxU32 >> 2)); fMaxDescriptorSets = descCount << 2; this->getNewPool(gpu); } ~DescriptorPoolManager() { SkASSERT(!fDescLayout); SkASSERT(!fPool); } void getNewDescriptorSet(GrVkGpu* gpu, VkDescriptorSet* ds); void freeGPUResources(const GrVkGpu* gpu); void abandonGPUResources(); VkDescriptorSetLayout fDescLayout; VkDescriptorType fDescType; uint32_t fMaxDescriptorSets; uint32_t fCurrentDescriptorSet; GrVkDescriptorPool* fPool; private: void getNewPool(GrVkGpu* gpu); }; void writeUniformBuffers(const GrVkGpu* gpu); void writeSamplers(GrVkGpu* gpu, const SkTArray& textureBindings); /** * We use the RT's size and origin to adjust from Skia device space to vulkan normalized device * space and to make device space positions have the correct origin for processors that require * them. */ struct RenderTargetState { SkISize fRenderTargetSize; GrSurfaceOrigin fRenderTargetOrigin; RenderTargetState() { this->invalidate(); } void invalidate() { fRenderTargetSize.fWidth = -1; fRenderTargetSize.fHeight = -1; fRenderTargetOrigin = (GrSurfaceOrigin)-1; } /** * Gets a vec4 that adjusts the position from Skia device coords to Vulkans normalized device * coords. Assuming the transformed position, pos, is a homogeneous vec3, the vec, v, is * applied as such: * pos.x = dot(v.xy, pos.xz) * pos.y = dot(v.zw, pos.yz) */ void getRTAdjustmentVec(float* destVec) { destVec[0] = 2.f / fRenderTargetSize.fWidth; destVec[1] = -1.f; if (kBottomLeft_GrSurfaceOrigin == fRenderTargetOrigin) { destVec[2] = -2.f / fRenderTargetSize.fHeight; destVec[3] = 1.f; } else { destVec[2] = 2.f / fRenderTargetSize.fHeight; destVec[3] = -1.f; } } }; // Helper for setData() that sets the view matrix and loads the render target height uniform void setRenderTargetState(const GrPipeline&); // GrVkResources GrVkPipeline* fPipeline; // Used for binding DescriptorSets to the command buffer but does not need to survive during // command buffer execution. Thus this is not need to be a GrVkResource. VkPipelineLayout fPipelineLayout; // The DescriptorSets need to survive until the gpu has finished all draws that use them. // However, they will only be freed by the descriptor pool. Thus by simply keeping the // descriptor pool alive through the draw, the descritor sets will also stay alive. Thus we do // not need a GrVkResource versions of VkDescriptorSet. We hold on to these in the // GrVkPipelineState since we update the descriptor sets and bind them at separate times; VkDescriptorSet fDescriptorSets[2]; // Meta data so we know which descriptor sets we are using and need to bind. int fStartDS; int fDSCount; SkAutoTDelete fVertexUniformBuffer; SkAutoTDelete fFragmentUniformBuffer; // GrVkResources used for sampling textures SkTDArray fSamplers; SkTDArray fTextureViews; SkTDArray fTextures; // Tracks the current render target uniforms stored in the vertex buffer. RenderTargetState fRenderTargetState; BuiltinUniformHandles fBuiltinUniformHandles; // Processors in the GrVkPipelineState SkAutoTDelete fGeometryProcessor; SkAutoTDelete fXferProcessor; GrGLSLFragProcs fFragmentProcessors; Desc fDesc; GrVkPipelineStateDataManager fDataManager; DescriptorPoolManager fSamplerPoolManager; DescriptorPoolManager fUniformPoolManager; int fNumSamplers; friend class GrVkPipelineStateBuilder; }; #endif