/* * Copyright 2015 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "GrDefaultGeoProcFactory.h" #include "GrOpFlushState.h" #include "GrRectOpFactory.h" #include "GrResourceKey.h" #include "GrResourceProvider.h" #include "GrSimpleMeshDrawOpHelper.h" #include "SkStrokeRec.h" GR_DECLARE_STATIC_UNIQUE_KEY(gMiterIndexBufferKey); GR_DECLARE_STATIC_UNIQUE_KEY(gBevelIndexBufferKey); static void set_inset_fan(SkPoint* pts, size_t stride, const SkRect& r, SkScalar dx, SkScalar dy) { pts->setRectFan(r.fLeft + dx, r.fTop + dy, r.fRight - dx, r.fBottom - dy, stride); } // We support all hairlines, bevels, and miters, but not round joins. Also, check whether the miter // limit makes a miter join effectively beveled. inline static bool allowed_stroke(const SkStrokeRec& stroke, bool* isMiter) { SkASSERT(stroke.getStyle() == SkStrokeRec::kStroke_Style || stroke.getStyle() == SkStrokeRec::kHairline_Style); // For hairlines, make bevel and round joins appear the same as mitered ones. if (!stroke.getWidth()) { *isMiter = true; return true; } if (stroke.getJoin() == SkPaint::kBevel_Join) { *isMiter = false; return true; } if (stroke.getJoin() == SkPaint::kMiter_Join) { *isMiter = stroke.getMiter() >= SK_ScalarSqrt2; return true; } return false; } static void compute_rects(SkRect* devOutside, SkRect* devOutsideAssist, SkRect* devInside, bool* isDegenerate, const SkMatrix& viewMatrix, const SkRect& rect, SkScalar strokeWidth, bool miterStroke) { SkRect devRect; viewMatrix.mapRect(&devRect, rect); SkVector devStrokeSize; if (strokeWidth > 0) { devStrokeSize.set(strokeWidth, strokeWidth); viewMatrix.mapVectors(&devStrokeSize, 1); devStrokeSize.setAbs(devStrokeSize); } else { devStrokeSize.set(SK_Scalar1, SK_Scalar1); } const SkScalar dx = devStrokeSize.fX; const SkScalar dy = devStrokeSize.fY; const SkScalar rx = SkScalarHalf(dx); const SkScalar ry = SkScalarHalf(dy); *devOutside = devRect; *devOutsideAssist = devRect; *devInside = devRect; devOutside->outset(rx, ry); devInside->inset(rx, ry); // If we have a degenerate stroking rect(ie the stroke is larger than inner rect) then we // make a degenerate inside rect to avoid double hitting. We will also jam all of the points // together when we render these rects. SkScalar spare; { SkScalar w = devRect.width() - dx; SkScalar h = devRect.height() - dy; spare = SkTMin(w, h); } *isDegenerate = spare <= 0; if (*isDegenerate) { devInside->fLeft = devInside->fRight = devRect.centerX(); devInside->fTop = devInside->fBottom = devRect.centerY(); } // For bevel-stroke, use 2 SkRect instances(devOutside and devOutsideAssist) // to draw the outside of the octagon. Because there are 8 vertices on the outer // edge, while vertex number of inner edge is 4, the same as miter-stroke. if (!miterStroke) { devOutside->inset(0, ry); devOutsideAssist->outset(0, ry); } } static sk_sp create_stroke_rect_gp(bool tweakAlphaForCoverage, const SkMatrix& viewMatrix, bool usesLocalCoords) { using namespace GrDefaultGeoProcFactory; Coverage::Type coverageType; if (tweakAlphaForCoverage) { coverageType = Coverage::kSolid_Type; } else { coverageType = Coverage::kAttribute_Type; } LocalCoords::Type localCoordsType = usesLocalCoords ? LocalCoords::kUsePosition_Type : LocalCoords::kUnused_Type; return MakeForDeviceSpace(Color::kPremulGrColorAttribute_Type, coverageType, localCoordsType, viewMatrix); } namespace { class AAStrokeRectOp final : public GrMeshDrawOp { private: using Helper = GrSimpleMeshDrawOpHelper; public: DEFINE_OP_CLASS_ID static std::unique_ptr Make(GrPaint&& paint, const SkMatrix& viewMatrix, const SkRect& devOutside, const SkRect& devInside) { return Helper::FactoryHelper(std::move(paint), viewMatrix, devOutside, devInside); } AAStrokeRectOp(const Helper::MakeArgs& helperArgs, GrColor color, const SkMatrix& viewMatrix, const SkRect& devOutside, const SkRect& devInside) : INHERITED(ClassID()) , fHelper(helperArgs, GrAAType::kCoverage) , fViewMatrix(viewMatrix) { SkASSERT(!devOutside.isEmpty()); SkASSERT(!devInside.isEmpty()); fRects.emplace_back(RectInfo{color, devOutside, devOutside, devInside, false}); this->setBounds(devOutside, HasAABloat::kYes, IsZeroArea::kNo); fMiterStroke = true; } static std::unique_ptr Make(GrPaint&& paint, const SkMatrix& viewMatrix, const SkRect& rect, const SkStrokeRec& stroke) { bool isMiter; if (!allowed_stroke(stroke, &isMiter)) { return nullptr; } return Helper::FactoryHelper(std::move(paint), viewMatrix, rect, stroke, isMiter); } AAStrokeRectOp(const Helper::MakeArgs& helperArgs, GrColor color, const SkMatrix& viewMatrix, const SkRect& rect, const SkStrokeRec& stroke, bool isMiter) : INHERITED(ClassID()) , fHelper(helperArgs, GrAAType::kCoverage) , fViewMatrix(viewMatrix) { fMiterStroke = isMiter; RectInfo& info = fRects.push_back(); compute_rects(&info.fDevOutside, &info.fDevOutsideAssist, &info.fDevInside, &info.fDegenerate, viewMatrix, rect, stroke.getWidth(), isMiter); info.fColor = color; if (isMiter) { this->setBounds(info.fDevOutside, HasAABloat::kYes, IsZeroArea::kNo); } else { // The outer polygon of the bevel stroke is an octagon specified by the points of a // pair of overlapping rectangles where one is wide and the other is narrow. SkRect bounds = info.fDevOutside; bounds.joinPossiblyEmptyRect(info.fDevOutsideAssist); this->setBounds(bounds, HasAABloat::kYes, IsZeroArea::kNo); } } const char* name() const override { return "AAStrokeRect"; } SkString dumpInfo() const override { SkString string; for (const auto& info : fRects) { string.appendf( "Color: 0x%08x, ORect [L: %.2f, T: %.2f, R: %.2f, B: %.2f], " "AssistORect [L: %.2f, T: %.2f, R: %.2f, B: %.2f], " "IRect [L: %.2f, T: %.2f, R: %.2f, B: %.2f], Degen: %d", info.fColor, info.fDevOutside.fLeft, info.fDevOutside.fTop, info.fDevOutside.fRight, info.fDevOutside.fBottom, info.fDevOutsideAssist.fLeft, info.fDevOutsideAssist.fTop, info.fDevOutsideAssist.fRight, info.fDevOutsideAssist.fBottom, info.fDevInside.fLeft, info.fDevInside.fTop, info.fDevInside.fRight, info.fDevInside.fBottom, info.fDegenerate); } string += fHelper.dumpInfo(); string += INHERITED::dumpInfo(); return string; } FixedFunctionFlags fixedFunctionFlags() const override { return fHelper.fixedFunctionFlags(); } RequiresDstTexture finalize(const GrCaps& caps, const GrAppliedClip* clip) override { return fHelper.xpRequiresDstTexture(caps, clip, GrProcessorAnalysisCoverage::kSingleChannel, &fRects.back().fColor); } private: void onPrepareDraws(Target*) override; static const int kMiterIndexCnt = 3 * 24; static const int kMiterVertexCnt = 16; static const int kNumMiterRectsInIndexBuffer = 256; static const int kBevelIndexCnt = 48 + 36 + 24; static const int kBevelVertexCnt = 24; static const int