/* * Copyright 2016 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "GrVkGpuCommandBuffer.h" #include "GrFixedClip.h" #include "GrMesh.h" #include "GrPipeline.h" #include "GrRenderTargetPriv.h" #include "GrTextureAccess.h" #include "GrTexturePriv.h" #include "GrVkCommandBuffer.h" #include "GrVkGpu.h" #include "GrVkPipeline.h" #include "GrVkRenderPass.h" #include "GrVkRenderTarget.h" #include "GrVkResourceProvider.h" #include "GrVkTexture.h" void get_vk_load_store_ops(const GrGpuCommandBuffer::LoadAndStoreInfo& info, VkAttachmentLoadOp* loadOp, VkAttachmentStoreOp* storeOp) { switch (info.fLoadOp) { case GrGpuCommandBuffer::LoadOp::kLoad: *loadOp = VK_ATTACHMENT_LOAD_OP_LOAD; break; case GrGpuCommandBuffer::LoadOp::kClear: *loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR; break; case GrGpuCommandBuffer::LoadOp::kDiscard: *loadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE; break; default: SK_ABORT("Invalid LoadOp"); *loadOp = VK_ATTACHMENT_LOAD_OP_LOAD; } switch (info.fStoreOp) { case GrGpuCommandBuffer::StoreOp::kStore: *storeOp = VK_ATTACHMENT_STORE_OP_STORE; break; case GrGpuCommandBuffer::StoreOp::kDiscard: *storeOp = VK_ATTACHMENT_STORE_OP_DONT_CARE; break; default: SK_ABORT("Invalid StoreOp"); *storeOp = VK_ATTACHMENT_STORE_OP_STORE; } } GrVkGpuCommandBuffer::GrVkGpuCommandBuffer(GrVkGpu* gpu, GrVkRenderTarget* target, const LoadAndStoreInfo& colorInfo, const LoadAndStoreInfo& stencilInfo) : fGpu(gpu) , fRenderTarget(target) , fIsEmpty(true) { VkAttachmentLoadOp vkLoadOp; VkAttachmentStoreOp vkStoreOp; get_vk_load_store_ops(colorInfo, &vkLoadOp, &vkStoreOp); GrVkRenderPass::LoadStoreOps vkColorOps(vkLoadOp, vkStoreOp); get_vk_load_store_ops(stencilInfo, &vkLoadOp, &vkStoreOp); GrVkRenderPass::LoadStoreOps vkStencilOps(vkLoadOp, vkStoreOp); GrVkRenderPass::LoadStoreOps vkResolveOps(VK_ATTACHMENT_LOAD_OP_LOAD, VK_ATTACHMENT_STORE_OP_STORE); const GrVkResourceProvider::CompatibleRPHandle& rpHandle = target->compatibleRenderPassHandle(); if (rpHandle.isValid()) { fRenderPass = fGpu->resourceProvider().findRenderPass(rpHandle, vkColorOps, vkResolveOps, vkStencilOps); } else { fRenderPass = fGpu->resourceProvider().findRenderPass(*target, vkColorOps, vkResolveOps, vkStencilOps); } GrColorToRGBAFloat(colorInfo.fClearColor, fColorClearValue.color.float32); fCommandBuffer = gpu->resourceProvider().findOrCreateSecondaryCommandBuffer(); fCommandBuffer->begin(gpu, target->framebuffer(), fRenderPass); } GrVkGpuCommandBuffer::~GrVkGpuCommandBuffer() { fCommandBuffer->unref(fGpu); fRenderPass->unref(fGpu); } GrGpu* GrVkGpuCommandBuffer::gpu() { return fGpu; } void GrVkGpuCommandBuffer::end() { fCommandBuffer->end(fGpu); } void GrVkGpuCommandBuffer::onSubmit(const SkIRect& bounds) { // Change layout of our render target so it can be used as the color attachment. Currently // we don't attach the resolve to the framebuffer so no need to change its layout. GrVkImage* targetImage = fRenderTarget->msaaImage() ? fRenderTarget->msaaImage() : fRenderTarget; targetImage->setImageLayout(fGpu, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL, VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT, VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, false); // If we are using a stencil attachment we also need to update its layout if (GrStencilAttachment* stencil = fRenderTarget->renderTargetPriv().getStencilAttachment()) { GrVkStencilAttachment* vkStencil = (GrVkStencilAttachment*)stencil; vkStencil->setImageLayout(fGpu, VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL, VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT | VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_READ_BIT, VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, false); } for (int i = 0; i < fSampledImages.count(); ++i) { fSampledImages[i]->setImageLayout(fGpu, VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL, VK_ACCESS_SHADER_READ_BIT, VK_PIPELINE_STAGE_ALL_GRAPHICS_BIT, false); } fGpu->submitSecondaryCommandBuffer(fCommandBuffer, fRenderPass, &fColorClearValue, fRenderTarget, bounds); } void GrVkGpuCommandBuffer::discard(GrRenderTarget* target) { if (fIsEmpty) { // We will change the render pass to do a clear load instead GrVkRenderPass::LoadStoreOps vkColorOps(VK_ATTACHMENT_LOAD_OP_DONT_CARE, VK_ATTACHMENT_STORE_OP_STORE); GrVkRenderPass::LoadStoreOps vkStencilOps(VK_ATTACHMENT_LOAD_OP_DONT_CARE, VK_ATTACHMENT_STORE_OP_STORE); GrVkRenderPass::LoadStoreOps vkResolveOps(VK_ATTACHMENT_LOAD_OP_DONT_CARE, VK_ATTACHMENT_STORE_OP_STORE); const GrVkRenderPass* oldRP = fRenderPass; GrVkRenderTarget* vkRT = static_cast(target); const GrVkResourceProvider::CompatibleRPHandle& rpHandle = vkRT->compatibleRenderPassHandle(); if (rpHandle.isValid()) { fRenderPass = fGpu->resourceProvider().findRenderPass(rpHandle, vkColorOps, vkResolveOps, vkStencilOps); } else { fRenderPass = fGpu->resourceProvider().findRenderPass(*vkRT, vkColorOps, vkResolveOps, vkStencilOps); } SkASSERT(fRenderPass->isCompatible(*oldRP)); oldRP->unref(fGpu); } } void GrVkGpuCommandBuffer::onClearStencilClip(GrRenderTarget* target, const GrFixedClip& clip, bool insideStencilMask) { SkASSERT(target); GrVkRenderTarget* vkRT = static_cast(target); GrStencilAttachment* sb = target->renderTargetPriv().getStencilAttachment(); // this should only be called internally when we know we have a // stencil buffer. SkASSERT(sb); int stencilBitCount = sb->bits(); // The contract with the callers does not guarantee that we preserve all bits in the stencil // during this clear. Thus we will clear the entire stencil to the desired value. VkClearDepthStencilValue vkStencilColor; memset(&vkStencilColor, 0, sizeof(VkClearDepthStencilValue)); if (insideStencilMask) { vkStencilColor.stencil = (1 << (stencilBitCount - 1)); } else { vkStencilColor.stencil = 0; } VkClearRect clearRect; // Flip rect if necessary SkIRect vkRect; if (!clip.scissorEnabled()) { vkRect.setXYWH(0, 0, vkRT->width(), vkRT->height()); } else if (kBottomLeft_GrSurfaceOrigin != vkRT->origin()) { vkRect = clip.scissorRect(); } else { const SkIRect& scissor = clip.scissorRect(); vkRect.setLTRB(scissor.fLeft, vkRT->height() - scissor.fBottom, scissor.fRight, vkRT->height() - scissor.fTop); } clearRect.rect.offset = { vkRect.fLeft, vkRect.fTop }; clearRect.rect.extent = { (uint32_t)vkRect.width(), (uint32_t)vkRect.height() }; clearRect.baseArrayLayer = 0; clearRect.layerCount = 1; uint32_t stencilIndex; SkAssertResult(fRenderPass->stencilAttachmentIndex(&stencilIndex)); VkClearAttachment attachment; attachment.aspectMask = VK_IMAGE_ASPECT_STENCIL_BIT; attachment.colorAttachment = 0; // this value shouldn't matter attachment.clearValue.depthStencil = vkStencilColor; fCommandBuffer->clearAttachments(fGpu, 1, &attachment, 1, &clearRect); fIsEmpty = false; } void GrVkGpuCommandBuffer::onClear(GrRenderTarget* target, const GrFixedClip& clip, GrColor color) { // parent class should never let us get here with no RT SkASSERT(target); VkClearColorValue vkColor; GrColorToRGBAFloat(color, vkColor.float32); GrVkRenderTarget* vkRT = static_cast(target); if (fIsEmpty && !clip.scissorEnabled()) { // We will change the render pass to do a clear load instead GrVkRenderPass::LoadStoreOps vkColorOps(VK_ATTACHMENT_LOAD_OP_CLEAR, VK_ATTACHMENT_STORE_OP_STORE); GrVkRenderPass::LoadStoreOps vkStencilOps(VK_ATTACHMENT_LOAD_OP_LOAD, VK_ATTACHMENT_STORE_OP_STORE); GrVkRenderPass::LoadStoreOps vkResolveOps(VK_ATTACHMENT_LOAD_OP_LOAD, VK_ATTACHMENT_STORE_OP_STORE); const GrVkRenderPass* oldRP = fRenderPass; const GrVkResourceProvider::CompatibleRPHandle& rpHandle = vkRT->compatibleRenderPassHandle(); if (rpHandle.isValid()) { fRenderPass = fGpu->resourceProvider().findRenderPass(rpHandle, vkColorOps, vkResolveOps, vkStencilOps); } else { fRenderPass = fGpu->resourceProvider().findRenderPass(*vkRT, vkColorOps, vkResolveOps, vkStencilOps); } SkASSERT(fRenderPass->isCompatible(*oldRP)); oldRP->unref(fGpu); GrColorToRGBAFloat(color, fColorClearValue.color.float32); return; } // We always do a sub rect clear with clearAttachments since we are inside a render pass VkClearRect clearRect; // Flip rect if necessary SkIRect vkRect; if (!clip.scissorEnabled()) { vkRect.setXYWH(0, 0, vkRT->width(), vkRT->height()); } else if (kBottomLeft_GrSurfaceOrigin != vkRT->origin()) { vkRect = clip.scissorRect(); } else { const SkIRect& scissor = clip.scissorRect(); vkRect.setLTRB(scissor.fLeft, vkRT->height() - scissor.fBottom, scissor.fRight, vkRT->height() - scissor.fTop); } clearRect.rect.offset = { vkRect.fLeft, vkRect.fTop }; clearRect.rect.extent = { (uint32_t)vkRect.width(), (uint32_t)vkRect.height() }; clearRect.baseArrayLayer = 0; clearRect.layerCount = 1; uint32_t colorIndex; SkAssertResult(fRenderPass->colorAttachmentIndex(&colorIndex)); VkClearAttachment attachment; attachment.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; attachment.colorAttachment = colorIndex; attachment.clearValue.color = vkColor; fCommandBuffer->clearAttachments(fGpu, 1, &attachment, 1, &clearRect); fIsEmpty = false; return; } //////////////////////////////////////////////////////////////////////////////// void GrVkGpuCommandBuffer::bindGeometry(const GrPrimitiveProcessor& primProc, const GrNonInstancedMesh& mesh) { // There is no need to put any memory barriers to make sure host writes have finished here. // When a command buffer is submitted to a queue, there is an implicit memory barrier that // occurs for all host writes. Additionally, BufferMemoryBarriers are not allowed inside of // an active RenderPass. SkASSERT(!mesh.vertexBuffer()->isCPUBacked()); GrVkVertexBuffer* vbuf; vbuf = (GrVkVertexBuffer*)mesh.vertexBuffer(); SkASSERT(vbuf); SkASSERT(!vbuf->isMapped()); fCommandBuffer->bindVertexBuffer(fGpu, vbuf); if (mesh.isIndexed()) { SkASSERT(!mesh.indexBuffer()->isCPUBacked()); GrVkIndexBuffer* ibuf = (GrVkIndexBuffer*)mesh.indexBuffer(); SkASSERT(ibuf); SkASSERT(!ibuf->isMapped()); fCommandBuffer->bindIndexBuffer(fGpu, ibuf); } } sk_sp GrVkGpuCommandBuffer::prepareDrawState( const GrPipeline& pipeline, const GrPrimitiveProcessor& primProc, GrPrimitiveType primitiveType, const GrVkRenderPass& renderPass) { sk_sp pipelineState = fGpu->resourceProvider().findOrCreateCompatiblePipelineState(pipeline, primProc, primitiveType, renderPass); if (!pipelineState) { return pipelineState; } pipelineState->setData(fGpu, primProc, pipeline); pipelineState->bind(fGpu, fCommandBuffer); GrVkPipeline::SetDynamicState(fGpu, fCommandBuffer, pipeline); return pipelineState; } static void append_sampled_images(const GrProcessor& processor, GrVkGpu* gpu, SkTArray* sampledImages) { if (int numTextures = processor.numTextures()) { GrVkImage** images = sampledImages->push_back_n(numTextures); int i = 0; do { const GrTextureAccess& texAccess = processor.textureAccess(i); GrVkTexture* vkTexture = static_cast(processor.texture(i)); SkASSERT(vkTexture); // We may need to resolve the texture first if it is also a render target GrVkRenderTarget* texRT = static_cast(vkTexture->asRenderTarget()); if (texRT) { gpu->onResolveRenderTarget(texRT); } const GrTextureParams& params = texAccess.getParams(); // Check if we need to regenerate any mip maps if (GrTextureParams::kMipMap_FilterMode == params.filterMode()) { if (vkTexture->texturePriv().mipMapsAreDirty()) { gpu->generateMipmap(vkTexture); vkTexture->texturePriv().dirtyMipMaps(false); } } images[i] = vkTexture; } while (++i < numTextures); } } void GrVkGpuCommandBuffer::onDraw(const GrPipeline& pipeline, const GrPrimitiveProcessor& primProc, const GrMesh* meshes, int meshCount) { if (!meshCount) { return; } GrRenderTarget* rt = pipeline.getRenderTarget(); GrVkRenderTarget* vkRT = static_cast(rt); const GrVkRenderPass* renderPass = vkRT->simpleRenderPass(); SkASSERT(renderPass); append_sampled_images(primProc, fGpu, &fSampledImages); for (int i = 0; i < pipeline.numFragmentProcessors(); ++i) { append_sampled_images(pipeline.getFragmentProcessor(i), fGpu, &fSampledImages); } append_sampled_images(pipeline.getXferProcessor(), fGpu, &fSampledImages); GrPrimitiveType primitiveType = meshes[0].primitiveType(); sk_sp pipelineState = this->prepareDrawState(pipeline, primProc, primitiveType, *renderPass); if (!pipelineState) { return; } for (int i = 0; i < meshCount; ++i) { const GrMesh& mesh = meshes[i]; GrMesh::Iterator iter; const GrNonInstancedMesh* nonIdxMesh = iter.init(mesh); do { if (nonIdxMesh->primitiveType() != primitiveType) { // Technically we don't have to call this here (since there is a safety check in // pipelineState:setData but this will allow for quicker freeing of resources if the // pipelineState sits in a cache for a while. pipelineState->freeTempResources(fGpu); SkDEBUGCODE(pipelineState = nullptr); primitiveType = nonIdxMesh->primitiveType(); pipelineState = this->prepareDrawState(pipeline, primProc, primitiveType, *renderPass); if (!pipelineState) { return; } } SkASSERT(pipelineState); this->bindGeometry(primProc, *nonIdxMesh); if (nonIdxMesh->isIndexed()) { fCommandBuffer->drawIndexed(fGpu, nonIdxMesh->indexCount(), 1, nonIdxMesh->startIndex(), nonIdxMesh->startVertex(), 0); } else { fCommandBuffer->draw(fGpu, nonIdxMesh->vertexCount(), 1, nonIdxMesh->startVertex(), 0); } fIsEmpty = false; fGpu->stats()->incNumDraws(); } while ((nonIdxMesh = iter.next())); } // Technically we don't have to call this here (since there is a safety check in // pipelineState:setData but this will allow for quicker freeing of resources if the // pipelineState sits in a cache for a while. pipelineState->freeTempResources(fGpu); }