/* * Copyright 2015 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "GrDrawVerticesOp.h" #include "GrCaps.h" #include "GrDefaultGeoProcFactory.h" #include "GrOpFlushState.h" #include "SkGr.h" #include "SkRectPriv.h" static constexpr int kNumFloatsPerSkMatrix = 9; std::unique_ptr GrDrawVerticesOp::Make(GrContext* context, GrPaint&& paint, sk_sp vertices, const SkMatrix bones[], int boneCount, const SkMatrix& viewMatrix, GrAAType aaType, sk_sp colorSpaceXform, GrPrimitiveType* overridePrimType) { SkASSERT(vertices); GrPrimitiveType primType = overridePrimType ? *overridePrimType : SkVertexModeToGrPrimitiveType(vertices->mode()); return Helper::FactoryHelper(context, std::move(paint), std::move(vertices), bones, boneCount, primType, aaType, std::move(colorSpaceXform), viewMatrix); } GrDrawVerticesOp::GrDrawVerticesOp(const Helper::MakeArgs& helperArgs, GrColor color, sk_sp vertices, const SkMatrix bones[], int boneCount, GrPrimitiveType primitiveType, GrAAType aaType, sk_sp colorSpaceXform, const SkMatrix& viewMatrix) : INHERITED(ClassID()) , fHelper(helperArgs, aaType) , fPrimitiveType(primitiveType) , fColorSpaceXform(std::move(colorSpaceXform)) { SkASSERT(vertices); fVertexCount = vertices->vertexCount(); fIndexCount = vertices->indexCount(); fColorArrayType = vertices->hasColors() ? ColorArrayType::kSkColor : ColorArrayType::kPremulGrColor; Mesh& mesh = fMeshes.push_back(); mesh.fColor = color; mesh.fViewMatrix = viewMatrix; mesh.fVertices = std::move(vertices); if (bones) { // Copy the bone data over in the format that the GPU would upload. mesh.fBones.reserve(boneCount * kNumFloatsPerSkMatrix); for (int i = 0; i < boneCount; i ++) { const SkMatrix& matrix = bones[i]; mesh.fBones.push_back(matrix.get(SkMatrix::kMScaleX)); mesh.fBones.push_back(matrix.get(SkMatrix::kMSkewY)); mesh.fBones.push_back(matrix.get(SkMatrix::kMPersp0)); mesh.fBones.push_back(matrix.get(SkMatrix::kMSkewX)); mesh.fBones.push_back(matrix.get(SkMatrix::kMScaleY)); mesh.fBones.push_back(matrix.get(SkMatrix::kMPersp1)); mesh.fBones.push_back(matrix.get(SkMatrix::kMTransX)); mesh.fBones.push_back(matrix.get(SkMatrix::kMTransY)); mesh.fBones.push_back(matrix.get(SkMatrix::kMPersp2)); } } mesh.fIgnoreTexCoords = false; mesh.fIgnoreColors = false; mesh.fIgnoreBones = false; fFlags = 0; if (mesh.hasPerVertexColors()) { fFlags |= kRequiresPerVertexColors_Flag; } if (mesh.hasExplicitLocalCoords()) { fFlags |= kAnyMeshHasExplicitLocalCoords_Flag; } if (mesh.hasBones()) { fFlags |= kHasBones_Flag; } // Special case for meshes with a world transform but no bone weights. // These will be considered normal vertices draws without bones. if (!mesh.fVertices->hasBones() && boneCount == 1) { mesh.fViewMatrix.preConcat(bones[0]); } IsZeroArea zeroArea; if (GrIsPrimTypeLines(primitiveType) || GrPrimitiveType::kPoints == primitiveType) { zeroArea = IsZeroArea::kYes; } else { zeroArea = IsZeroArea::kNo; } if (this->hasBones()) { // We don't know the bounds if there are deformations involved, so attempt to calculate // the maximum possible. SkRect bounds = SkRect::MakeEmpty(); const SkRect originalBounds = bones[0].mapRect(mesh.fVertices->bounds()); for (int i = 1; i < boneCount; i++) { const SkMatrix& matrix = bones[i]; bounds.join(matrix.mapRect(originalBounds)); } this->setTransformedBounds(bounds, mesh.fViewMatrix, HasAABloat::kNo, zeroArea); } else { this->setTransformedBounds(mesh.fVertices->bounds(), mesh.fViewMatrix, HasAABloat::kNo, zeroArea); } } SkString GrDrawVerticesOp::dumpInfo() const { SkString string; string.appendf("PrimType: %d, MeshCount %d, VCount: %d, ICount: %d\n", (int)fPrimitiveType, fMeshes.count(), fVertexCount, fIndexCount); string += fHelper.dumpInfo(); string += INHERITED::dumpInfo(); return string; } GrDrawOp::FixedFunctionFlags GrDrawVerticesOp::fixedFunctionFlags() const { return fHelper.fixedFunctionFlags(); } GrDrawOp::RequiresDstTexture GrDrawVerticesOp::finalize(const GrCaps& caps, const GrAppliedClip* clip) { GrProcessorAnalysisColor gpColor; if (this->requiresPerVertexColors()) { gpColor.setToUnknown(); } else { gpColor.setToConstant(fMeshes.front().fColor); } auto result = fHelper.xpRequiresDstTexture(caps, clip, GrProcessorAnalysisCoverage::kNone, &gpColor); if (gpColor.isConstant(&fMeshes.front().fColor)) { fMeshes.front().fIgnoreColors = true; fFlags &= ~kRequiresPerVertexColors_Flag; fColorArrayType = ColorArrayType::kPremulGrColor; } if (!fHelper.usesLocalCoords()) { fMeshes[0].fIgnoreTexCoords = true; fFlags &= ~kAnyMeshHasExplicitLocalCoords_Flag; } return result; } sk_sp GrDrawVerticesOp::makeGP(const GrShaderCaps* shaderCaps, bool* hasColorAttribute, bool* hasLocalCoordAttribute, bool* hasBoneAttribute) const { using namespace GrDefaultGeoProcFactory; LocalCoords::Type localCoordsType; if (fHelper.usesLocalCoords()) { // If we have multiple view matrices we will transform the positions into device space. We // must then also provide untransformed positions as local coords. if (this->anyMeshHasExplicitLocalCoords() || this->hasMultipleViewMatrices()) { *hasLocalCoordAttribute = true; localCoordsType = LocalCoords::kHasExplicit_Type; } else { *hasLocalCoordAttribute = false; localCoordsType = LocalCoords::kUsePosition_Type; } } else { localCoordsType = LocalCoords::kUnused_Type; *hasLocalCoordAttribute = false; } Color color(fMeshes[0].fColor); if (this->requiresPerVertexColors()) { if (fColorArrayType == ColorArrayType::kPremulGrColor) { color.fType = Color::kPremulGrColorAttribute_Type; } else { color.fType = Color::kUnpremulSkColorAttribute_Type; color.fColorSpaceXform = fColorSpaceXform; } *hasColorAttribute = true; } else { *hasColorAttribute = false; }; const SkMatrix& vm = this->hasMultipleViewMatrices() ? SkMatrix::I() : fMeshes[0].fViewMatrix; Bones bones(fMeshes[0].fBones.data(), fMeshes[0].fBones.size() / kNumFloatsPerSkMatrix); *hasBoneAttribute = this->hasBones(); if (this->hasBones()) { return GrDefaultGeoProcFactory::MakeWithBones(shaderCaps, color, Coverage::kSolid_Type, localCoordsType, bones, vm); } else { return GrDefaultGeoProcFactory::Make(shaderCaps, color, Coverage::kSolid_Type, localCoordsType, vm); } } void GrDrawVerticesOp::onPrepareDraws(Target* target) { bool hasMapBufferSupport = GrCaps::kNone_MapFlags != target->caps().mapBufferFlags(); if (fMeshes[0].fVertices->isVolatile() || !hasMapBufferSupport) { this->drawVolatile(target); } else { this->drawNonVolatile(target); } } void GrDrawVerticesOp::drawVolatile(Target* target) { bool hasColorAttribute; bool hasLocalCoordsAttribute; bool hasBoneAttribute; sk_sp gp = this->makeGP(target->caps().shaderCaps(), &hasColorAttribute, &hasLocalCoordsAttribute, &hasBoneAttribute); // Calculate the stride. size_t vertexStride = sizeof(SkPoint) + (hasColorAttribute ? sizeof(uint32_t) : 0) + (hasLocalCoordsAttribute ? sizeof(SkPoint) : 0) + (hasBoneAttribute ? 