kNumBevelRectsInIndexBuffer = 256; static const GrBuffer* GetIndexBuffer(GrResourceProvider* resourceProvider, bool miterStroke); const SkMatrix& viewMatrix() const { return fViewMatrix; } bool miterStroke() const { return fMiterStroke; } bool onCombineIfPossible(GrOp* t, const GrCaps&) override; void generateAAStrokeRectGeometry(void* vertices, size_t offset, size_t vertexStride, int outerVertexNum, int innerVertexNum, GrColor color, const SkRect& devOutside, const SkRect& devOutsideAssist, const SkRect& devInside, bool miterStroke, bool degenerate, bool tweakAlphaForCoverage) const; // TODO support AA rotated stroke rects by copying around view matrices struct RectInfo { GrColor fColor; SkRect fDevOutside; SkRect fDevOutsideAssist; SkRect fDevInside; bool fDegenerate; }; Helper fHelper; SkSTArray<1, RectInfo, true> fRects; SkMatrix fViewMatrix; bool fMiterStroke; typedef GrMeshDrawOp INHERITED; }; } // anonymous namespace void AAStrokeRectOp::onPrepareDraws(Target* target) { sk_sp gp(create_stroke_rect_gp(fHelper.compatibleWithAlphaAsCoverage(), this->viewMatrix(), fHelper.usesLocalCoords())); if (!gp) { SkDebugf("Couldn't create GrGeometryProcessor\n"); return; } size_t vertexStride = gp->getVertexStride(); SkASSERT(fHelper.compatibleWithAlphaAsCoverage() ? vertexStride == sizeof(GrDefaultGeoProcFactory::PositionColorAttr) : vertexStride == sizeof(GrDefaultGeoProcFactory::PositionColorCoverageAttr)); int innerVertexNum = 4; int outerVertexNum = this->miterStroke() ? 4 : 8; int verticesPerInstance = (outerVertexNum + innerVertexNum) * 2; int indicesPerInstance = this->miterStroke() ? kMiterIndexCnt : kBevelIndexCnt; int instanceCount = fRects.count(); const sk_sp indexBuffer( GetIndexBuffer(target->resourceProvider(), this->miterStroke())); PatternHelper helper(GrPrimitiveType::kTriangles); void* vertices = helper.init(target, vertexStride, indexBuffer.get(), verticesPerInstance, indicesPerInstance, instanceCount); if (!vertices || !indexBuffer) { SkDebugf("Could not allocate vertices\n"); return; } for (int i = 0; i < instanceCount; i++) { const RectInfo& info = fRects[i]; this->generateAAStrokeRectGeometry(vertices, i * verticesPerInstance * vertexStride, vertexStride, outerVertexNum, innerVertexNum, info.fColor, info.fDevOutside, info.fDevOutsideAssist, info.fDevInside, fMiterStroke, info.fDegenerate, fHelper.compatibleWithAlphaAsCoverage()); } helper.recordDraw(target, gp.get(), fHelper.makePipeline(target)); } const GrBuffer* AAStrokeRectOp::GetIndexBuffer(GrResourceProvider* resourceProvider, bool miterStroke) { if (miterStroke) { // clang-format off static const uint16_t gMiterIndices[] = { 0 + 0, 1 + 0, 5 + 0, 5 + 0, 4 + 0, 0 + 0, 1 + 0, 2 + 0, 6 + 0, 6 + 0, 5 + 0, 1 + 0, 2 + 0, 3 + 0, 7 + 0, 7 + 0, 6 + 0, 2 + 0, 3 + 0, 0 + 0, 4 + 0, 4 + 0, 7 + 0, 3 + 0, 0 + 4, 1 + 4, 5 + 4, 5 + 4, 4 + 4, 0 + 4, 1 + 4, 2 + 4, 6 + 4, 6 + 4, 5 + 4, 1 + 4, 2 + 4, 3 + 4, 7 + 4, 7 + 4, 6 + 4, 2 + 4, 3 + 4, 0 + 4, 4 + 4, 4 + 4, 7 + 4, 3 + 4, 0 + 8, 1 + 8, 5 + 8, 5 + 8, 4 + 8, 0 + 8, 1 + 8, 2 + 8, 6 + 8, 6 + 8, 5 + 8, 1 + 8, 2 + 8, 3 + 8, 7 + 8, 7 + 8, 6 + 8, 2 + 8, 3 + 8, 0 + 8, 4 + 8, 4 + 8, 7 + 8, 3 + 8, }; // clang-format on GR_STATIC_ASSERT(SK_ARRAY_COUNT(gMiterIndices) == kMiterIndexCnt); GR_DEFINE_STATIC_UNIQUE_KEY(gMiterIndexBufferKey); return