/* * Copyright 2015 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "GrVkCaps.h" #include "GrRenderTargetProxy.h" #include "GrShaderCaps.h" #include "GrVkUtil.h" #include "vk/GrVkBackendContext.h" #include "vk/GrVkInterface.h" GrVkCaps::GrVkCaps(const GrContextOptions& contextOptions, const GrVkInterface* vkInterface, VkPhysicalDevice physDev, uint32_t featureFlags, uint32_t extensionFlags) : INHERITED(contextOptions) { fCanUseGLSLForShaderModule = false; fMustDoCopiesFromOrigin = false; fSupportsCopiesAsDraws = false; fMustSubmitCommandsBeforeCopyOp = false; fMustSleepOnTearDown = false; fNewCBOnPipelineChange = false; /************************************************************************** * GrDrawTargetCaps fields **************************************************************************/ fMipMapSupport = true; // always available in Vulkan fSRGBSupport = true; // always available in Vulkan fSRGBDecodeDisableSupport = true; // always available in Vulkan fNPOTTextureTileSupport = true; // always available in Vulkan fDiscardRenderTargetSupport = true; fReuseScratchTextures = true; //TODO: figure this out fGpuTracingSupport = false; //TODO: figure this out fOversizedStencilSupport = false; //TODO: figure this out fInstanceAttribSupport = true; fUseDrawInsteadOfClear = false; fFenceSyncSupport = true; // always available in Vulkan fCrossContextTextureSupport = false; fMapBufferFlags = kNone_MapFlags; //TODO: figure this out fBufferMapThreshold = SK_MaxS32; //TODO: figure this out fMaxRenderTargetSize = 4096; // minimum required by spec fMaxTextureSize = 4096; // minimum required by spec fMaxColorSampleCount = 4; // minimum required by spec fMaxStencilSampleCount = 4; // minimum required by spec fShaderCaps.reset(new GrShaderCaps(contextOptions)); this->init(contextOptions, vkInterface, physDev, featureFlags, extensionFlags); } bool GrVkCaps::initDescForDstCopy(const GrRenderTargetProxy* src, GrSurfaceDesc* desc, bool* rectsMustMatch, bool* disallowSubrect) const { // Vk doesn't use rectsMustMatch or disallowSubrect. Always return false. *rectsMustMatch = false; *disallowSubrect = false; // We can always succeed here with either a CopyImage (none msaa src) or ResolveImage (msaa). // For CopyImage we can make a simple texture, for ResolveImage we require the dst to be a // render target as well. desc->fOrigin = src->origin(); desc->fConfig = src->config(); if (src->numColorSamples() > 1 || (src->asTextureProxy() && this->supportsCopiesAsDraws())) { desc->fFlags = kRenderTarget_GrSurfaceFlag; } else { // Just going to use CopyImage here desc->fFlags = kNone_GrSurfaceFlags; } return true; } void GrVkCaps::init(const GrContextOptions& contextOptions, const GrVkInterface* vkInterface, VkPhysicalDevice physDev, uint32_t featureFlags, uint32_t extensionFlags) { VkPhysicalDeviceProperties properties; GR_VK_CALL(vkInterface, GetPhysicalDeviceProperties(physDev, &properties)); VkPhysicalDeviceMemoryProperties memoryProperties; GR_VK_CALL(vkInterface, GetPhysicalDeviceMemoryProperties(physDev, &memoryProperties)); this->initGrCaps(properties, memoryProperties, featureFlags); this->initShaderCaps(properties, featureFlags); this->initConfigTable(vkInterface, physDev, properties); this->initStencilFormat(vkInterface, physDev); if (SkToBool(extensionFlags & kNV_glsl_shader_GrVkExtensionFlag)) { // Currently disabling this feature since it does not play well with validation layers which // expect a SPIR-V shader // fCanUseGLSLForShaderModule = true; } if (kQualcomm_VkVendor == properties.vendorID) { fMustDoCopiesFromOrigin = true; } if (kNvidia_VkVendor == properties.vendorID) { fMustSubmitCommandsBeforeCopyOp = true; } if (kQualcomm_VkVendor != properties.vendorID) { fSupportsCopiesAsDraws = true; } if (fSupportsCopiesAsDraws) { fCrossContextTextureSupport = true; } #if defined(SK_BUILD_FOR_WIN) if (kNvidia_VkVendor == properties.vendorID) { fMustSleepOnTearDown = true; } #elif defined(SK_BUILD_FOR_ANDROID) if (kImagination_VkVendor == properties.vendorID) { fMustSleepOnTearDown = true; } #endif this->applyOptionsOverrides(contextOptions); fShaderCaps->applyOptionsOverrides(contextOptions); } int get_max_sample_count(VkSampleCountFlags flags) { SkASSERT(flags & VK_SAMPLE_COUNT_1_BIT); if (!(flags & VK_SAMPLE_COUNT_2_BIT)) { return 0; } if (!(flags & VK_SAMPLE_COUNT_4_BIT)) { return 2; } if (!(flags & VK_SAMPLE_COUNT_8_BIT)) { return 4; } if (!(flags & VK_SAMPLE_COUNT_16_BIT)) { return 8; } if (!(flags & VK_SAMPLE_COUNT_32_BIT)) { return 16; } if (!(flags & VK_SAMPLE_COUNT_64_BIT)) { return 32; } return 64; } void GrVkCaps::initSampleCount(const VkPhysicalDeviceProperties& properties) { VkSampleCountFlags colorSamples = properties.limits.framebufferColorSampleCounts; VkSampleCountFlags stencilSamples = properties.limits.framebufferStencilSampleCounts; fMaxColorSampleCount = get_max_sample_count(colorSamples); if (kImagination_VkVendor == properties.vendorID) { fMaxColorSampleCount = 0; } fMaxStencilSampleCount = get_max_sample_count(stencilSamples); } void GrVkCaps::initGrCaps(const VkPhysicalDeviceProperties& properties, const VkPhysicalDeviceMemoryProperties& memoryProperties, uint32_t featureFlags) { // So GPUs, like AMD, are reporting MAX_INT support vertex attributes. In general, there is no // need for us ever to support that amount, and it makes tests which tests all the vertex // attribs timeout looping over that many. For now, we'll cap this at 64 max and can raise it if // we ever find that need. static const uint32_t kMaxVertexAttributes = 64; fMaxVertexAttributes = SkTMin(properties.limits.maxVertexInputAttributes, kMaxVertexAttributes); // AMD advertises support for MAX_UINT vertex input attributes, but in reality only supports 32. if (kAMD_VkVendor == properties.vendorID) { fMaxVertexAttributes = SkTMin(fMaxVertexAttributes, 32); } // We could actually query and get a max size for each config, however maxImageDimension2D will // give the minimum max size across all configs. So for simplicity we will use that for now. fMaxRenderTargetSize = SkTMin(properties.limits.maxImageDimension2D, (uint32_t)INT_MAX); fMaxTextureSize = SkTMin(properties.limits.maxImageDimension2D, (uint32_t)INT_MAX); this->initSampleCount(properties); // Assuming since we will always map in the end to upload the data we might as well just map // from the get go. There is no hard data to suggest this is faster or slower. fBufferMapThreshold = 0; fMapBufferFlags = kCanMap_MapFlag | kSubset_MapFlag; fOversizedStencilSupport = true; fSampleShadingSupport = SkToBool(featureFlags & kSampleRateShading_GrVkFeatureFlag); // AMD seems to have issues binding new VkPipelines inside a secondary command buffer. // Current workaround is to use a different secondary command buffer for each new VkPipeline. if (kAMD_VkVendor == properties.vendorID) { fNewCBOnPipelineChange = true; } #if defined(SK_CPU_X86) if (kImagination_VkVendor == properties.vendorID) { fSRGBSupport = false; } #endif } void GrVkCaps::initShaderCaps(const VkPhysicalDeviceProperties& properties, uint32_t featureFlags) { GrShaderCaps* shaderCaps = fShaderCaps.get(); shaderCaps->fVersionDeclString = "#version 330\n"; // fConfigOutputSwizzle will default to RGBA so we only need to set it for alpha only config. for (int i = 0; i < kGrPixelConfigCnt; ++i) { GrPixelConfig config = static_cast(i); if (GrPixelConfigIsAlphaOnly(config)) { shaderCaps->fConfigTextureSwizzle[i] = GrSwizzle::RRRR(); shaderCaps->fConfigOutputSwizzle[i] = GrSwizzle::AAAA(); } else { if (kGray_8_GrPixelConfig == config) { shaderCaps->fConfigTextureSwizzle[i] = GrSwizzle::RRRA(); } else if (kRGBA_4444_GrPixelConfig == config) { // The vulkan spec does not require R4G4B4A4 to be supported for texturing so we // store the data in a B4G4R4A4 texture and then swizzle it when doing texture reads // or writing to outputs. Since we're not actually changing the data at all, the // only extra work is the swizzle in the shader for all operations. shaderCaps->fConfigTextureSwizzle[i] = GrSwizzle::BGRA(); shaderCaps->fConfigOutputSwizzle[i] = GrSwizzle::BGRA(); } else { shaderCaps->fConfigTextureSwizzle[i] = GrSwizzle::RGBA(); } } } if (kImagination_VkVendor == properties.vendorID) { shaderCaps->fAtan2ImplementedAsAtanYOverX = true; } // Vulkan is based off ES 3.0 so the following should all be supported shaderCaps->fUsesPrecisionModifiers = true; shaderCaps->fFlatInterpolationSupport = true; // GrShaderCaps shaderCaps->fShaderDerivativeSupport = true; shaderCaps->fGeometryShaderSupport = SkToBool(featureFlags & kGeometryShader_GrVkFeatureFlag); shaderCaps->fDualSourceBlendingSupport = SkToBool(featureFlags & kDualSrcBlend_GrVkFeatureFlag); if (kAMD_VkVendor == properties.vendorID) { // Currently DualSourceBlending is not working on AMD. vkCreateGraphicsPipeline fails when // using a draw with dual source. Looking into whether it is driver bug or issue with our // SPIR-V. Bug skia:6405 shaderCaps->fDualSourceBlendingSupport = false; } shaderCaps->fIntegerSupport = true; shaderCaps->fTexelBufferSupport = true; shaderCaps->fTexelFetchSupport = true; shaderCaps->fVertexIDSupport = true; // Assume the minimum precisions mandated by the SPIR-V spec. shaderCaps->fShaderPrecisionVaries = true; for (int s = 0; s < kGrShaderTypeCount; ++s) { auto& highp = shaderCaps->fFloatPrecisions[s][kHigh_GrSLPrecision]; highp.fLogRangeLow = highp.fLogRangeHigh = 127; highp.fBits = 23; auto& mediump = shaderCaps->fFloatPrecisions[s][kMedium_GrSLPrecision]; mediump.fLogRangeLow = mediump.fLogRangeHigh = 14; mediump.fBits = 10; shaderCaps->fFloatPrecisions[s][kLow_GrSLPrecision] = mediump; } shaderCaps->initSamplerPrecisionTable(); shaderCaps->fMaxVertexSamplers = shaderCaps->fMaxGeometrySamplers = shaderCaps->fMaxFragmentSamplers = SkTMin( SkTMin(properties.limits.maxPerStageDescriptorSampledImages, properties.limits.maxPerStageDescriptorSamplers), (uint32_t)INT_MAX); shaderCaps->fMaxCombinedSamplers = SkTMin( SkTMin(properties.limits.maxDescriptorSetSampledImages, properties.limits.maxDescriptorSetSamplers), (uint32_t)INT_MAX); } bool stencil_format_supported(const GrVkInterface* interface, VkPhysicalDevice physDev, VkFormat format) { VkFormatProperties props; memset(&props, 0, sizeof(VkFormatProperties)); GR_VK_CALL(interface, GetPhysicalDeviceFormatProperties(physDev, format, &props)); return SkToBool(VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT & props.optimalTilingFeatures); } void GrVkCaps::initStencilFormat(const GrVkInterface* interface, VkPhysicalDevice physDev) { // List of legal stencil formats (though perhaps not supported on // the particular gpu/driver) from most preferred to least. We are guaranteed to have either // VK_FORMAT_D24_UNORM_S8_UINT or VK_FORMAT_D32_SFLOAT_S8_UINT. VK_FORMAT_D32_SFLOAT_S8_UINT // can optionally have 24 unused bits at the end so we assume the total bits is 64. static const StencilFormat // internal Format stencil bits total bits packed? gS8 = { VK_FORMAT_S8_UINT, 8, 8, false }, gD24S8 = { VK_FORMAT_D24_UNORM_S8_UINT, 8, 32, true }, gD32S8 = { VK_FORMAT_D32_SFLOAT_S8_UINT, 8, 64, true }; if (stencil_format_supported(interface, physDev, VK_FORMAT_S8_UINT)) { fPreferedStencilFormat = gS8; } else if (stencil_format_supported(interface, physDev, VK_FORMAT_D24_UNORM_S8_UINT)) { fPreferedStencilFormat = gD24S8; } else { SkASSERT(stencil_format_supported(interface, physDev, VK_FORMAT_D32_SFLOAT_S8_UINT)); fPreferedStencilFormat = gD32S8; } } void GrVkCaps::initConfigTable(const GrVkInterface* interface, VkPhysicalDevice physDev, const VkPhysicalDeviceProperties& properties) { for (int i = 0; i < kGrPixelConfigCnt; ++i) { VkFormat format; if (GrPixelConfigToVkFormat(static_cast(i), &format)) { if (!GrPixelConfigIsSRGB(static_cast(i)) || fSRGBSupport) { fConfigTable[i].init(interface, physDev, properties, format); } } } } void GrVkCaps::ConfigInfo::InitConfigFlags(VkFormatFeatureFlags vkFlags, uint16_t* flags) { if (SkToBool(VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT & vkFlags) && SkToBool(VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT & vkFlags)) { *flags = *flags | kTextureable_Flag; // Ganesh assumes that all renderable surfaces are also texturable if (SkToBool(VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BLEND_BIT & vkFlags)) { *flags = *flags | kRenderable_Flag; } } if (SkToBool(VK_FORMAT_FEATURE_BLIT_SRC_BIT & vkFlags)) { *flags = *flags | kBlitSrc_Flag; } if (SkToBool(VK_FORMAT_FEATURE_BLIT_DST_BIT & vkFlags)) { *flags = *flags | kBlitDst_Flag; } } void GrVkCaps::ConfigInfo::initSampleCounts(const GrVkInterface* interface, VkPhysicalDevice physDev, const VkPhysicalDeviceProperties& physProps, VkFormat format) { VkImageUsageFlags usage = VK_IMAGE_USAGE_TRANSFER_SRC_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT | VK_IMAGE_USAGE_SAMPLED_BIT | VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT; VkImageCreateFlags createFlags = GrVkFormatIsSRGB(format, nullptr) ? VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT : 0; VkImageFormatProperties properties; GR_VK_CALL(interface, GetPhysicalDeviceImageFormatProperties(physDev, format, VK_IMAGE_TYPE_2D, VK_IMAGE_TILING_OPTIMAL, usage, createFlags, &properties)); VkSampleCountFlags flags = properties.sampleCounts; if (flags & VK_SAMPLE_COUNT_1_BIT) { fColorSampleCounts.push(0); } if (kImagination_VkVendor == physProps.vendorID) { // MSAA does not work on imagination return; } if (flags & VK_SAMPLE_COUNT_2_BIT) { fColorSampleCounts.push(2); } if (flags & VK_SAMPLE_COUNT_4_BIT) { fColorSampleCounts.push(4); } if (flags & VK_SAMPLE_COUNT_8_BIT) { fColorSampleCounts.push(8); } if (flags & VK_SAMPLE_COUNT_16_BIT) { fColorSampleCounts.push(16); } if (flags & VK_SAMPLE_COUNT_32_BIT) { fColorSampleCounts.push(32); } if (flags & VK_SAMPLE_COUNT_64_BIT) { fColorSampleCounts.push(64); } } void GrVkCaps::ConfigInfo::init(const GrVkInterface* interface, VkPhysicalDevice physDev, const VkPhysicalDeviceProperties& properties, VkFormat format) { VkFormatProperties props; memset(&props, 0, sizeof(VkFormatProperties)); GR_VK_CALL(interface, GetPhysicalDeviceFormatProperties(physDev, format, &props)); InitConfigFlags(props.linearTilingFeatures, &fLinearFlags); InitConfigFlags(props.optimalTilingFeatures, &fOptimalFlags); if (fOptimalFlags & kRenderable_Flag) { this->initSampleCounts(interface, physDev, properties, format); } } int GrVkCaps::getSampleCount(int requestedCount, GrPixelConfig config) const { int count = fConfigTable[config].fColorSampleCounts.count(); if (!count || !this->isConfigRenderable(config, true)) { return 0; } for (int i = 0; i < count; ++i) { if (fConfigTable[config].fColorSampleCounts[i] >= requestedCount) { return fConfigTable[config].fColorSampleCounts[i]; } } return fConfigTable[config].fColorSampleCounts[count-1]; }