/* * Copyright 2015 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "glsl/GrGLSLProgramBuilder.h" #include "GrPipeline.h" #include "glsl/GrGLSLFragmentProcessor.h" #include "glsl/GrGLSLGeometryProcessor.h" #include "glsl/GrGLSLVarying.h" #include "glsl/GrGLSLXferProcessor.h" const int GrGLSLProgramBuilder::kVarsPerBlock = 8; GrGLSLProgramBuilder::GrGLSLProgramBuilder(const GrPipeline& pipeline, const GrPrimitiveProcessor& primProc, const GrProgramDesc& desc) : fVS(this) , fGS(this) , fFS(this) , fStageIndex(-1) , fPipeline(pipeline) , fPrimProc(primProc) , fDesc(desc) , fGeometryProcessor(nullptr) , fXferProcessor(nullptr) , fNumVertexSamplers(0) , fNumGeometrySamplers(0) , fNumFragmentSamplers(0) { } void GrGLSLProgramBuilder::addFeature(GrShaderFlags shaders, uint32_t featureBit, const char* extensionName) { if (shaders & kVertex_GrShaderFlag) { fVS.addFeature(featureBit, extensionName); } if (shaders & kGeometry_GrShaderFlag) { SkASSERT(this->glslCaps()->geometryShaderSupport()); fGS.addFeature(featureBit, extensionName); } if (shaders & kFragment_GrShaderFlag) { fFS.addFeature(featureBit, extensionName); } } bool GrGLSLProgramBuilder::emitAndInstallProcs(GrGLSLExpr4* inputColor, GrGLSLExpr4* inputCoverage) { // First we loop over all of the installed processors and collect coord transforms. These will // be sent to the GrGLSLPrimitiveProcessor in its emitCode function const GrPrimitiveProcessor& primProc = this->primitiveProcessor(); for (int i = 0; i < this->pipeline().numFragmentProcessors(); i++) { const GrFragmentProcessor& processor = this->pipeline().getFragmentProcessor(i); if (!primProc.hasTransformedLocalCoords()) { SkTArray& procCoords = fCoordTransforms.push_back(); processor.gatherCoordTransforms(&procCoords); } } this->emitAndInstallPrimProc(primProc, inputColor, inputCoverage); int numProcs = this->pipeline().numFragmentProcessors(); this->emitAndInstallFragProcs(0, this->pipeline().numColorFragmentProcessors(), inputColor); this->emitAndInstallFragProcs(this->pipeline().numColorFragmentProcessors(), numProcs, inputCoverage); if (primProc.getPixelLocalStorageState() != GrPixelLocalStorageState::kDraw_GrPixelLocalStorageState) { this->emitAndInstallXferProc(this->pipeline().getXferProcessor(), *inputColor, *inputCoverage, this->pipeline().ignoresCoverage(), primProc.getPixelLocalStorageState()); this->emitFSOutputSwizzle(this->pipeline().getXferProcessor().hasSecondaryOutput()); } return this->checkSamplerCounts(); } void GrGLSLProgramBuilder::emitAndInstallPrimProc(const GrPrimitiveProcessor& proc, GrGLSLExpr4* outputColor, GrGLSLExpr4* outputCoverage) { // Program builders have a bit of state we need to clear with each effect AutoStageAdvance adv(this); this->nameExpression(outputColor, "outputColor"); this->nameExpression(outputCoverage, "outputCoverage"); const char* distanceVectorName = nullptr; if (this->fPipeline.usesDistanceVectorField() && proc.implementsDistanceVector()) { distanceVectorName = fFS.distanceVectorName(); fFS.codeAppend( "// Normalized vector to the closest geometric edge (in device space)\n"); fFS.codeAppend( "// Distance to the edge encoded in the z-component\n"); fFS.codeAppendf("vec4 %s;", distanceVectorName); } // Enclose custom code in a block to avoid namespace conflicts SkString openBrace; openBrace.printf("{ // Stage %d, %s\n", fStageIndex, proc.name()); fFS.codeAppend(openBrace.c_str()); fVS.codeAppendf("// Primitive