/* * Copyright 2011 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "GrGpuGL.h" #include "GrGLStencilBuffer.h" #include "GrGLPath.h" #include "GrGLShaderBuilder.h" #include "GrTemplates.h" #include "GrTypes.h" #include "SkTemplates.h" static const GrGLuint GR_MAX_GLUINT = ~0U; static const GrGLint GR_INVAL_GLINT = ~0; #define GL_CALL(X) GR_GL_CALL(this->glInterface(), X) #define GL_CALL_RET(RET, X) GR_GL_CALL_RET(this->glInterface(), RET, X) // we use a spare texture unit to avoid // mucking with the state of any of the stages. static const int SPARE_TEX_UNIT = GrDrawState::kNumStages; #define SKIP_CACHE_CHECK true #if GR_GL_CHECK_ALLOC_WITH_GET_ERROR #define CLEAR_ERROR_BEFORE_ALLOC(iface) GrGLClearErr(iface) #define GL_ALLOC_CALL(iface, call) GR_GL_CALL_NOERRCHECK(iface, call) #define CHECK_ALLOC_ERROR(iface) GR_GL_GET_ERROR(iface) #else #define CLEAR_ERROR_BEFORE_ALLOC(iface) #define GL_ALLOC_CALL(iface, call) GR_GL_CALL(iface, call) #define CHECK_ALLOC_ERROR(iface) GR_GL_NO_ERROR #endif /////////////////////////////////////////////////////////////////////////////// static const GrGLenum gXfermodeCoeff2Blend[] = { GR_GL_ZERO, GR_GL_ONE, GR_GL_SRC_COLOR, GR_GL_ONE_MINUS_SRC_COLOR, GR_GL_DST_COLOR, GR_GL_ONE_MINUS_DST_COLOR, GR_GL_SRC_ALPHA, GR_GL_ONE_MINUS_SRC_ALPHA, GR_GL_DST_ALPHA, GR_GL_ONE_MINUS_DST_ALPHA, GR_GL_CONSTANT_COLOR, GR_GL_ONE_MINUS_CONSTANT_COLOR, GR_GL_CONSTANT_ALPHA, GR_GL_ONE_MINUS_CONSTANT_ALPHA, // extended blend coeffs GR_GL_SRC1_COLOR, GR_GL_ONE_MINUS_SRC1_COLOR, GR_GL_SRC1_ALPHA, GR_GL_ONE_MINUS_SRC1_ALPHA, }; bool GrGpuGL::BlendCoeffReferencesConstant(GrBlendCoeff coeff) { static const bool gCoeffReferencesBlendConst[] = { false, false, false, false, false, false, false, false, false, false, true, true, true, true, // extended blend coeffs false, false, false, false, }; return gCoeffReferencesBlendConst[coeff]; GR_STATIC_ASSERT(kTotalGrBlendCoeffCount == GR_ARRAY_COUNT(gCoeffReferencesBlendConst)); GR_STATIC_ASSERT(0 == kZero_GrBlendCoeff); GR_STATIC_ASSERT(1 == kOne_GrBlendCoeff); GR_STATIC_ASSERT(2 == kSC_GrBlendCoeff); GR_STATIC_ASSERT(3 == kISC_GrBlendCoeff); GR_STATIC_ASSERT(4 == kDC_GrBlendCoeff); GR_STATIC_ASSERT(5 == kIDC_GrBlendCoeff); GR_STATIC_ASSERT(6 == kSA_GrBlendCoeff); GR_STATIC_ASSERT(7 == kISA_GrBlendCoeff); GR_STATIC_ASSERT(8 == kDA_GrBlendCoeff); GR_STATIC_ASSERT(9 == kIDA_GrBlendCoeff); GR_STATIC_ASSERT(10 == kConstC_GrBlendCoeff); GR_STATIC_ASSERT(11 == kIConstC_GrBlendCoeff); GR_STATIC_ASSERT(12 == kConstA_GrBlendCoeff); GR_STATIC_ASSERT(13 == kIConstA_GrBlendCoeff); GR_STATIC_ASSERT(14 == kS2C_GrBlendCoeff); GR_STATIC_ASSERT(15 == kIS2C_GrBlendCoeff); GR_STATIC_ASSERT(16 == kS2A_GrBlendCoeff); GR_STATIC_ASSERT(17 == kIS2A_GrBlendCoeff); // assertion for gXfermodeCoeff2Blend have to be in GrGpu scope GR_STATIC_ASSERT(kTotalGrBlendCoeffCount == GR_ARRAY_COUNT(gXfermodeCoeff2Blend)); } /////////////////////////////////////////////////////////////////////////////// static bool gPrintStartupSpew; static bool fbo_test(const GrGLInterface* gl, int w, int h) { GR_GL_CALL(gl, ActiveTexture(GR_GL_TEXTURE0 + SPARE_TEX_UNIT)); GrGLuint testFBO; GR_GL_CALL(gl, GenFramebuffers(1, &testFBO)); GR_GL_CALL(gl, BindFramebuffer(GR_GL_FRAMEBUFFER, testFBO)); GrGLuint testRTTex; GR_GL_CALL(gl, GenTextures(1, &testRTTex)); GR_GL_CALL(gl, BindTexture(GR_GL_TEXTURE_2D, testRTTex)); // some implementations require texture to be mip-map complete before // FBO with level 0 bound as color attachment will be framebuffer complete. GR_GL_CALL(gl, TexParameteri(GR_GL_TEXTURE_2D, GR_GL_TEXTURE_MIN_FILTER, GR_GL_NEAREST)); GR_GL_CALL(gl, TexImage2D(GR_GL_TEXTURE_2D, 0, GR_GL_RGBA, w, h, 0, GR_GL_RGBA, GR_GL_UNSIGNED_BYTE, NULL)); GR_GL_CALL(gl, BindTexture(GR_GL_TEXTURE_2D, 