/* * Copyright 2015 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "glsl/GrGLSLProgramBuilder.h" #include "GrPipeline.h" #include "glsl/GrGLSLFragmentProcessor.h" #include "glsl/GrGLSLGeometryProcessor.h" #include "glsl/GrGLSLVarying.h" #include "glsl/GrGLSLXferProcessor.h" const int GrGLSLProgramBuilder::kVarsPerBlock = 8; GrGLSLProgramBuilder::GrGLSLProgramBuilder(const DrawArgs& args) : fVS(this) , fGS(this) , fFS(this, args.fDesc->header().fFragPosKey) , fStageIndex(-1) , fArgs(args) , fGeometryProcessor(nullptr) , fXferProcessor(nullptr) { } bool GrGLSLProgramBuilder::emitAndInstallProcs(GrGLSLExpr4* inputColor, GrGLSLExpr4* inputCoverage, int maxTextures) { // First we loop over all of the installed processors and collect coord transforms. These will // be sent to the GrGLSLPrimitiveProcessor in its emitCode function const GrPrimitiveProcessor& primProc = this->primitiveProcessor(); int totalTextures = primProc.numTextures(); for (int i = 0; i < this->pipeline().numFragmentProcessors(); i++) { const GrFragmentProcessor& processor = this->pipeline().getFragmentProcessor(i); if (!primProc.hasTransformedLocalCoords()) { SkTArray& procCoords = fCoordTransforms.push_back(); processor.gatherCoordTransforms(&procCoords); } totalTextures += processor.numTextures(); if (totalTextures >= maxTextures) { GrCapsDebugf(this->caps(), "Program would use too many texture units\n"); return false; } } this->emitAndInstallPrimProc(primProc, inputColor, inputCoverage); int numProcs = this->pipeline().numFragmentProcessors(); this->emitAndInstallFragProcs(0, this->pipeline().numColorFragmentProcessors(), inputColor); this->emitAndInstallFragProcs(this->pipeline().numColorFragmentProcessors(), numProcs, inputCoverage); if (primProc.getPixelLocalStorageState() != GrPixelLocalStorageState::kDraw_GrPixelLocalStorageState) { this->emitAndInstallXferProc(this->pipeline().getXferProcessor(), *inputColor, *inputCoverage, this->pipeline().ignoresCoverage(), primProc.getPixelLocalStorageState()); this->emitFSOutputSwizzle(this->pipeline().getXferProcessor().hasSecondaryOutput()); } return true; } void GrGLSLProgramBuilder::emitAndInstallPrimProc(const GrPrimitiveProcessor& proc, GrGLSLExpr4* outputColor, GrGLSLExpr4* outputCoverage) { // Program builders have a bit of state we need to clear with each effect AutoStageAdvance adv(this); this->nameExpression(outputColor, "outputColor"); this->nameExpression(outputCoverage, "outputCoverage"); // Enclose custom code in a block to avoid namespace conflicts SkString openBrace; openBrace.printf("{ // Stage %d, %s\n", fStageIndex, proc.name()); fFS.codeAppend(openBrace.c_str()); fVS.codeAppendf("// Primitive Processor %s\n", proc.name()); SkASSERT(!fGeometryProcessor); fGeometryProcessor = proc.createGLSLInstance(*this->glslCaps()); SkSTArray<4, GrGLSLTextureSampler> samplers(proc.numTextures()); this->emitSamplers(proc, &samplers); GrGLSLGeometryProcessor::EmitArgs args(&fVS, &fFS, this->varyingHandler(), this->uniformHandler(), this->glslCaps(), proc, outputColor->c_str(), outputCoverage->c_str(), samplers, fCoordTransforms, &fOutCoords); fGeometryProcessor->emitCode(args); // We have to check that effects and the code they emit are consistent, ie if an effect // asks for dst color, then the emit code needs to follow suit SkDEBUGCODE(verify(proc);) fFS.codeAppend("}"); } void GrGLSLProgramBuilder::emitAndInstallFragProcs(int procOffset, int numProcs, GrGLSLExpr4* inOut) { for (int i = procOffset; i < numProcs; ++i) { GrGLSLExpr4 output; const GrFragmentProcessor& fp = this->pipeline().getFragmentProcessor(i); this->emitAndInstallFragProc(fp, i, *inOut, &output); *inOut = output; } } // TODO Processors cannot output zeros because an empty string is all 1s // the fix is to allow effects to take the GrGLSLExpr4 directly void GrGLSLProgramBuilder::emitAndInstallFragProc(const GrFragmentProcessor& fp, int index, const GrGLSLExpr4& input, GrGLSLExpr4* output) { // Program builders have a bit of state we need to clear with each effect AutoStageAdvance adv(this); this->nameExpression(output, "output"); // Enclose custom code in a block to avoid namespace conflicts SkString openBrace; openBrace.printf("{ // Stage %d, %s\n", fStageIndex, fp.name()); fFS.codeAppend(openBrace.c_str()); GrGLSLFragmentProcessor* fragProc = fp.createGLSLInstance(); SkSTArray<4, GrGLSLTextureSampler> samplers(fp.numTextures()); this->emitSamplers(fp, &samplers); GrGLSLFragmentProcessor::EmitArgs args(&fFS, this->uniformHandler(), this->glslCaps(), fp, output->c_str(), input.isOnes() ? nullptr : input.c_str(), fOutCoords[index], samplers); fragProc->emitCode(args); // We