/* * Copyright 2015 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "GrTessellatingPathRenderer.h" #include "GrAuditTrail.h" #include "GrClip.h" #include "GrDefaultGeoProcFactory.h" #include "GrDrawOpTest.h" #include "GrMesh.h" #include "GrOpFlushState.h" #include "GrPathUtils.h" #include "GrPipelineBuilder.h" #include "GrResourceCache.h" #include "GrResourceProvider.h" #include "GrTessellator.h" #include "SkGeometry.h" #include "ops/GrMeshDrawOp.h" #include /* * This path renderer tessellates the path into triangles using GrTessellator, uploads the * triangles to a vertex buffer, and renders them with a single draw call. It can do screenspace * antialiasing with a one-pixel coverage ramp. */ namespace { struct TessInfo { SkScalar fTolerance; int fCount; }; // When the SkPathRef genID changes, invalidate a corresponding GrResource described by key. class PathInvalidator : public SkPathRef::GenIDChangeListener { public: explicit PathInvalidator(const GrUniqueKey& key) : fMsg(key) {} private: GrUniqueKeyInvalidatedMessage fMsg; void onChange() override { SkMessageBus::Post(fMsg); } }; bool cache_match(GrBuffer* vertexBuffer, SkScalar tol, int* actualCount) { if (!vertexBuffer) { return false; } const SkData* data = vertexBuffer->getUniqueKey().getCustomData(); SkASSERT(data); const TessInfo* info = static_cast(data->data()); if (info->fTolerance == 0 || info->fTolerance < 3.0f * tol) { *actualCount = info->fCount; return true; } return false; } class StaticVertexAllocator : public GrTessellator::VertexAllocator { public: StaticVertexAllocator(size_t stride, GrResourceProvider* resourceProvider, bool canMapVB) : VertexAllocator(stride) , fResourceProvider(resourceProvider) , fCanMapVB(canMapVB) , fVertices(nullptr) { } void* lock(int vertexCount) override { size_t size = vertexCount * stride(); fVertexBuffer.reset(fResourceProvider->createBuffer( size, kVertex_GrBufferType, kStatic_GrAccessPattern, 0)); if (!fVertexBuffer.get()) { return nullptr; } if (fCanMapVB) { fVertices = fVertexBuffer->map(); } else { fVertices = sk_malloc_throw(vertexCount * stride()); } return fVertices; } void unlock(int actualCount) override { if (fCanMapVB) { fVertexBuffer->unmap(); } else { fVertexBuffer->updateData(fVertices, actualCount * stride()); sk_free(fVertices); } fVertices = nullptr; } GrBuffer* vertexBuffer() { return fVertexBuffer.get(); } private: sk_sp fVertexBuffer; GrResourceProvider* fResourceProvider; bool fCanMapVB; void* fVertices; }; class DynamicVertexAllocator : public GrTessellator::VertexAllocator { public: DynamicVertexAllocator(size_t stride, GrLegacyMeshDrawOp::Target* target) : VertexAllocator(stride) , fTarget(target) , fVertexBuffer(nullptr) , fVertices(nullptr) {} void* lock(int vertexCount) override { fVertexCount = vertexCount; fVertices = fTarget->makeVertexSpace(stride(), vertexCount, &fVertexBuffer, &fFirstVertex); return fVertices; } void unlock(int actualCount) override { fTarget->putBackVertices(fVertexCount - actualCount, stride()); fVertices = nullptr; } const GrBuffer* vertexBuffer() const { return fVertexBuffer; } int firstVertex() const { return fFirstVertex; } private: GrLegacyMeshDrawOp::Target* fTarget; const GrBuffer* fVertexBuffer; int fVertexCount; int fFirstVertex; void* fVertices; }; } // namespace GrTessellatingPathRenderer::GrTessellatingPathRenderer() { } bool GrTessellatingPathRenderer::onCanDrawPath(const CanDrawPathArgs& args) const { // This path renderer can draw fill styles, and can do screenspace antialiasing via a // one-pixel coverage ramp. It can do convex and concave paths, but we'll leave the convex // ones to simpler algorithms. We pass on paths that have styles, though they may come back // around after applying the styling information to the geometry to create a filled path. In // the non-AA case, We skip paths thta don't have a key since the real