0)); GR_GL_CALL(gl, FramebufferTexture2D(GR_GL_FRAMEBUFFER, GR_GL_COLOR_ATTACHMENT0, GR_GL_TEXTURE_2D, testRTTex, 0)); GrGLenum status; GR_GL_CALL_RET(gl, status, CheckFramebufferStatus(GR_GL_FRAMEBUFFER)); GR_GL_CALL(gl, DeleteFramebuffers(1, &testFBO)); GR_GL_CALL(gl, DeleteTextures(1, &testRTTex)); return status == GR_GL_FRAMEBUFFER_COMPLETE; } GrGpuGL::GrGpuGL(const GrGLContextInfo& ctxInfo, GrContext* context) : GrGpu(context) , fGLContextInfo(ctxInfo) { GrAssert(ctxInfo.isInitialized()); fillInConfigRenderableTable(); fPrintedCaps = false; GrGLClearErr(fGLContextInfo.interface()); if (gPrintStartupSpew) { const GrGLubyte* ext; GL_CALL_RET(ext, GetString(GR_GL_EXTENSIONS)); const GrGLubyte* vendor; const GrGLubyte* renderer; const GrGLubyte* version; GL_CALL_RET(vendor, GetString(GR_GL_VENDOR)); GL_CALL_RET(renderer, GetString(GR_GL_RENDERER)); GL_CALL_RET(version, GetString(GR_GL_VERSION)); GrPrintf("------------------------- create GrGpuGL %p --------------\n", this); GrPrintf("------ VENDOR %s\n", vendor); GrPrintf("------ RENDERER %s\n", renderer); GrPrintf("------ VERSION %s\n", version); GrPrintf("------ EXTENSIONS\n %s \n", ext); } this->initCaps(); fProgramCache = SkNEW_ARGS(ProgramCache, (this->glContextInfo())); fHWGeometryState.setMaxAttribArrays(this->glCaps().maxVertexAttributes()); GrAssert(this->glCaps().maxVertexAttributes() >= GrDrawState::kVertexAttribCnt); GrAssert(this->glCaps().maxVertexAttributes() > GrDrawState::kColorOverrideAttribIndexValue); GrAssert(this->glCaps().maxVertexAttributes() > GrDrawState::kCoverageOverrideAttribIndexValue); fLastSuccessfulStencilFmtIdx = 0; if (false) { // avoid bit rot, suppress warning fbo_test(this->glInterface(), 0, 0); } } GrGpuGL::~GrGpuGL() { if (0 != fHWProgramID) { // detach the current program so there is no confusion on OpenGL's part // that we want it to be deleted GrAssert(fHWProgramID == fCurrentProgram->programID()); GL_CALL(UseProgram(0)); } delete fProgramCache; // This must be called by before the GrDrawTarget destructor this->releaseGeometry(); // This subclass must do this before the base class destructor runs // since we will unref the GrGLInterface. this->releaseResources(); } /////////////////////////////////////////////////////////////////////////////// void GrGpuGL::initCaps() { GrGLint maxTextureUnits; // check FS and fixed-function texture unit limits // we only use textures in the fragment stage currently. // checks are > to make sure we have a spare unit. const GrGLInterface* gl = this->glInterface(); GR_GL_GetIntegerv(gl, GR_GL_MAX_TEXTURE_IMAGE_UNITS, &maxTextureUnits); GrAssert(maxTextureUnits > GrDrawState::kNumStages); CapsInternals* caps = this->capsInternals(); GrGLint numFormats; GR_GL_GetIntegerv(gl, GR_GL_NUM_COMPRESSED_TEXTURE_FORMATS, &numFormats); SkAutoSTMalloc<10, GrGLint> formats(numFormats); GR_GL_GetIntegerv(gl, GR_GL_COMPRESSED_TEXTURE_FORMATS, formats); for (int i = 0; i < numFormats; ++i) { if (formats[i] == GR_GL_PALETTE8_RGBA8) { caps->f8BitPaletteSupport = true; break; } } if (kDesktop_GrGLBinding == this->glBinding()) { // we could also look for GL_ATI_separate_stencil extension or // GL_EXT_stencil_two_side but they use different function signatures // than GL2.0+ (and than each other). caps->fTwoSidedStencilSupport = (this->glVersion() >= GR_GL_VER(2,0)); // supported on GL 1.4 and higher or by extension caps->fStencilWrapOpsSupport = (this->glVersion() >= GR_GL_VER(1,4)) || this->hasExtension("GL_EXT_stencil_wrap"); } else { // ES 2 has two sided stencil and stencil wrap caps->fTwoSidedStencilSupport = true; caps->fStencilWrapOpsSupport = true; } if (kDesktop_GrGLBinding == this->glBinding()) { caps->fBufferLockSupport = true; // we require VBO support and the desktop VBO // extension includes glMapBuffer. } else { caps->fBufferLockSupport = this->hasExtension("GL_OES_mapbuffer"); } if (kDesktop_GrGLBinding == this->glBinding()) { if (this->glVersion() >= GR_GL_VER(2,0) || this->hasExtension("GL_ARB_texture_non_power_of_two")) { caps->fNPOTTextureTileSupport = true; } else { caps->fNPOTTextureTileSupport = false; } } else { // Unextended ES2 supports NPOT textures with clamp_to_edge and non-mip filters only caps->fNPOTTextureTileSupport = this->hasExtension("GL_OES_texture_npot"); } caps->fHWAALineSupport = (kDesktop_GrGLBinding == this->glBinding()); GR_GL_GetIntegerv(gl, GR_GL_MAX_TEXTURE_SIZE, &caps->fMaxTextureSize); GR_GL_GetIntegerv(gl, GR_GL_MAX_RENDERBUFFER_SIZE, &caps->fMaxRenderTargetSize); // Our render targets are always created with textures as the color // attachment, hence this min: caps->fMaxRenderTargetSize = GrMin(caps->fMaxTextureSize, caps->fMaxRenderTargetSize); caps->fFSAASupport = GrGLCaps::kNone_MSFBOType != this->glCaps().msFBOType(); caps->fPathStencilingSupport = GR_GL_USE_NV_PATH_RENDERING && this->hasExtension("GL_NV_path_rendering"); // Enable supported shader-related caps if (kDesktop_GrGLBinding == this->glBinding()) { caps->fDualSourceBlendingSupport = this->glVersion() >= GR_GL_VER(3,3) || this->hasExtension("GL_ARB_blend_func_extended"); caps->fShaderDerivativeSupport = true; // we don't support GL_ARB_geometry_shader4, just GL 3.2+ GS caps->fGeometryShaderSupport = this->glVersion() >= GR_GL_VER(3,2) && this->glslGeneration() >= k150_GrGLSLGeneration; } else { caps->fShaderDerivativeSupport = this->hasExtension("GL_OES_standard_derivatives"); } } void GrGpuGL::fillInConfigRenderableTable() { // OpenGL < 3.0 // no support for render targets unless the GL_ARB_framebuffer_object // extension is supported (in which case we get ALPHA, RED, RG, RGB, // RGBA (ALPHA8, RGBA4, RGBA8) for OpenGL > 1.1). Note that we // probably don't get R8 in this case. // OpenGL 3.0 // base color renderable: ALPHA, RED, RG, RGB, and RGBA // sized derivatives: ALPHA8, R8, RGBA4, RGBA8 // >= OpenGL 3.1 // base color renderable: RED, RG, RGB, and RGBA // sized derivatives: R8, RGBA4, RGBA8 // if the GL_ARB_compatibility extension is supported then we get back // support for GL_ALPHA and ALPHA8 // GL_EXT_bgra adds BGRA render targets to any version // ES 2.0 // color renderable: RGBA4, RGB5_A1, RGB565 // GL_EXT_texture_rg adds support for R8 as a color render target // GL_OES_rgb8_rgba8 and/or GL_ARM_rgba8 adds support for RGBA8 // GL_EXT_texture_format_BGRA8888 and/or GL_APPLE_texture_format_BGRA8888 // added BGRA support if (kDesktop_GrGLBinding == this->glBinding()) { // Post 3.0 we will get R8 // Prior to 3.0 we will get ALPHA8 (with GL_ARB_framebuffer_object) if (this->glVersion() >= GR_GL_VER(3,0) || this->hasExtension("GL_ARB_framebuffer_object")) { fConfigRenderSupport[kAlpha_8_GrPixelConfig] = true; } } else { // On ES we can only hope for R8 fConfigRenderSupport[kAlpha_8_GrPixelConfig] = this->glCaps().textureRedSupport(); } if (kDesktop_GrGLBinding != this->glBinding()) { // only available in ES fConfigRenderSupport[kRGB_565_GrPixelConfig] = true; } // Pre 3.0, Ganesh relies on either GL_ARB_framebuffer_object or // GL_EXT_framebuffer_object for FBO support. Both of these // allow RGBA4 render targets so this is always supported. fConfigRenderSupport[kRGBA_4444_GrPixelConfig] = true; if (this->glCaps().rgba8RenderbufferSupport()) { fConfigRenderSupport[kRGBA_8888_GrPixelConfig] = true; } if (this->glCaps().bgraFormatSupport()) { fConfigRenderSupport[kBGRA_8888_GrPixelConfig] = true; } } namespace { GrPixelConfig preferred_pixel_ops_config(GrPixelConfig config) { if (GR_GL_RGBA_8888_PIXEL_OPS_SLOW && kRGBA_8888_GrPixelConfig == config) { return kBGRA_8888_GrPixelConfig; } else { return config; } } } GrPixelConfig GrGpuGL::preferredReadPixelsConfig(GrPixelConfig