/* * Copyright 2014 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "GrShaderVar.h" #include "GrShaderCaps.h" #include "GrSwizzle.h" #include "glsl/GrGLSLShaderBuilder.h" #include "glsl/GrGLSLColorSpaceXformHelper.h" #include "glsl/GrGLSLProgramBuilder.h" GrGLSLShaderBuilder::GrGLSLShaderBuilder(GrGLSLProgramBuilder* program) : fProgramBuilder(program) , fInputs(GrGLSLProgramBuilder::kVarsPerBlock) , fOutputs(GrGLSLProgramBuilder::kVarsPerBlock) , fFeaturesAddedMask(0) , fCodeIndex(kCode) , fFinalized(false) { // We push back some dummy pointers which will later become our header for (int i = 0; i <= kCode; i++) { fShaderStrings.push_back(); fCompilerStrings.push_back(nullptr); fCompilerStringLengths.push_back(0); } this->main() = "void main() {"; } void GrGLSLShaderBuilder::declAppend(const GrShaderVar& var) { SkString tempDecl; var.appendDecl(fProgramBuilder->shaderCaps(), &tempDecl); this->codeAppendf("%s;", tempDecl.c_str()); } void GrGLSLShaderBuilder::declareGlobal(const GrShaderVar& v) { v.appendDecl(this->getProgramBuilder()->shaderCaps(), &this->definitions()); this->definitions().append(";"); } void GrGLSLShaderBuilder::emitFunction(GrSLType returnType, const char* name, int argCnt, const GrShaderVar* args, const char* body, SkString* outName) { this->functions().append(GrGLSLTypeString(fProgramBuilder->shaderCaps(), returnType)); fProgramBuilder->nameVariable(outName, '\0', name); this->functions().appendf(" %s", outName->c_str()); this->functions().append("("); for (int i = 0; i < argCnt; ++i) { args[i].appendDecl(fProgramBuilder->shaderCaps(), &this->functions()); if (i < argCnt - 1) { this->functions().append(", "); } } this->functions().append(") {\n"); this->functions().append(body); this->functions().append("}\n\n"); } static inline void append_texture_swizzle(SkString* out, GrSwizzle swizzle) { if (swizzle != GrSwizzle::RGBA()) { out->appendf(".%s", swizzle.c_str()); } } void GrGLSLShaderBuilder::appendTextureLookup(SkString* out, SamplerHandle samplerHandle, const char* coordName, GrSLType varyingType) const { const GrShaderVar& sampler = fProgramBuilder->samplerVariable(samplerHandle); out->appendf("texture(%s, %s)", sampler.c_str(), coordName); append_texture_swizzle(out, fProgramBuilder->samplerSwizzle(samplerHandle)); } void GrGLSLShaderBuilder::appendTextureLookup(SamplerHandle samplerHandle, const char* coordName, GrSLType varyingType, GrGLSLColorSpaceXformHelper* colorXformHelper) { if (colorXformHelper && colorXformHelper->isValid()) { // With a color gamut transform, we need to wrap the lookup in another function call SkString lookup; this->appendTextureLookup(&lookup, samplerHandle, coordName, varyingType); this->appendColorGamutXform(lookup.c_str(), colorXformHelper); } else { this->appendTextureLookup(&this->code(), samplerHandle, coordName, varyingType); } } void GrGLSLShaderBuilder::appendTextureLookupAndModulate( const char* modulation, SamplerHandle samplerHandle, const char* coordName, GrSLType varyingType, GrGLSLColorSpaceXformHelper* colorXformHelper) { SkString lookup; this->appendTextureLookup(&lookup, samplerHandle, coordName, varyingType); if (colorXformHelper && colorXformHelper->isValid()) { SkString xform; this->appendColorGamutXform(&xform, lookup.c_str(), colorXformHelper); if (modulation) { this->codeAppendf("%s * %s", modulation, xform.c_str()); } else { this->codeAppendf("%s", xform.c_str()); } } else { if (modulation) { this->codeAppendf("%s * %s", modulation, lookup.c_str()); } else { this->codeAppendf("%s", lookup.c_str()); } } } void GrGLSLShaderBuilder::appendColorGamutXform(SkString* out, const char* srcColor, GrGLSLColorSpaceXformHelper* colorXformHelper) { GrGLSLUniformHandler* uniformHandler = fProgramBuilder->uniformHandler(); // We define up to three helper functions, to keep things clearer. One does inverse sRGB, // one does an arbitrary transfer function, and the last does gamut xform. Any combination of // these may be present, although some configurations are much more likely. SkString inverseSrgbFuncName; if (colorXformHelper->applyInverseSRGB()) { static const GrShaderVar gInverseSRGBArgs[] = { GrShaderVar("x", kHalf_GrSLType) }; SkString body; body.append("return (x <= 0.0031308) ? (x * 12.92) : (1.055 * pow(x, 0.4166667) - 0.055);"); this->emitFunction(kHalf_GrSLType, "inverse_srgb", SK_ARRAY_COUNT(gInverseSRGBArgs), gInverseSRGBArgs, body.c_str(), &inverseSrgbFuncName); } SkString transferFnFuncName; if (colorXformHelper->applyTransferFn()) { static const GrShaderVar gTransferFnArgs[] = { GrShaderVar("x", kHalf_GrSLType) }; const char* coeffs = uniformHandler->getUniformCStr(colorXformHelper->transferFnUniform()); SkString body; // Temporaries to make evaluation line readable body.appendf("half G = %s[0];", coeffs); body.appendf("half A = %s[1];", coeffs); body.appendf("half B = %s[2];", coeffs); body.appendf("half C = %s[3];", coeffs); body.appendf("half D = %s[4];", coeffs); body.appendf("half E = %s[5];", coeffs); body.appendf("half F = %s[6];", coeffs); body.append("half s = sign(x);"); body.append("x = abs(x);"); body.appendf("return s * ((x < D) ? (C * x) + F : pow(A * x + B, G) + E);"); this->emitFunction(kHalf_GrSLType, "transfer_fn", SK_ARRAY_COUNT(gTransferFnArgs), gTransferFnArgs, body.c_str(), &transferFnFuncName); } SkString gamutXformFuncName; if (colorXformHelper->applyGamutXform()) { // Our color is (r, g, b, a), but we want to multiply (r, g, b, 1) by our matrix, then // re-insert the original alpha. static const GrShaderVar gGamutXformArgs[] = { GrShaderVar("color", kHalf4_GrSLType) }; const char* xform = uniformHandler->getUniformCStr(colorXformHelper->gamutXformUniform()); SkString body; body.appendf("color.rgb = clamp((%s * half4(color.rgb, 1.0)).rgb, 0.0, color.a);", xform); body.append("return color;"); this->emitFunction(kHalf4_GrSLType, "gamut_xform", SK_ARRAY_COUNT(gGamutXformArgs), gGamutXformArgs, body.c_str(), &gamutXformFuncName); } // Now define a wrapper function that applies all the intermediate steps { static const GrShaderVar gColorXformArgs[] = { GrShaderVar("color", kHalf4_GrSLType) }; SkString body; if (colorXformHelper->applyInverseSRGB()) { body.appendf("color.r = %s(color.r);", inverseSrgbFuncName.c_str()); body.appendf("color.g = %s(color.g);", inverseSrgbFuncName.c_str()); body.appendf("color.b = %s(color.b);", inverseSrgbFuncName.c_str()); } if (colorXformHelper->applyTransferFn()) { body.appendf("color.r = %s(color.r);", transferFnFuncName.c_str()); body.appendf("color.g = %s(color.g);", transferFnFuncName.c_str()); body.appendf("color.b = %s(color.b);", transferFnFuncName.c_str()); } if (colorXformHelper->applyGamutXform()) { body.appendf("color = %s(color);", gamutXformFuncName.c_str()); } body.append("return color;"); SkString colorXformFuncName; this->emitFunction(kHalf4_GrSLType, "color_xform", SK_ARRAY_COUNT(gColorXformArgs), gColorXformArgs, body.c_str(), &colorXformFuncName); out->appendf("%s(%s)", colorXformFuncName.c_str(), srcColor); } } void GrGLSLShaderBuilder::appendColorGamutXform(const char* srcColor, GrGLSLColorSpaceXformHelper* colorXformHelper) { SkString xform; this->appendColorGamutXform(&xform, srcColor, colorXformHelper); this->codeAppend(xform.c_str()); } void GrGLSLShaderBuilder::appendTexelFetch(SkString* out, TexelBufferHandle texelBufferHandle, const char* coordExpr) const { const GrShaderVar& texelBuffer = fProgramBuilder->texelBufferVariable(texelBufferHandle); SkASSERT(fProgramBuilder->shaderCaps()->texelFetchSupport()); out->appendf("texelFetch(%s, %s)", texelBuffer.c_str(), coordExpr); } void GrGLSLShaderBuilder::appendTexelFetch(TexelBufferHandle texelBufferHandle, const char* coordExpr) { this->appendTexelFetch(&this->code(), texelBufferHandle, coordExpr); } bool GrGLSLShaderBuilder::addFeature(uint32_t featureBit, const char* extensionName) { if (featureBit & fFeaturesAddedMask) { return false; } this->extensions().appendf("#extension %s: require\n", extensionName); fFeaturesAddedMask |= featureBit; return true; } void GrGLSLShaderBuilder::appendDecls(const VarArray& vars, SkString* out) const { for (int i = 0; i < vars.count(); ++i) { vars[i].appendDecl(fProgramBuilder->shaderCaps(), out); out->append(";\n"); } } void GrGLSLShaderBuilder::addLayoutQualifier(const char* param, InterfaceQualifier interface) { SkASSERT(fProgramBuilder->shaderCaps()->generation() >= k330_GrGLSLGeneration || fProgramBuilder->shaderCaps()->mustEnableAdvBlendEqs()); fLayoutParams[interface].push_back() = param; } void GrGLSLShaderBuilder::compileAndAppendLayoutQualifiers() { static const char* interfaceQualifierNames[] = { "in", "out" }; for (int interface = 0; interface <= kLastInterfaceQualifier; ++interface) { const SkTArray& params = fLayoutParams[interface]; if (params.empty()) { continue; } this->layoutQualifiers().appendf("layout(%s", params[0].c_str()); for (int i = 1; i < params.count(); ++i) { this->layoutQualifiers().appendf(", %s", params[i].c_str()); } this->layoutQualifiers().appendf(") %s;\n", interfaceQualifierNames[interface]); } GR_STATIC_ASSERT(0 == GrGLSLShaderBuilder::kIn_InterfaceQualifier); GR_STATIC_ASSERT(1 == GrGLSLShaderBuilder::kOut_InterfaceQualifier); GR_STATIC_ASSERT(SK_ARRAY_COUNT(interfaceQualifierNames) == kLastInterfaceQualifier + 1); } void GrGLSLShaderBuilder::finalize(uint32_t visibility) { SkASSERT(!fFinalized); this->versionDecl() = fProgramBuilder->shaderCaps()->versionDeclString(); this->compileAndAppendLayoutQualifiers(); SkASSERT(visibility); fProgramBuilder->appendUniformDecls((GrShaderFlags) visibility, &this->uniforms()); this->appendDecls(fInputs, &this->inputs()); this->appendDecls(fOutputs, &this->outputs()); this->onFinalize(); // append the 'footer' to code this->code().append("}"); for (int i = 0; i <= fCodeIndex; i++) { fCompilerStrings[i] = fShaderStrings[i].c_str(); fCompilerStringLengths[i] = (int)fShaderStrings[i].size(); } fFinalized = true; }