Processor %s\n", proc.name()); SkASSERT(!fGeometryProcessor); fGeometryProcessor = proc.createGLSLInstance(*this->glslCaps()); SkSTArray<4, SamplerHandle> texSamplers(proc.numTextures()); SkSTArray<2, SamplerHandle> bufferSamplers(proc.numBuffers()); this->emitSamplers(proc, &texSamplers, &bufferSamplers); GrGLSLGeometryProcessor::EmitArgs args(&fVS, &fFS, this->varyingHandler(), this->uniformHandler(), this->glslCaps(), proc, outputColor->c_str(), outputCoverage->c_str(), distanceVectorName, texSamplers.begin(), bufferSamplers.begin(), fCoordTransforms, &fOutCoords); fGeometryProcessor->emitCode(args); // We have to check that effects and the code they emit are consistent, ie if an effect // asks for dst color, then the emit code needs to follow suit SkDEBUGCODE(verify(proc);) fFS.codeAppend("}"); } void GrGLSLProgramBuilder::emitAndInstallFragProcs(int procOffset, int numProcs, GrGLSLExpr4* inOut) { for (int i = procOffset; i < numProcs; ++i) { GrGLSLExpr4 output; const GrFragmentProcessor& fp = this->pipeline().getFragmentProcessor(i); this->emitAndInstallFragProc(fp, i, *inOut, &output); *inOut = output; } } // TODO Processors cannot output zeros because an empty string is all 1s // the fix is to allow effects to take the GrGLSLExpr4 directly void GrGLSLProgramBuilder::emitAndInstallFragProc(const GrFragmentProcessor& fp, int index, const GrGLSLExpr4& input, GrGLSLExpr4* output) { // Program builders have a bit of state we need to clear with each effect AutoStageAdvance adv(this); this->nameExpression(output, "output"); // Enclose custom code in a block to avoid namespace conflicts SkString openBrace; openBrace.printf("{ // Stage %d, %s\n", fStageIndex, fp.name()); fFS.codeAppend(openBrace.c_str()); GrGLSLFragmentProcessor* fragProc = fp.createGLSLInstance(); SkSTArray<4, SamplerHandle> texSamplers(fp.numTextures()); SkSTArray<2, SamplerHandle> bufferSamplers(fp.numBuffers()); this->emitSamplers(fp, &texSamplers, &bufferSamplers); GrGLSLFragmentProcessor::EmitArgs args(&fFS, this->uniformHandler(), this->glslCaps(), fp, output->c_str(), input.isOnes() ? nullptr : input.c_str(), fOutCoords[index], texSamplers.begin(), bufferSamplers.begin(), this->primitiveProcessor().implementsDistanceVector()); fragProc->emitCode(args); // We have to check that effects and the code they emit are consistent, ie if an effect // asks for dst color, then the emit code needs to follow suit SkDEBUGCODE(verify(fp);) fFragmentProcessors.push_back(fragProc); fFS.codeAppend("}"); } void GrGLSLProgramBuilder::emitAndInstallXferProc(const GrXferProcessor& xp, const GrGLSLExpr4& colorIn, const GrGLSLExpr4& coverageIn, bool ignoresCoverage, GrPixelLocalStorageState plsState) { // Program builders have a bit of state we need to clear with each effect AutoStageAdvance adv(this); SkASSERT(!fXferProcessor); fXferProcessor = xp.createGLSLInstance(); // Enable dual source secondary output if we have one if (xp.hasSecondaryOutput()) { fFS.enableSecondaryOutput(); } if (this->glslCaps()->mustDeclareFragmentShaderOutput()) { fFS.enableCustomOutput(); } SkString openBrace; openBrace.printf("{ // Xfer Processor: %s\n", xp.name()); fFS.codeAppend(openBrace.c_str()); SkSTArray<4, SamplerHandle> texSamplers(xp.numTextures()); SkSTArray<2, SamplerHandle> bufferSamplers(xp.numBuffers()); this->emitSamplers(xp, &texSamplers, &bufferSamplers); bool usePLSDstRead = (plsState == GrPixelLocalStorageState::kFinish_GrPixelLocalStorageState); GrGLSLXferProcessor::EmitArgs args(&fFS, this->uniformHandler(), this->glslCaps(), xp, colorIn.c_str(), ignoresCoverage ? nullptr : coverageIn.c_str(), fFS.getPrimaryColorOutputName(), fFS.getSecondaryColorOutputName(), texSamplers.begin(), bufferSamplers.begin(), usePLSDstRead); fXferProcessor->emitCode(args); // We have to check that effects and the code they emit are consistent, ie if an effect // asks for dst color, then the emit code needs to follow suit SkDEBUGCODE(verify(xp);) fFS.codeAppend("}"); } void GrGLSLProgramBuilder::emitSamplers(const GrProcessor& processor, SkTArray* outTexSamplers, SkTArray* outBufferSamplers) { SkString name; int numTextures = processor.numTextures(); for (int t = 0; t < numTextures; ++t) { const GrTextureAccess& access = processor.textureAccess(t); GrSLType samplerType = access.getTexture()->samplerType(); if (kTextureExternalSampler_GrSLType == samplerType) { const char* externalFeatureString = this->glslCaps()->externalTextureExtensionString(); // We shouldn't ever create a GrGLTexture that requires external sampler type SkASSERT(externalFeatureString); this->addFeature(access.getVisibility(), 1 << GrGLSLShaderBuilder::kExternalTexture_GLSLPrivateFeature, externalFeatureString); } name.printf("TextureSampler%d", t); this->emitSampler(samplerType, access.getTexture()->config(), name.c_str(), access.getVisibility(), outTexSamplers); } if (int numBuffers = processor.numBuffers()) { SkASSERT(this->glslCaps()->texelBufferSupport()); GrShaderFlags texelBufferVisibility = kNone_GrShaderFlags; for (int b = 0; b < numBuffers; ++b) { const GrBufferAccess& access = processor.bufferAccess(b); name.printf("BufferSampler%d", b); this->emitSampler(kTextureBufferSampler_GrSLType, access.texelConfig(), name.c_str(), access.visibility(), outBufferSamplers); texelBufferVisibility |= access.visibility(); } if (const char* extension = this->glslCaps()->texelBufferExtensionString()) { this->addFeature(texelBufferVisibility, 1 << GrGLSLShaderBuilder::kTexelBuffer_GLSLPrivateFeature, extension); } } } void GrGLSLProgramBuilder::emitSampler(GrSLType samplerType, GrPixelConfig config, const char* name, GrShaderFlags visibility, SkTArray* outSamplers) { if (visibility & kVertex_GrShaderFlag) { ++fNumVertexSamplers; } if (visibility & kGeometry_GrShaderFlag) { SkASSERT(this->primitiveProcessor().willUseGeoShader()); ++fNumGeometrySamplers; } if (visibility & kFragment_GrShaderFlag) { ++fNumFragmentSamplers; } GrSLPrecision precision = this->glslCaps()->samplerPrecision(config, visibility); SamplerHandle handle = this->uniformHandler()->addSampler(visibility, config, samplerType, precision, name); outSamplers->emplace_back(handle); } void GrGLSLProgramBuilder::emitFSOutputSwizzle(bool hasSecondaryOutput) { // Swizzle the fragment shader outputs if necessary. GrSwizzle swizzle; swizzle.setFromKey(this->desc().header().fOutputSwizzle); if (swizzle != GrSwizzle::RGBA()) { fFS.codeAppendf("%s = %s.%s;", fFS.getPrimaryColorOutputName(), fFS.getPrimaryColorOutputName(), swizzle.c_str()); if (hasSecondaryOutput) { fFS.codeAppendf("%s = %s.