config) const { return preferred_pixel_ops_config(config); } GrPixelConfig GrGpuGL::preferredWritePixelsConfig(GrPixelConfig config) const { return preferred_pixel_ops_config(config); } bool GrGpuGL::canWriteTexturePixels(const GrTexture* texture, GrPixelConfig srcConfig) const { if (kIndex_8_GrPixelConfig == srcConfig || kIndex_8_GrPixelConfig == texture->config()) { return false; } if (srcConfig != texture->config() && kES2_GrGLBinding == this->glBinding()) { // In general ES2 requires the internal format of the texture and the format of the src // pixels to match. However, It may or may not be possible to upload BGRA data to a RGBA // texture. It depends upon which extension added BGRA. The Apple extension allows it // (BGRA's internal format is RGBA) while the EXT extension does not (BGRA is its own // internal format). if (this->glCaps().bgraFormatSupport() && !this->glCaps().bgraIsInternalFormat() && kBGRA_8888_GrPixelConfig == srcConfig && kRGBA_8888_GrPixelConfig == texture->config()) { return true; } else { return false; } } else { return true; } } bool GrGpuGL::fullReadPixelsIsFasterThanPartial() const { return SkToBool(GR_GL_FULL_READPIXELS_FASTER_THAN_PARTIAL); } void GrGpuGL::onResetContext() { if (gPrintStartupSpew && !fPrintedCaps) { fPrintedCaps = true; this->getCaps().print(); this->glCaps().print(); } // we don't use the zb at all GL_CALL(Disable(GR_GL_DEPTH_TEST)); GL_CALL(DepthMask(GR_GL_FALSE)); fHWDrawFace = GrDrawState::kInvalid_DrawFace; fHWDitherEnabled = kUnknown_TriState; if (kDesktop_GrGLBinding == this->glBinding()) { // Desktop-only state that we never change GL_CALL(Disable(GR_GL_POINT_SMOOTH)); GL_CALL(Disable(GR_GL_LINE_SMOOTH)); GL_CALL(Disable(GR_GL_POLYGON_SMOOTH)); GL_CALL(Disable(GR_GL_POLYGON_STIPPLE)); GL_CALL(Disable(GR_GL_COLOR_LOGIC_OP)); if (this->glCaps().imagingSupport()) { GL_CALL(Disable(GR_GL_COLOR_TABLE)); } GL_CALL(Disable(GR_GL_INDEX_LOGIC_OP)); GL_CALL(Disable(GR_GL_POLYGON_OFFSET_FILL)); // Since ES doesn't support glPointSize at all we always use the VS to // set the point size GL_CALL(Enable(GR_GL_VERTEX_PROGRAM_POINT_SIZE)); // We should set glPolygonMode(FRONT_AND_BACK,FILL) here, too. It isn't // currently part of our gl interface. There are probably others as // well. } fHWAAState.invalidate(); fHWWriteToColor = kUnknown_TriState; // we only ever use lines in hairline mode GL_CALL(LineWidth(1)); // invalid fHWActiveTextureUnitIdx = -1; fHWBlendState.invalidate(); for (int s = 0; s < GrDrawState::kNumStages; ++s) { fHWBoundTextures[s] = NULL; } fHWScissorSettings.invalidate(); fHWViewport.invalidate(); fHWStencilSettings.invalidate(); fHWStencilTestEnabled = kUnknown_TriState; fHWGeometryState.invalidate(); fHWBoundRenderTarget = NULL; fHWPathStencilMatrixState.invalidate(); if (fCaps.pathStencilingSupport()) { // we don't use the model view matrix. GL_CALL(MatrixMode(GR_GL_MODELVIEW)); GL_CALL(LoadIdentity()); } // we assume these values if (this->glCaps().unpackRowLengthSupport()) { GL_CALL(PixelStorei(GR_GL_UNPACK_ROW_LENGTH, 0)); } if (this->glCaps().packRowLengthSupport()) { GL_CALL(PixelStorei(GR_GL_PACK_ROW_LENGTH, 0)); } if (this->glCaps().unpackFlipYSupport()) { GL_CALL(PixelStorei(GR_GL_UNPACK_FLIP_Y, GR_GL_FALSE)); } if (this->glCaps().packFlipYSupport()) { GL_CALL(PixelStorei(GR_GL_PACK_REVERSE_ROW_ORDER, GR_GL_FALSE)); } fHWProgramID = 0; fSharedGLProgramState.invalidate(); } namespace { GrSurfaceOrigin resolve_origin(GrSurfaceOrigin origin, bool renderTarget) { // By default, GrRenderTargets are GL's normal orientation so that they // can be drawn to by the outside world without the client having // to render upside down. if (kDefault_GrSurfaceOrigin == origin) { return renderTarget ? kBottomLeft_GrSurfaceOrigin : kTopLeft_GrSurfaceOrigin; } else { return