advantage of this path // renderer comes from caching the tessellated geometry. In the AA case, we do not cache, so we // accept paths without keys. if (!args.fShape->style().isSimpleFill() || args.fShape->knownToBeConvex()) { return false; } if (GrAAType::kCoverage == args.fAAType) { #ifdef SK_DISABLE_SCREENSPACE_TESS_AA_PATH_RENDERER return false; #else SkPath path; args.fShape->asPath(&path); if (path.countVerbs() > 10) { return false; } #endif } else if (!args.fShape->hasUnstyledKey()) { return false; } return true; } class TessellatingPathOp final : public GrLegacyMeshDrawOp { public: DEFINE_OP_CLASS_ID static std::unique_ptr Make(const GrColor& color, const GrShape& shape, const SkMatrix& viewMatrix, SkIRect devClipBounds, bool antiAlias) { return std::unique_ptr( new TessellatingPathOp(color, shape, viewMatrix, devClipBounds, antiAlias)); } const char* name() const override { return "TessellatingPathOp"; } SkString dumpInfo() const override { SkString string; string.appendf("Color 0x%08x, aa: %d\n", fColor, fAntiAlias); string.append(DumpPipelineInfo(*this->pipeline())); string.append(INHERITED::dumpInfo()); return string; } private: void getProcessorAnalysisInputs(GrProcessorAnalysisColor* color, GrProcessorAnalysisCoverage* coverage) const override { color->setToConstant(fColor); *coverage = GrProcessorAnalysisCoverage::kSingleChannel; } void applyPipelineOptimizations(const PipelineOptimizations& optimizations) override { optimizations.getOverrideColorIfSet(&fColor); fCanTweakAlphaForCoverage = optimizations.canTweakAlphaForCoverage(); fNeedsLocalCoords = optimizations.readsLocalCoords(); } SkPath getPath() const { SkASSERT(!fShape.style().applies()); SkPath path; fShape.asPath(&path); return path; } void draw(Target* target, const GrGeometryProcessor* gp) const { SkASSERT(!fAntiAlias); GrResourceProvider* rp = target->resourceProvider(); bool inverseFill = fShape.inverseFilled(); // construct a cache key from the path's genID and the view matrix static const GrUniqueKey::Domain kDomain = GrUniqueKey::GenerateDomain(); GrUniqueKey key; static constexpr int kClipBoundsCnt = sizeof(fDevClipBounds) / sizeof(uint32_t); int shapeKeyDataCnt = fShape.unstyledKeySize(); SkASSERT(shapeKeyDataCnt >= 0); GrUniqueKey::Builder builder(&key, kDomain, shapeKeyDataCnt + kClipBoundsCnt); fShape.writeUnstyledKey(&builder[0]); // For inverse fills, the tessellation is dependent on clip bounds. if (inverseFill) { memcpy(&builder[shapeKeyDataCnt], &fDevClipBounds, sizeof(fDevClipBounds)); } else { memset(&builder[shapeKeyDataCnt], 0, sizeof(fDevClipBounds)); } builder.finish(); sk_sp cachedVertexBuffer(rp->findAndRefTByUniqueKey(key)); int actualCount; SkScalar tol = GrPathUtils::kDefaultTolerance; tol = GrPathUtils::scaleToleranceToSrc(tol, fViewMatrix, fShape.bounds()); if (cache_match(cachedVertexBuffer.get(), tol, &actualCount)) { this->drawVertices(target, gp, cachedVertexBuffer.get(), 0, actualCount); return; } SkRect clipBounds = SkRect::Make(fDevClipBounds); SkMatrix vmi; if (!fViewMatrix.invert(&vmi)) { return; } vmi.mapRect(&clipBounds); bool isLinear; bool canMapVB = GrCaps::kNone_MapFlags != target->caps().mapBufferFlags(); StaticVertexAllocator allocator(gp->getVertexStride(), rp, canMapVB); int count = GrTessellator::PathToTriangles(getPath(), tol, clipBounds, &allocator, false, GrColor(), false, &isLinear); if (count == 0) { return; } this->drawVertices(target, gp, allocator.vertexBuffer(), 0, count); TessInfo info; info.fTolerance = isLinear ? 