4 * (sizeof(int8_t) + sizeof(uint8_t)) : 0); SkASSERT(vertexStride == gp->debugOnly_vertexStride()); // Allocate buffers. const GrBuffer* vertexBuffer = nullptr; int firstVertex = 0; void* verts = target->makeVertexSpace(vertexStride, fVertexCount, &vertexBuffer, &firstVertex); if (!verts) { SkDebugf("Could not allocate vertices\n"); return; } const GrBuffer* indexBuffer = nullptr; int firstIndex = 0; uint16_t* indices = nullptr; if (this->isIndexed()) { indices = target->makeIndexSpace(fIndexCount, &indexBuffer, &firstIndex); if (!indices) { SkDebugf("Could not allocate indices\n"); return; } } // Fill the buffers. this->fillBuffers(hasColorAttribute, hasLocalCoordsAttribute, hasBoneAttribute, vertexStride, verts, indices); // Draw the vertices. this->drawVertices(target, gp.get(), vertexBuffer, firstVertex, indexBuffer, firstIndex); } void GrDrawVerticesOp::drawNonVolatile(Target* target) { static const GrUniqueKey::Domain kDomain = GrUniqueKey::GenerateDomain(); bool hasColorAttribute; bool hasLocalCoordsAttribute; bool hasBoneAttribute; sk_sp gp = this->makeGP(target->caps().shaderCaps(), &hasColorAttribute, &hasLocalCoordsAttribute, &hasBoneAttribute); SkASSERT(fMeshes.count() == 1); // Non-volatile meshes should never combine. // Get the resource provider. GrResourceProvider* rp = target->resourceProvider(); // Generate keys for the buffers. GrUniqueKey vertexKey, indexKey; GrUniqueKey::Builder vertexKeyBuilder(&vertexKey, kDomain, 2); GrUniqueKey::Builder indexKeyBuilder(&indexKey, kDomain, 2); vertexKeyBuilder[0] = indexKeyBuilder[0] = fMeshes[0].fVertices->uniqueID(); vertexKeyBuilder[1] = 0; indexKeyBuilder[1] = 1; vertexKeyBuilder.finish(); indexKeyBuilder.finish(); // Try to grab data from the cache. sk_sp vertexBuffer = rp->findByUniqueKey(vertexKey); sk_sp indexBuffer = this->isIndexed() ? rp->findByUniqueKey(indexKey) : nullptr; // Draw using the cached buffers if possible. if (vertexBuffer && (!this->isIndexed() || indexBuffer)) { this->drawVertices(target, gp.get(), vertexBuffer.get(), 0, indexBuffer.get(), 0); return; } // Calculate the stride. size_t vertexStride = sizeof(SkPoint) + (hasColorAttribute ? sizeof(uint32_t) : 0) + (hasLocalCoordsAttribute ? sizeof(SkPoint) : 0) + (hasBoneAttribute ? 4 * (sizeof(int8_t) + sizeof(uint8_t)) : 0); SkASSERT(vertexStride == gp->debugOnly_vertexStride()); // Allocate vertex buffer. vertexBuffer.reset(rp->createBuffer(fVertexCount * vertexStride, kVertex_GrBufferType, kStatic_GrAccessPattern, 0)); void* verts = vertexBuffer ? vertexBuffer->map() : nullptr; if (!verts) { SkDebugf("Could not allocate vertices\n"); return; } // Allocate index buffer. uint16_t* indices = nullptr; if (this->isIndexed()) { indexBuffer.reset(rp->createBuffer(fIndexCount * sizeof(uint16_t), kIndex_GrBufferType, kStatic_GrAccessPattern, 0)); indices = indexBuffer ? static_cast(indexBuffer->map()) : nullptr; if (!indices) { SkDebugf("Could not allocate indices\n"); return; } } // Fill the