origin; } } } GrTexture* GrGpuGL::onWrapBackendTexture(const GrBackendTextureDesc& desc) { if (!this->configToGLFormats(desc.fConfig, false, NULL, NULL, NULL)) { return NULL; } if (0 == desc.fTextureHandle) { return NULL; } int maxSize = this->getCaps().maxTextureSize(); if (desc.fWidth > maxSize || desc.fHeight > maxSize) { return NULL; } GrGLTexture::Desc glTexDesc; // next line relies on GrBackendTextureDesc's flags matching GrTexture's glTexDesc.fFlags = (GrTextureFlags) desc.fFlags; glTexDesc.fWidth = desc.fWidth; glTexDesc.fHeight = desc.fHeight; glTexDesc.fConfig = desc.fConfig; glTexDesc.fSampleCnt = desc.fSampleCnt; glTexDesc.fTextureID = static_cast(desc.fTextureHandle); glTexDesc.fIsWrapped = true; bool renderTarget = 0 != (desc.fFlags & kRenderTarget_GrBackendTextureFlag); // FIXME: this should be calling resolve_origin(), but Chrome code is currently // assuming the old behaviour, which is that backend textures are always // BottomLeft, even for non-RT's. Once Chrome is fixed, change this to: // glTexDesc.fOrigin = resolve_origin(desc.fOrigin, renderTarget); if (kDefault_GrSurfaceOrigin == desc.fOrigin) { glTexDesc.fOrigin = kBottomLeft_GrSurfaceOrigin; } else { glTexDesc.fOrigin = desc.fOrigin; } GrGLTexture* texture = NULL; if (renderTarget) { GrGLRenderTarget::Desc glRTDesc; glRTDesc.fRTFBOID = 0; glRTDesc.fTexFBOID = 0; glRTDesc.fMSColorRenderbufferID = 0; glRTDesc.fConfig = desc.fConfig; glRTDesc.fSampleCnt = desc.fSampleCnt; glRTDesc.fOrigin = glTexDesc.fOrigin; if (!this->createRenderTargetObjects(glTexDesc.fWidth, glTexDesc.fHeight, glTexDesc.fTextureID, &glRTDesc)) { return NULL; } texture = SkNEW_ARGS(GrGLTexture, (this, glTexDesc, glRTDesc)); } else { texture = SkNEW_ARGS(GrGLTexture, (this, glTexDesc)); } if (NULL == texture) { return NULL; } this->setSpareTextureUnit(); return texture; } GrRenderTarget* GrGpuGL::onWrapBackendRenderTarget(const GrBackendRenderTargetDesc& desc) { GrGLRenderTarget::Desc glDesc; glDesc.fConfig = desc.fConfig; glDesc.fRTFBOID = static_cast(desc.fRenderTargetHandle); glDesc.fMSColorRenderbufferID = 0; glDesc.fTexFBOID = GrGLRenderTarget::kUnresolvableFBOID; glDesc.fSampleCnt = desc.fSampleCnt; glDesc.fIsWrapped = true; glDesc.fOrigin = desc.fOrigin; if (glDesc.fRTFBOID == 0) { GrAssert(desc.fOrigin == kBottomLeft_GrSurfaceOrigin); } glDesc.fOrigin = resolve_origin(desc.fOrigin, true); GrGLIRect viewport; viewport.fLeft = 0; viewport.fBottom = 0; viewport.fWidth = desc.fWidth; viewport.fHeight = desc.fHeight; GrRenderTarget* tgt = SkNEW_ARGS(GrGLRenderTarget, (this, glDesc, viewport)); if (desc.fStencilBits) { GrGLStencilBuffer::Format format; format.fInternalFormat = GrGLStencilBuffer::kUnknownInternalFormat; format.fPacked = false; format.fStencilBits = desc.fStencilBits; format.fTotalBits = desc.fStencilBits; static const bool kIsSBWrapped = false; GrGLStencilBuffer* sb = SkNEW_ARGS(GrGLStencilBuffer, (this, kIsSBWrapped, 0, desc.fWidth, desc.fHeight, desc.fSampleCnt, format)); tgt->setStencilBuffer(sb); sb->unref(); } return tgt; } //////////////////////////////////////////////////////////////////////////////// bool GrGpuGL::onWriteTexturePixels(GrTexture* texture, int left, int top, int width, int height, GrPixelConfig config, const void* buffer, size_t rowBytes) { if (NULL == buffer) { return false; } GrGLTexture* glTex = static_cast(texture); this->setSpareTextureUnit(); GL_CALL(BindTexture(GR_GL_TEXTURE_2D, glTex->textureID())); GrGLTexture::Desc desc; desc.fFlags = glTex->desc().fFlags; desc.fWidth = glTex->width(); desc.fHeight = glTex->height(); desc.fConfig = glTex->config(); desc.fSampleCnt = glTex->desc().fSampleCnt; desc.fTextureID = glTex->textureID(); desc.fOrigin = glTex->origin(); return this->uploadTexData(desc, false, left, top, width, height, config, buffer, rowBytes); } namespace { bool adjust_pixel_ops_params(int surfaceWidth, int surfaceHeight, size_t bpp, int* left, int* top, int* width, int* height, const void** data, size_t* rowBytes) { if (!