%s;", fFS.getSecondaryColorOutputName(), fFS.getSecondaryColorOutputName(), swizzle.c_str()); } } } bool GrGLSLProgramBuilder::checkSamplerCounts() { const GrGLSLCaps& glslCaps = *this->glslCaps(); if (fNumVertexSamplers > glslCaps.maxVertexSamplers()) { GrCapsDebugf(this->caps(), "Program would use too many vertex samplers\n"); return false; } if (fNumGeometrySamplers > glslCaps.maxGeometrySamplers()) { GrCapsDebugf(this->caps(), "Program would use too many geometry samplers\n"); return false; } if (fNumFragmentSamplers > glslCaps.maxFragmentSamplers()) { GrCapsDebugf(this->caps(), "Program would use too many fragment samplers\n"); return false; } // If the same sampler is used in two different shaders, it counts as two combined samplers. int numCombinedSamplers = fNumVertexSamplers + fNumGeometrySamplers + fNumFragmentSamplers; if (numCombinedSamplers > glslCaps.maxCombinedSamplers()) { GrCapsDebugf(this->caps(), "Program would use too many combined samplers\n"); return false; } return true; } #ifdef SK_DEBUG void GrGLSLProgramBuilder::verify(const GrPrimitiveProcessor& gp) { SkASSERT(fFS.usedProcessorFeatures() == gp.requiredFeatures()); } void GrGLSLProgramBuilder::verify(const GrXferProcessor& xp) { SkASSERT(fFS.usedProcessorFeatures() == xp.requiredFeatures()); SkASSERT(fFS.hasReadDstColor() == xp.willReadDstColor()); } void GrGLSLProgramBuilder::verify(const GrFragmentProcessor& fp) { SkASSERT(fFS.usedProcessorFeatures() == fp.requiredFeatures()); } #endif void GrGLSLProgramBuilder::nameVariable(SkString* out, char prefix, const char* name, bool mangle) { if ('\0' == prefix) { *out = name; } else { out->printf("%c%s", prefix, name); } if (mangle) { if (out->endsWith('_')) { // Names containing "__" are reserved. out->append("x"); } out->appendf("_Stage%d%s", fStageIndex, fFS.getMangleString().c_str()); } } void GrGLSLProgramBuilder::nameExpression(GrGLSLExpr4* output, const char* baseName) { // create var to hold stage result. If we already have a valid output name, just use that // otherwise create a new mangled one. This name is only valid if we are reordering stages // and have to tell stage exactly where to put its output. SkString outName; if (output->isValid()) { outName = output->c_str(); } else { this->nameVariable(&outName, '\0', baseName); } fFS.codeAppendf("vec4 %s;", outName.c_str()); *output = outName; } void GrGLSLProgramBuilder::appendUniformDecls(GrShaderFlags visibility, SkString* out) const { this->uniformHandler()->appendUniformDecls(visibility, out); } const GrGLSLSampler& GrGLSLProgramBuilder::getSampler(SamplerHandle handle) const { return this->uniformHandler()->getSampler(handle); } void GrGLSLProgramBuilder::addRTAdjustmentUniform(GrSLPrecision precision, const char* name, const char** outName) { SkASSERT(!fUniformHandles.fRTAdjustmentUni.isValid()); fUniformHandles.fRTAdjustmentUni = this->uniformHandler()->addUniform(kVertex_GrShaderFlag, kVec4f_GrSLType, precision, name, outName); } void GrGLSLProgramBuilder::addRTHeightUniform(const char* name, const char** outName) { SkASSERT(!fUniformHandles.fRTHeightUni.isValid()); GrGLSLUniformHandler* uniformHandler = this->uniformHandler(); fUniformHandles.fRTHeightUni = uniformHandler->internalAddUniformArray(kFragment_GrShaderFlag, kFloat_GrSLType, kDefault_GrSLPrecision, name, false, 0, outName); } void GrGLSLProgramBuilder::cleanupFragmentProcessors() { for (int i = 0; i < fFragmentProcessors.count(); ++i) { delete fFragmentProcessors[i]; } } void GrGLSLProgramBuilder::finalizeShaders() { this->varyingHandler()->finalize(); fVS.finalize(kVertex_GrShaderFlag); fFS.finalize(kFragment_GrShaderFlag); }