buffers. this->fillBuffers(hasColorAttribute, hasLocalCoordsAttribute, hasBoneAttribute, vertexStride, verts, indices); // Unmap the buffers. vertexBuffer->unmap(); if (indexBuffer) { indexBuffer->unmap(); } // Cache the buffers. rp->assignUniqueKeyToResource(vertexKey, vertexBuffer.get()); rp->assignUniqueKeyToResource(indexKey, indexBuffer.get()); // Draw the vertices. this->drawVertices(target, gp.get(), vertexBuffer.get(), 0, indexBuffer.get(), 0); } void GrDrawVerticesOp::fillBuffers(bool hasColorAttribute, bool hasLocalCoordsAttribute, bool hasBoneAttribute, size_t vertexStride, void* verts, uint16_t* indices) const { int instanceCount = fMeshes.count(); // Copy data into the buffers. int vertexOffset = 0; // We have a fast case below for uploading the vertex data when the matrix is translate // only and there are colors but not local coords. Fast case does not apply when there are bone // transformations. bool fastAttrs = hasColorAttribute && !hasLocalCoordsAttribute && !hasBoneAttribute; for (int i = 0; i < instanceCount; i++) { // Get each mesh. const Mesh& mesh = fMeshes[i]; // Copy data into the index buffer. if (indices) { int indexCount = mesh.fVertices->indexCount(); for (int j = 0; j < indexCount; ++j) { *indices++ = mesh.fVertices->indices()[j] + vertexOffset; } } // Copy data into the vertex buffer. int vertexCount = mesh.fVertices->vertexCount(); const SkPoint* positions = mesh.fVertices->positions(); const SkColor* colors = mesh.fVertices->colors(); const SkPoint* localCoords = mesh.fVertices->texCoords(); const SkVertices::BoneIndices* boneIndices = mesh.fVertices->boneIndices(); const SkVertices::BoneWeights* boneWeights = mesh.fVertices->boneWeights(); bool fastMesh = (!this->hasMultipleViewMatrices() || mesh.fViewMatrix.getType() <= SkMatrix::kTranslate_Mask) && mesh.hasPerVertexColors(); if (fastAttrs && fastMesh) { // Fast case. struct V { SkPoint fPos; uint32_t fColor; }; SkASSERT(sizeof(V) == vertexStride); V* v = (V*)verts; Sk2f t(0, 0); if (this->hasMultipleViewMatrices()) { t = Sk2f(mesh.fViewMatrix.getTranslateX(), mesh.fViewMatrix.getTranslateY()); } for (int j = 0; j < vertexCount; ++j) { Sk2f p = Sk2f::Load(positions++) + t; p.store(&v[j].fPos); v[j].fColor = colors[j]; } verts = v + vertexCount; } else { // Normal case. static constexpr size_t kColorOffset = sizeof(SkPoint); size_t offset = kColorOffset; if (hasColorAttribute) { offset += sizeof(uint32_t); } size_t localCoordOffset = offset; if (hasLocalCoordsAttribute) { offset += sizeof(SkPoint); } size_t boneIndexOffset = offset; if (hasBoneAttribute) { offset += 4 * sizeof(int8_t); } size_t boneWeightOffset = offset; for (int j = 0; j < vertexCount; ++j) { if (this->hasMultipleViewMatrices()) { mesh.fViewMatrix.mapPoints(((SkPoint*)verts), &positions[j], 1); } else { *((SkPoint*)verts) = positions[j]; } if (hasColorAttribute) { if (mesh.hasPerVertexColors()) { *(uint32_t*)((intptr_t)verts + kColorOffset) = colors[j]; } else { *(uint32_t*)((intptr_t)verts + kColorOffset) = mesh.fColor; } } if (hasLocalCoordsAttribute) { if (mesh.hasExplicitLocalCoords()) { *(SkPoint*)((intptr_t)verts + localCoordOffset) = localCoords[j]; } else { *(SkPoint*)((intptr_t)verts + localCoordOffset) = positions[j]; } } if (hasBoneAttribute) { const SkVertices::BoneIndices& indices = boneIndices[j]; const SkVertices::BoneWeights& weights = boneWeights[j]; for (int k = 0; k < 4; k++) { size_t indexOffset = boneIndexOffset + sizeof(int8_t) * k; size_t weightOffset = boneWeightOffset + sizeof(uint8_t) * k; *(int8_t*)((intptr_t)verts + indexOffset) = indices.indices[k]; *(uint8_t*)((intptr_t)verts + weightOffset) = weights.weights[k] * 255.0f; } } verts = (void*)((intptr_t)verts + vertexStride); } } vertexOffset += vertexCount; } } void GrDrawVerticesOp::drawVertices(Target* target, GrGeometryProcessor* gp, const GrBuffer* vertexBuffer, int firstVertex, const GrBuffer* indexBuffer, int firstIndex) { GrMesh mesh(this->primitiveType()); if (this->isIndexed()) { mesh.setIndexed(indexBuffer, fIndexCount, firstIndex, 0, fVertexCount - 1, GrPrimitiveRestart::kNo); } else { mesh.setNonIndexedNonInstanced(fVertexCount); } mesh.setVertexData(vertexBuffer, firstVertex); auto pipe = fHelper.makePipeline(target); target->draw(gp, pipe.fPipeline, pipe.fFixedDynamicState, mesh); } bool GrDrawVerticesOp::onCombineIfPossible(GrOp* t, const GrCaps& caps) { GrDrawVerticesOp* that = t->cast(); if (!fHelper.isCompatible(that->fHelper, caps, this->bounds(), that->bounds())) { return false; } // Meshes with bones cannot be combined because different meshes use different bones, so to // combine them, the matrices would have to be combined, and the bone indices on each vertex // would change, thus making the vertices uncacheable. if (this->hasBones() || that->hasBones()) { return false; } // Non-volatile meshes cannot batch, because if a non-volatile mesh batches with another mesh, // then on the next frame, if that non-volatile mesh is drawn, it will draw the other mesh // that was saved in its vertex buffer, which is not necessarily there anymore. if (!this->fMeshes[0].fVertices->isVolatile() || !that->fMeshes[0].fVertices->isVolatile()) { return false; } if (!this->combinablePrimitive() || this->primitiveType() != that->primitiveType()) { return false; } if (fMeshes[0].fVertices->hasIndices() != that->fMeshes[0].fVertices->hasIndices()) { return false; } if (fColorArrayType != that->fColorArrayType) { return false; } if (fVertexCount + that->fVertexCount > SkTo(UINT16_MAX)) { return false; } // NOTE: For SkColor vertex colors, the source color space is always sRGB, and the destination // gamut is determined by the render target context. A mis-match should be impossible. SkASSERT(GrColorSpaceXform::Equals(fColorSpaceXform.get(), that->fColorSpaceXform.get())); // If either op required explicit local coords or per-vertex colors the combined mesh does. Same // with multiple view matrices. fFlags |= that->fFlags; if (!this->requiresPerVertexColors() && this->fMeshes[0].fColor != that->fMeshes[0].fColor) { fFlags |= kRequiresPerVertexColors_Flag; } // Check whether we are about to acquire a mesh with a different view matrix. if (!this->hasMultipleViewMatrices() && !this->fMeshes[0].fViewMatrix.cheapEqualTo(that->fMeshes[0].fViewMatrix)) { fFlags |= kHasMultipleViewMatrices_Flag; } fMeshes.push_back_n(that->fMeshes.count(), that->fMeshes.begin()); fVertexCount += that->fVertexCount; fIndexCount += that->fIndexCount; this->joinBounds(*that); return true; } /////////////////////////////////////////////////////////////////////////////////////////////////// #if GR_TEST_UTILS #include "GrDrawOpTest.h" static