*rowBytes) { *rowBytes = *width * bpp; } GrIRect subRect = GrIRect::MakeXYWH(*left, *top, *width, *height); GrIRect bounds = GrIRect::MakeWH(surfaceWidth, surfaceHeight); if (!subRect.intersect(bounds)) { return false; } *data = reinterpret_cast(reinterpret_cast(*data) + (subRect.fTop - *top) * *rowBytes + (subRect.fLeft - *left) * bpp); *left = subRect.fLeft; *top = subRect.fTop; *width = subRect.width(); *height = subRect.height(); return true; } } bool GrGpuGL::uploadTexData(const GrGLTexture::Desc& desc, bool isNewTexture, int left, int top, int width, int height, GrPixelConfig dataConfig, const void* data, size_t rowBytes) { GrAssert(NULL != data || isNewTexture); size_t bpp = GrBytesPerPixel(dataConfig); if (!adjust_pixel_ops_params(desc.fWidth, desc.fHeight, bpp, &left, &top, &width, &height, &data, &rowBytes)) { return false; } size_t trimRowBytes = width * bpp; // in case we need a temporary, trimmed copy of the src pixels SkAutoSMalloc<128 * 128> tempStorage; // paletted textures cannot be partially updated bool useTexStorage = isNewTexture && desc.fConfig != kIndex_8_GrPixelConfig && this->glCaps().texStorageSupport(); if (useTexStorage && kDesktop_GrGLBinding == this->glBinding()) { // 565 is not a sized internal format on desktop GL. So on desktop with // 565 we always use an unsized internal format to let the system pick // the best sized format to convert the 565 data to. Since TexStorage // only allows sized internal formats we will instead use TexImage2D. useTexStorage = desc.fConfig != kRGB_565_GrPixelConfig; } GrGLenum internalFormat; GrGLenum externalFormat; GrGLenum externalType; // glTexStorage requires sized internal formats on both desktop and ES. ES // glTexImage requires an unsized format. if (!this->configToGLFormats(dataConfig, useTexStorage, &internalFormat, &externalFormat, &externalType)) { return false; } if (!isNewTexture && GR_GL_PALETTE8_RGBA8 == internalFormat) { // paletted textures cannot be updated return false; } /* * check whether to allocate a temporary buffer for flipping y or * because our srcData has extra bytes past each row. If so, we need * to trim those off here, since GL ES may not let us specify * GL_UNPACK_ROW_LENGTH. */ bool restoreGLRowLength = false; bool swFlipY = false; bool glFlipY = false; if (NULL != data) { if (kBottomLeft_GrSurfaceOrigin == desc.fOrigin) { if (this->glCaps().unpackFlipYSupport()) { glFlipY = true; } else { swFlipY = true; } } if (this->glCaps().unpackRowLengthSupport() && !swFlipY) { // can't use this for flipping, only non-neg values allowed. :( if (rowBytes != trimRowBytes) { GrGLint rowLength = static_cast(rowBytes / bpp); GL_CALL(PixelStorei(GR_GL_UNPACK_ROW_LENGTH, rowLength)); restoreGLRowLength = true; } } else { if (trimRowBytes != rowBytes || swFlipY) { // copy data into our new storage, skipping the trailing bytes size_t trimSize = height * trimRowBytes; const char* src = (const char*)data; if (swFlipY) { src += (height - 1) * rowBytes; } char* dst = (char*)tempStorage.reset(trimSize); for (int y = 0; y < height; y++) { memcpy(dst, src, trimRowBytes); if (swFlipY) { src -= rowBytes; } else { src += rowBytes; } dst += trimRowBytes; } // now point data to our copied version data = tempStorage.get(); } } if (glFlipY) { GL_CALL(PixelStorei(GR_GL_UNPACK_FLIP_Y, GR_GL_TRUE)); } GL_CALL(PixelStorei(GR_GL_UNPACK_ALIGNMENT, static_cast(bpp))); } bool succeeded = true; if (isNewTexture && 0 == left && 0 == top && desc.fWidth == width && desc.fHeight == height) { CLEAR_ERROR_BEFORE_ALLOC(this->glInterface()); if (useTexStorage) { // We never resize or change formats