have to check that effects and the code they emit are consistent, ie if an effect // asks for dst color, then the emit code needs to follow suit SkDEBUGCODE(verify(fp);) fFragmentProcessors.push_back(fragProc); fFS.codeAppend("}"); } void GrGLSLProgramBuilder::emitAndInstallXferProc(const GrXferProcessor& xp, const GrGLSLExpr4& colorIn, const GrGLSLExpr4& coverageIn, bool ignoresCoverage, GrPixelLocalStorageState plsState) { // Program builders have a bit of state we need to clear with each effect AutoStageAdvance adv(this); SkASSERT(!fXferProcessor); fXferProcessor = xp.createGLSLInstance(); // Enable dual source secondary output if we have one if (xp.hasSecondaryOutput()) { fFS.enableSecondaryOutput(); } if (this->glslCaps()->mustDeclareFragmentShaderOutput()) { fFS.enableCustomOutput(); } SkString openBrace; openBrace.printf("{ // Xfer Processor: %s\n", xp.name()); fFS.codeAppend(openBrace.c_str()); SkSTArray<4, GrGLSLTextureSampler> samplers(xp.numTextures()); this->emitSamplers(xp, &samplers); bool usePLSDstRead = (plsState == GrPixelLocalStorageState::kFinish_GrPixelLocalStorageState); GrGLSLXferProcessor::EmitArgs args(&fFS, this->uniformHandler(), this->glslCaps(), xp, colorIn.c_str(), ignoresCoverage ? nullptr : coverageIn.c_str(), fFS.getPrimaryColorOutputName(), fFS.getSecondaryColorOutputName(), samplers, usePLSDstRead); fXferProcessor->emitCode(args); // We have to check that effects and the code they emit are consistent, ie if an effect // asks for dst color, then the emit code needs to follow suit SkDEBUGCODE(verify(xp);) fFS.codeAppend("}"); } void GrGLSLProgramBuilder::emitFSOutputSwizzle(bool hasSecondaryOutput) { // Swizzle the fragment shader outputs if necessary. GrSwizzle swizzle; swizzle.setFromKey(this->desc().header().fOutputSwizzle); if (swizzle != GrSwizzle::RGBA()) { fFS.codeAppendf("%s = %s.%s;", fFS.getPrimaryColorOutputName(), fFS.getPrimaryColorOutputName(), swizzle.c_str()); if (hasSecondaryOutput) { fFS.codeAppendf("%s = %s.%s;", fFS.getSecondaryColorOutputName(), fFS.getSecondaryColorOutputName(), swizzle.c_str()); } } } #ifdef SK_DEBUG void GrGLSLProgramBuilder::verify(const GrPrimitiveProcessor& gp) { SkASSERT(fFS.usedProcessorFeatures() == gp.requiredFeatures()); } void GrGLSLProgramBuilder::verify(const GrXferProcessor& xp) { SkASSERT(fFS.usedProcessorFeatures() == xp.requiredFeatures()); SkASSERT(fFS.hasReadDstColor() == xp.willReadDstColor()); } void GrGLSLProgramBuilder::verify(const GrFragmentProcessor& fp) { SkASSERT(fFS.usedProcessorFeatures() == fp.requiredFeatures()); } #endif void GrGLSLProgramBuilder::nameVariable(SkString* out, char prefix, const char* name, bool mangle) { if ('\0' == prefix) { *out = name; } else { out->printf("%c%s", prefix, name); } if (mangle) { if (out->endsWith('_')) { // Names containing "__" are reserved. out->append("x"); } out->appendf("_Stage%d%s", fStageIndex, fFS.getMangleString().c_str()); } } void GrGLSLProgramBuilder::nameExpression(GrGLSLExpr4* output, const char* baseName) { // create var to hold stage result. If we already have a valid output name, just use that // otherwise create a new mangled one. This name is only valid if we are reordering stages // and have to tell stage exactly where to put its output. SkString outName; if (output->isValid()) { outName = output->c_str(); } else { this->nameVariable(&outName, '\0', baseName); } fFS.codeAppendf("vec4 %s;", outName.c_str()); *output = outName; } void GrGLSLProgramBuilder::appendUniformDecls(GrShaderFlags visibility, SkString* out) const { this->uniformHandler()->appendUniformDecls(visibility, out); } void GrGLSLProgramBuilder::addRTAdjustmentUniform(GrSLPrecision precision, const char* name, const char** outName) { SkASSERT(!fUniformHandles.fRTAdjustmentUni.isValid()); fUniformHandles.fRTAdjustmentUni = this->uniformHandler()->addUniform(kVertex_GrShaderFlag, kVec4f_GrSLType, precision, name, outName); } void GrGLSLProgramBuilder::addRTHeightUniform(const char* name, const char** outName) { SkASSERT(!fUniformHandles.fRTHeightUni.isValid()); GrGLSLUniformHandler* uniformHandler = this->uniformHandler(); fUniformHandles.fRTHeightUni = uniformHandler->internalAddUniformArray(kFragment_GrShaderFlag, kFloat_GrSLType, kDefault_GrSLPrecision, name, false, 0, outName); } void GrGLSLProgramBuilder::cleanupFragmentProcessors() { for (int i = 0; i < fFragmentProcessors.count(); ++i) { delete fFragmentProcessors[i]; } } void GrGLSLProgramBuilder::finalizeShaders() { this->varyingHandler()->finalize(); fVS.finalize(kVertex_GrShaderFlag); fFS.finalize(kFragment_GrShaderFlag); }