resourceProvider->findOrCreatePatternedIndexBuffer( gMiterIndices, kMiterIndexCnt, kNumMiterRectsInIndexBuffer, kMiterVertexCnt, gMiterIndexBufferKey); } else { /** * As in miter-stroke, index = a + b, and a is the current index, b is the shift * from the first index. The index layout: * outer AA line: 0~3, 4~7 * outer edge: 8~11, 12~15 * inner edge: 16~19 * inner AA line: 20~23 * Following comes a bevel-stroke rect and its indices: * * 4 7 * ********************************* * * ______________________________ * * * / 12 15 \ * * * / \ * * 0 * |8 16_____________________19 11 | * 3 * * | | | | * * * | | **************** | | * * * | | * 20 23 * | | * * * | | * * | | * * * | | * 21 22 * | | * * * | | **************** | | * * * | |____________________| | * * 1 * |9 17 18 10| * 2 * * \ / * * * \13 __________________________14/ * * * * * ********************************** * 5 6 */ // clang-format off static const uint16_t gBevelIndices[] = { // Draw outer AA, from outer AA line to outer edge, shift is 0. 0 + 0, 1 + 0, 9 + 0, 9 + 0, 8 + 0, 0 + 0, 1 + 0, 5 + 0, 13 + 0, 13 + 0, 9 + 0, 1 + 0, 5 + 0, 6 + 0, 14 + 0, 14 + 0, 13 + 0, 5 + 0, 6 + 0, 2 + 0, 10 + 0, 10 + 0, 14 + 0, 6 + 0, 2 + 0, 3 + 0, 11 + 0, 11 + 0, 10 + 0, 2 + 0, 3 + 0, 7 + 0, 15 + 0, 15 + 0, 11 + 0, 3 + 0, 7 + 0, 4 + 0, 12 + 0, 12 + 0, 15 + 0, 7 + 0, 4 + 0, 0 + 0, 8 + 0, 8 + 0, 12 + 0, 4 + 0, // Draw the stroke, from outer edge to inner edge, shift is 8. 0 + 8, 1 + 8, 9 + 8, 9 + 8, 8 + 8, 0 + 8, 1 + 8, 5 + 8, 9 + 8, 5 + 8, 6 + 8, 10 + 8, 10 + 8, 9 + 8, 5 + 8, 6 + 8, 2 + 8, 10 + 8, 2 + 8, 3 + 8, 11 + 8, 11 + 8, 10 + 8, 2 + 8, 3 + 8, 7 + 8, 11 + 8, 7 + 8, 4 + 8, 8 + 8, 8 + 8, 11 + 8, 7 + 8, 4 + 8, 0 + 8, 8 + 8, // Draw the inner AA, from inner edge to inner AA line, shift is 16. 0 + 16, 1 + 16, 5 + 16, 5 + 16, 4 + 16, 0 + 16, 1 + 16, 2 + 16, 6 + 16, 6 + 16, 5 + 16, 1 + 16, 2 + 16, 3 + 16, 7 + 16, 7 + 16, 6 + 16, 2 + 16, 3 + 16, 0 + 16, 4 + 16, 4 + 16, 7 + 16, 3 + 16, }; // clang-format on GR_STATIC_ASSERT(SK_ARRAY_COUNT(gBevelIndices) == kBevelIndexCnt); GR_DEFINE_STATIC_UNIQUE_KEY(gBevelIndexBufferKey); return resourceProvider->findOrCreatePatternedIndexBuffer( gBevelIndices, kBevelIndexCnt, kNumBevelRectsInIndexBuffer, kBevelVertexCnt, gBevelIndexBufferKey); } } bool AAStrokeRectOp::onCombineIfPossible(GrOp* t, const GrCaps& caps) { AAStrokeRectOp* that = t->cast(); if (!fHelper.isCompatible(that->fHelper, caps, this->bounds(), that->bounds())) { return false; } // TODO combine across miterstroke changes if (this->miterStroke() != that->miterStroke()) { return false; } // We apply the viewmatrix to the rect points on the cpu. However, if the pipeline uses // local coords then we won't be able to combine. TODO: Upload local coords as an attribute. if (fHelper.usesLocalCoords() && !this->viewMatrix().cheapEqualTo(that->viewMatrix())) { return false; } fRects.push_back_n(that->fRects.count(), that->fRects.begin()); this->joinBounds(*that); return true; } static void setup_scale(int* scale, SkScalar inset) { if (inset < SK_ScalarHalf) { *scale = SkScalarFloorToInt(512.0f * inset / (inset + SK_ScalarHalf)); SkASSERT(*scale >= 0 && *scale <= 255); } else { *scale = 0xff; } } void AAStrokeRectOp::generateAAStrokeRectGeometry(void* vertices, size_t offset, size_t vertexStride, int outerVertexNum, int innerVertexNum, GrColor color, const SkRect& devOutside, const SkRect& devOutsideAssist, const SkRect& devInside, bool