of textures. We don't use // mipmaps currently. GL_ALLOC_CALL(this->glInterface(), TexStorage2D(GR_GL_TEXTURE_2D, 1, // levels internalFormat, desc.fWidth, desc.fHeight)); } else { if (GR_GL_PALETTE8_RGBA8 == internalFormat) { GrGLsizei imageSize = desc.fWidth * desc.fHeight + kGrColorTableSize; GL_ALLOC_CALL(this->glInterface(), CompressedTexImage2D(GR_GL_TEXTURE_2D, 0, // level internalFormat, desc.fWidth, desc.fHeight, 0, // border imageSize, data)); } else { GL_ALLOC_CALL(this->glInterface(), TexImage2D(GR_GL_TEXTURE_2D, 0, // level internalFormat, desc.fWidth, desc.fHeight, 0, // border externalFormat, externalType, data)); } } GrGLenum error = CHECK_ALLOC_ERROR(this->glInterface()); if (error != GR_GL_NO_ERROR) { succeeded = false; } else { // if we have data and we used TexStorage to create the texture, we // now upload with TexSubImage. if (NULL != data && useTexStorage) { GL_CALL(TexSubImage2D(GR_GL_TEXTURE_2D, 0, // level left, top, width, height, externalFormat, externalType, data)); } } } else { if (swFlipY || glFlipY) { top = desc.fHeight - (top + height); } GL_CALL(TexSubImage2D(GR_GL_TEXTURE_2D, 0, // level left, top, width, height, externalFormat, externalType, data)); } if (restoreGLRowLength) { GrAssert(this->glCaps().unpackRowLengthSupport()); GL_CALL(PixelStorei(GR_GL_UNPACK_ROW_LENGTH, 0)); } if (glFlipY) { GL_CALL(PixelStorei(GR_GL_UNPACK_FLIP_Y, GR_GL_FALSE)); } return succeeded; } namespace { bool renderbuffer_storage_msaa(GrGLContextInfo& ctxInfo, int sampleCount, GrGLenum format, int width, int height) { CLEAR_ERROR_BEFORE_ALLOC(ctxInfo.interface()); GrAssert(GrGLCaps::kNone_MSFBOType != ctxInfo.caps().msFBOType()); bool created = false; if (GrGLCaps::kNVDesktop_CoverageAAType == ctxInfo.caps().coverageAAType()) { const GrGLCaps::MSAACoverageMode& mode = ctxInfo.caps().getMSAACoverageMode(sampleCount); GL_ALLOC_CALL(ctxInfo.interface(), RenderbufferStorageMultisampleCoverage(GR_GL_RENDERBUFFER, mode.fCoverageSampleCnt, mode.fColorSampleCnt, format, width, height)); created = (GR_GL_NO_ERROR == CHECK_ALLOC_ERROR(ctxInfo.interface())); } if (!created) { // glRBMS will fail if requested samples is > max samples. sampleCount = GrMin(sampleCount, ctxInfo.caps().maxSampleCount()); GL_ALLOC_CALL(ctxInfo.interface(), RenderbufferStorageMultisample(GR_GL_RENDERBUFFER, sampleCount, format, width, height)); created = (GR_GL_NO_ERROR == CHECK_ALLOC_ERROR(ctxInfo.interface())); } return created; } } bool GrGpuGL::createRenderTargetObjects(int width, int height, GrGLuint texID, GrGLRenderTarget::Desc* desc) { desc->fMSColorRenderbufferID = 0; desc->fRTFBOID = 0; desc->fTexFBOID = 0; desc->fIsWrapped = false; GrGLenum status; GrGLenum msColorFormat = 0; // suppress warning GL_CALL(GenFramebuffers(1, &desc->fTexFBOID)); if (!desc->fTexFBOID) { goto FAILED; } // If we are using multisampling we will create two FBOS. We render // to one and then resolve to the texture bound to the other. if (desc->fSampleCnt > 0) { if (GrGLCaps::kNone_MSFBOType == this->glCaps().msFBOType()) { goto FAILED; } GL_CALL(GenFramebuffers(1, &desc->fRTFBOID)); GL_CALL(GenRenderbuffers(1, &desc->fMSColorRenderbufferID)); if (!desc->fRTFBOID || !desc->fMSColorRenderbufferID || !this->configToGLFormats(desc->fConfig, // GLES requires sized internal formats kES2_GrGLBinding == this->glBinding(), &msColorFormat, NULL, NULL)) { goto FAILED; } } else { desc->fRTFBOID = desc->fTexFBOID; } // below here we may bind the FBO fHWBoundRenderTarget = NULL; if (desc->fRTFBOID != desc->fTexFBOID) { GrAssert(desc->fSampleCnt > 0); GL_CALL(BindRenderbuffer(GR_GL_RENDERBUFFER, desc->fMSColorRenderbufferID)); if (!renderbuffer_storage_msaa(fGLContextInfo, desc->fSampleCnt, msColorFormat, width, height)) { goto