0 : tol; info.fCount = count; key.setCustomData(SkData::MakeWithCopy(&info, sizeof(info))); rp->assignUniqueKeyToResource(key, allocator.vertexBuffer()); } void drawAA(Target* target, const GrGeometryProcessor* gp) const { SkASSERT(fAntiAlias); SkPath path = getPath(); if (path.isEmpty()) { return; } SkRect clipBounds = SkRect::Make(fDevClipBounds); path.transform(fViewMatrix); SkScalar tol = GrPathUtils::kDefaultTolerance; bool isLinear; DynamicVertexAllocator allocator(gp->getVertexStride(), target); int count = GrTessellator::PathToTriangles(path, tol, clipBounds, &allocator, true, fColor, fCanTweakAlphaForCoverage, &isLinear); if (count == 0) { return; } drawVertices(target, gp, allocator.vertexBuffer(), allocator.firstVertex(), count); } void onPrepareDraws(Target* target) const override { sk_sp gp; { using namespace GrDefaultGeoProcFactory; Color color(fColor); LocalCoords::Type localCoordsType = fNeedsLocalCoords ? LocalCoords::kUsePosition_Type : LocalCoords::kUnused_Type; Coverage::Type coverageType; if (fAntiAlias) { color = Color(Color::kPremulGrColorAttribute_Type); if (fCanTweakAlphaForCoverage) { coverageType = Coverage::kSolid_Type; } else { coverageType = Coverage::kAttribute_Type; } } else { coverageType = Coverage::kSolid_Type; } if (fAntiAlias) { gp = GrDefaultGeoProcFactory::MakeForDeviceSpace(color, coverageType, localCoordsType, fViewMatrix); } else { gp = GrDefaultGeoProcFactory::Make(color, coverageType, localCoordsType, fViewMatrix); } } if (!gp.get()) { return; } if (fAntiAlias) { this->drawAA(target, gp.get()); } else { this->draw(target, gp.get()); } } void drawVertices(Target* target, const GrGeometryProcessor* gp, const GrBuffer* vb, int firstVertex, int count) const { GrMesh mesh(TESSELLATOR_WIREFRAME ? GrPrimitiveType::kLines : GrPrimitiveType::kTriangles); mesh.setNonIndexedNonInstanced(count); mesh.setVertexData(vb, firstVertex); target->draw(gp, this->pipeline(), mesh); } bool onCombineIfPossible(GrOp*, const GrCaps&) override { return false; } TessellatingPathOp(const GrColor& color, const GrShape& shape, const SkMatrix& viewMatrix, const SkIRect& devClipBounds, bool antiAlias) : INHERITED(ClassID()) , fColor(color) , fShape(shape) , fViewMatrix(viewMatrix) , fDevClipBounds(devClipBounds) , fAntiAlias(antiAlias) { SkRect devBounds; viewMatrix.mapRect(&devBounds, shape.bounds()); if (shape.inverseFilled()) { // Because the clip bounds are used to add a contour for inverse fills, they must also // include the path bounds. devBounds.join(SkRect::Make(fDevClipBounds)); } this->setBounds(devBounds, HasAABloat::kNo, IsZeroArea::kNo); } GrColor fColor; GrShape fShape; SkMatrix fViewMatrix; SkIRect fDevClipBounds; bool fAntiAlias; bool fCanTweakAlphaForCoverage; bool fNeedsLocalCoords; typedef GrLegacyMeshDrawOp INHERITED; }; bool GrTessellatingPathRenderer::onDrawPath(const DrawPathArgs& args) { GR_AUDIT_TRAIL_AUTO_FRAME(args.fRenderTargetContext->auditTrail(), "GrTessellatingPathRenderer::onDrawPath"); SkIRect clipBoundsI; args.fClip->getConservativeBounds(args.fRenderTargetContext->width(), args.fRenderTargetContext->height(), &clipBoundsI); std::unique_ptr op = TessellatingPathOp::Make(args.fPaint.getColor(), *args.fShape, *args.fViewMatrix, clipBoundsI, GrAAType::kCoverage == args.fAAType); GrPipelineBuilder pipelineBuilder(std::move(args.fPaint), args.fAAType); pipelineBuilder.setUserStencil(args.fUserStencilSettings); args.fRenderTargetContext->addLegacyMeshDrawOp(std::move(pipelineBuilder), *args.fClip, std::move(op)); return true; } /////////////////////////////////////////////////////////////////////////////////////////////////// #if GR_TEST_UTILS GR_LEGACY_MESH_DRAW_OP_TEST_DEFINE(TesselatingPathOp) { GrColor color = GrRandomColor(random); SkMatrix viewMatrix = GrTest::TestMatrixInvertible(random); SkPath path = GrTest::TestPath(random); SkIRect devClipBounds = SkIRect::MakeLTRB( random->nextU(), random->nextU(), random->nextU(), random->nextU()); devClipBounds.sort(); bool antiAlias = random->nextBool(); GrStyle style; do { GrTest::TestStyle(random, &style); } while (!style.isSimpleFill()); GrShape shape(path, style); return TessellatingPathOp::Make(color, shape, viewMatrix, devClipBounds, antiAlias); } #endif