miterStroke, bool degenerate, bool tweakAlphaForCoverage) const { intptr_t verts = reinterpret_cast(vertices) + offset; // We create vertices for four nested rectangles. There are two ramps from 0 to full // coverage, one on the exterior of the stroke and the other on the interior. // The following pointers refer to the four rects, from outermost to innermost. SkPoint* fan0Pos = reinterpret_cast(verts); SkPoint* fan1Pos = reinterpret_cast(verts + outerVertexNum * vertexStride); SkPoint* fan2Pos = reinterpret_cast(verts + 2 * outerVertexNum * vertexStride); SkPoint* fan3Pos = reinterpret_cast( verts + (2 * outerVertexNum + innerVertexNum) * vertexStride); #ifndef SK_IGNORE_THIN_STROKED_RECT_FIX // TODO: this only really works if the X & Y margins are the same all around // the rect (or if they are all >= 1.0). SkScalar inset; if (!degenerate) { inset = SkMinScalar(SK_Scalar1, devOutside.fRight - devInside.fRight); inset = SkMinScalar(inset, devInside.fLeft - devOutside.fLeft); inset = SkMinScalar(inset, devInside.fTop - devOutside.fTop); if (miterStroke) { inset = SK_ScalarHalf * SkMinScalar(inset, devOutside.fBottom - devInside.fBottom); } else { inset = SK_ScalarHalf * SkMinScalar(inset, devOutsideAssist.fBottom - devInside.fBottom); } SkASSERT(inset >= 0); } else { // TODO use real devRect here inset = SkMinScalar(devOutside.width(), SK_Scalar1); inset = SK_ScalarHalf * SkMinScalar(inset, SkTMax(devOutside.height(), devOutsideAssist.height())); } #else SkScalar inset; if (!degenerate) { inset = SK_ScalarHalf; } else { // TODO use real devRect here inset = SkMinScalar(devOutside.width(), SK_Scalar1); inset = SK_ScalarHalf * SkMinScalar(inset, SkTMax(devOutside.height(), devOutsideAssist.height())); } #endif if (miterStroke) { // outermost set_inset_fan(fan0Pos, vertexStride, devOutside, -SK_ScalarHalf, -SK_ScalarHalf); // inner two set_inset_fan(fan1Pos, vertexStride, devOutside, inset, inset); if (!degenerate) { set_inset_fan(fan2Pos, vertexStride, devInside, -inset, -inset); // innermost set_inset_fan(fan3Pos, vertexStride, devInside, SK_ScalarHalf, SK_ScalarHalf); } else { // When the interior rect has become degenerate we smoosh to a single point SkASSERT(devInside.fLeft == devInside.fRight && devInside.fTop == devInside.fBottom); fan2Pos->setRectFan(devInside.fLeft, devInside.fTop, devInside.fRight, devInside.fBottom, vertexStride); fan3Pos->setRectFan(devInside.fLeft, devInside.fTop, devInside.fRight, devInside.fBottom, vertexStride); } } else { SkPoint* fan0AssistPos = reinterpret_cast(verts + 4 * vertexStride); SkPoint* fan1AssistPos = reinterpret_cast(verts + (outerVertexNum + 4) * vertexStride); // outermost set_inset_fan(fan0Pos, vertexStride, devOutside, -SK_ScalarHalf, -SK_ScalarHalf); set_inset_fan(fan0AssistPos, vertexStride, devOutsideAssist, -SK_ScalarHalf, -SK_ScalarHalf); // outer one of the inner two set_inset_fan(fan1Pos, vertexStride, devOutside, inset, inset); set_inset_fan(fan1AssistPos, vertexStride, devOutsideAssist, inset, inset); if (!degenerate) { // inner one of the inner two set_inset_fan(fan2Pos, vertexStride, devInside, -inset, -inset); // innermost set_inset_fan(fan3Pos, vertexStride, devInside, SK_ScalarHalf, SK_ScalarHalf); } else { // When the interior rect has become degenerate we smoosh to a single point SkASSERT(devInside.fLeft == devInside.fRight && devInside.fTop == devInside.fBottom); fan2Pos->setRectFan(devInside.fLeft, devInside.fTop, devInside.fRight, devInside.fBottom, vertexStride); fan3Pos->setRectFan(devInside.fLeft, devInside.fTop, devInside.fRight, devInside.fBottom, vertexStride); } } // Make verts point to vertex color and then set all the color and coverage vertex attrs // values. The outermost rect has 0 coverage verts += sizeof(SkPoint); for (int i = 0; i < outerVertexNum; ++i) { if (tweakAlphaForCoverage) { *reinterpret_cast(verts + i * vertexStride) = 0; } else { *reinterpret_cast(verts + i * vertexStride) = color; *reinterpret_cast(verts + i * vertexStride + sizeof(GrColor)) = 0; } } // scale is the coverage for the the inner two rects. int scale; setup_scale(&scale, inset); float innerCoverage = GrNormalizeByteToFloat(scale); GrColor scaledColor = (0xff == scale) ? color : SkAlphaMulQ(color, scale); verts += outerVertexNum * vertexStride; for (int i = 0; i < outerVertexNum + innerVertexNum; ++i) { if (tweakAlphaForCoverage) { *reinterpret_cast(verts + i * vertexStride) = scaledColor; } else { *reinterpret_cast(verts + i * vertexStride) = color; *reinterpret_cast(verts + i * vertexStride + sizeof(GrColor)) = innerCoverage; } } // The innermost rect has 0 coverage, unless we are degenerate, in which case we must apply the // scaled coverage verts += (outerVertexNum + innerVertexNum) * vertexStride; if (!degenerate) { innerCoverage = 0; scaledColor = 0; } for (int i = 0; i < innerVertexNum; ++i) { if (tweakAlphaForCoverage) { *reinterpret_cast(verts + i * vertexStride) = scaledColor; } else { *reinterpret_cast(verts + i * vertexStride) = color; *reinterpret_cast(verts + i * vertexStride + sizeof(GrColor)) = innerCoverage; } } } namespace GrRectOpFactory { std::unique_ptr MakeAAFillNestedRects(GrPaint&& paint, const SkMatrix& viewMatrix, const SkRect rects[2]) { SkASSERT(viewMatrix.rectStaysRect()); SkASSERT(!rects[0].isEmpty() && !rects[1].isEmpty()); SkRect devOutside, devInside; viewMatrix.mapRect(&devOutside, rects[0]); viewMatrix.mapRect(&devInside, rects[1]); if (devInside.isEmpty()) { if (devOutside.isEmpty()) { return nullptr; } return MakeAAFill(std::move(paint), viewMatrix, rects[0]); } return AAStrokeRectOp::Make(std::move(paint), viewMatrix, devOutside, devInside); } std::unique_ptr MakeAAStroke(GrPaint&& paint, const SkMatrix& viewMatrix, const SkRect& rect, const SkStrokeRec& stroke) { return AAStrokeRectOp::Make(std::move(paint), viewMatrix, rect, stroke); } } // namespace GrRectOpFactory /////////////////////////////////////////////////////////////////////////////////////////////////// #if GR_TEST_UTILS #include "GrDrawOpTest.h" GR_DRAW_OP_TEST_DEFINE(AAStrokeRectOp) { bool miterStroke = random->nextBool(); // Create either a empty rect or a non-empty rect. SkRect rect = random->nextBool() ? SkRect::MakeXYWH(10, 10, 50, 40) : SkRect::MakeXYWH(6, 7, 0, 0); SkScalar minDim = SkMinScalar(rect.width(), rect.height()); SkScalar strokeWidth = random->nextUScalar1() * minDim; SkStrokeRec rec(SkStrokeRec::kFill_InitStyle); rec.setStrokeStyle(strokeWidth); rec.setStrokeParams(SkPaint::kButt_Cap, miterStroke ? SkPaint::kMiter_Join : SkPaint::kBevel_Join, 1.f); SkMatrix matrix = GrTest::TestMatrixRectStaysRect(random); return GrRectOpFactory::MakeAAStroke(std::move(paint), matrix, rect, rec); } #endif