uint32_t seed_vertices(GrPrimitiveType type) { switch (type) { case GrPrimitiveType::kTriangles: case GrPrimitiveType::kTriangleStrip: return 3; case GrPrimitiveType::kPoints: return 1; case GrPrimitiveType::kLines: case GrPrimitiveType::kLineStrip: return 2; case GrPrimitiveType::kLinesAdjacency: return 4; } SK_ABORT("Incomplete switch\n"); return 0; } static uint32_t primitive_vertices(GrPrimitiveType type) { switch (type) { case GrPrimitiveType::kTriangles: return 3; case GrPrimitiveType::kLines: return 2; case GrPrimitiveType::kTriangleStrip: case GrPrimitiveType::kPoints: case GrPrimitiveType::kLineStrip: return 1; case GrPrimitiveType::kLinesAdjacency: return 4; } SK_ABORT("Incomplete switch\n"); return 0; } static SkPoint random_point(SkRandom* random, SkScalar min, SkScalar max) { SkPoint p; p.fX = random->nextRangeScalar(min, max); p.fY = random->nextRangeScalar(min, max); return p; } static void randomize_params(size_t count, size_t maxVertex, SkScalar min, SkScalar max, SkRandom* random, SkTArray* positions, SkTArray* texCoords, bool hasTexCoords, SkTArray* colors, bool hasColors, SkTArray* indices, bool hasIndices) { for (uint32_t v = 0; v < count; v++) { positions->push_back(random_point(random, min, max)); if (hasTexCoords) { texCoords->push_back(random_point(random, min, max)); } if (hasColors) { colors->push_back(GrRandomColor(random)); } if (hasIndices) { SkASSERT(maxVertex <= UINT16_MAX); indices->push_back(random->nextULessThan((uint16_t)maxVertex)); } } } GR_DRAW_OP_TEST_DEFINE(GrDrawVerticesOp) { GrPrimitiveType type; do { type = GrPrimitiveType(random->nextULessThan(kNumGrPrimitiveTypes)); } while (GrPrimTypeRequiresGeometryShaderSupport(type) && !context->contextPriv().caps()->shaderCaps()->geometryShaderSupport()); uint32_t primitiveCount = random->nextRangeU(1, 100); // TODO make 'sensible' indexbuffers SkTArray positions; SkTArray texCoords; SkTArray colors; SkTArray indices; bool hasTexCoords = random->nextBool(); bool hasIndices = random->nextBool(); bool hasColors = random->nextBool(); uint32_t vertexCount = seed_vertices(type) + (primitiveCount - 1) * primitive_vertices(type); static const SkScalar kMinVertExtent = -100.f; static const SkScalar kMaxVertExtent = 100.f; randomize_params(seed_vertices(type), vertexCount, kMinVertExtent, kMaxVertExtent, random, &positions, &texCoords, hasTexCoords, &colors, hasColors, &indices, hasIndices); for (uint32_t i = 1; i < primitiveCount; i++) { randomize_params(primitive_vertices(type), vertexCount, kMinVertExtent, kMaxVertExtent, random, &positions, &texCoords, hasTexCoords, &colors, hasColors, &indices, hasIndices); } SkMatrix viewMatrix = GrTest::TestMatrix(random); sk_sp colorSpaceXform = GrTest::TestColorXform(random); static constexpr SkVertices::VertexMode kIgnoredMode = SkVertices::kTriangles_VertexMode; sk_sp vertices = SkVertices::MakeCopy(kIgnoredMode, vertexCount, positions.begin(), texCoords.begin(), colors.begin(), hasIndices ? indices.count() : 0, indices.begin()); GrAAType aaType = GrAAType::kNone; if (GrFSAAType::kUnifiedMSAA == fsaaType && random->nextBool()) { aaType = GrAAType::kMSAA; } return GrDrawVerticesOp::Make(context, std::move(paint), std::move(vertices), nullptr, 0, viewMatrix, aaType, std::move(colorSpaceXform), &type); } #endif