FAILED; } GL_CALL(BindFramebuffer(GR_GL_FRAMEBUFFER, desc->fRTFBOID)); GL_CALL(FramebufferRenderbuffer(GR_GL_FRAMEBUFFER, GR_GL_COLOR_ATTACHMENT0, GR_GL_RENDERBUFFER, desc->fMSColorRenderbufferID)); if (!this->glCaps().isConfigVerifiedColorAttachment(desc->fConfig)) { GL_CALL_RET(status, CheckFramebufferStatus(GR_GL_FRAMEBUFFER)); if (status != GR_GL_FRAMEBUFFER_COMPLETE) { goto FAILED; } fGLContextInfo.caps().markConfigAsValidColorAttachment( desc->fConfig); } } GL_CALL(BindFramebuffer(GR_GL_FRAMEBUFFER, desc->fTexFBOID)); GL_CALL(FramebufferTexture2D(GR_GL_FRAMEBUFFER, GR_GL_COLOR_ATTACHMENT0, GR_GL_TEXTURE_2D, texID, 0)); if (!this->glCaps().isConfigVerifiedColorAttachment(desc->fConfig)) { GL_CALL_RET(status, CheckFramebufferStatus(GR_GL_FRAMEBUFFER)); if (status != GR_GL_FRAMEBUFFER_COMPLETE) { goto FAILED; } fGLContextInfo.caps().markConfigAsValidColorAttachment(desc->fConfig); } return true; FAILED: if (desc->fMSColorRenderbufferID) { GL_CALL(DeleteRenderbuffers(1, &desc->fMSColorRenderbufferID)); } if (desc->fRTFBOID != desc->fTexFBOID) { GL_CALL(DeleteFramebuffers(1, &desc->fRTFBOID)); } if (desc->fTexFBOID) { GL_CALL(DeleteFramebuffers(1, &desc->fTexFBOID)); } return false; } // good to set a break-point here to know when createTexture fails static GrTexture* return_null_texture() { // GrAssert(!"null texture"); return NULL; } #if 0 && GR_DEBUG static size_t as_size_t(int x) { return x; } #endif GrTexture* GrGpuGL::onCreateTexture(const GrTextureDesc& desc, const void* srcData, size_t rowBytes) { GrGLTexture::Desc glTexDesc; GrGLRenderTarget::Desc glRTDesc; // Attempt to catch un- or wrongly initialized sample counts; GrAssert(desc.fSampleCnt >= 0 && desc.fSampleCnt <= 64); glTexDesc.fFlags = desc.fFlags; glTexDesc.fWidth = desc.fWidth; glTexDesc.fHeight = desc.fHeight; glTexDesc.fConfig = desc.fConfig; glTexDesc.fSampleCnt = desc.fSampleCnt; glTexDesc.fIsWrapped = false; glRTDesc.fMSColorRenderbufferID = 0; glRTDesc.fRTFBOID = 0; glRTDesc.fTexFBOID = 0; glRTDesc.fIsWrapped = false; glRTDesc.fConfig = glTexDesc.fConfig; bool renderTarget = 0 != (desc.fFlags & kRenderTarget_GrTextureFlagBit); const Caps& caps = this->getCaps(); glTexDesc.fOrigin = resolve_origin(desc.fOrigin, renderTarget); glRTDesc.fOrigin = glTexDesc.fOrigin; glRTDesc.fSampleCnt = desc.fSampleCnt; if (GrGLCaps::kNone_MSFBOType == this->glCaps().msFBOType() && desc.fSampleCnt) { //GrPrintf("MSAA RT requested but not supported on this platform."); return return_null_texture(); } if (renderTarget) { if (glTexDesc.fWidth > caps.maxRenderTargetSize() || glTexDesc.fHeight > caps.maxRenderTargetSize()) { return return_null_texture(); } } GL_CALL(GenTextures(1, &glTexDesc.fTextureID)); if (renderTarget && this->glCaps().textureUsageSupport()) { // provides a hint about how this texture will be used GL_CALL(TexParameteri(GR_GL_TEXTURE_2D, GR_GL_TEXTURE_USAGE, GR_GL_FRAMEBUFFER_ATTACHMENT)); } if (!glTexDesc.fTextureID) { return return_null_texture(); } this->setSpareTextureUnit(); GL_CALL(BindTexture(GR_GL_TEXTURE_2D, glTexDesc.fTextureID)); // Some drivers like to know filter/wrap before seeing glTexImage2D. Some // drivers have a bug where an FBO won't be complete if it includes a // texture that is not mipmap complete (considering the filter in use). GrGLTexture::TexParams initialTexParams; // we only set a subset here so invalidate first initialTexParams.invalidate(); initialTexParams.fFilter = GR_GL_NEAREST; initialTexParams.fWrapS = GR_GL_CLAMP_TO_EDGE; initialTexParams.fWrapT = GR_GL_CLAMP_TO_EDGE; GL_CALL(TexParameteri(GR_GL_TEXTURE_2D, GR_GL_TEXTURE_MAG_FILTER, initialTexParams.fFilter)); GL_CALL(TexParameteri(GR_GL_TEXTURE_2D, GR_GL_TEXTURE_MIN_FILTER, initialTexParams.fFilter)); GL_CALL(TexParameteri(GR_GL_TEXTURE_2D, GR_GL_TEXTURE_WRAP_S, initialTexParams.fWrapS)); GL_CALL(TexParameteri(GR_GL_TEXTURE_2D, GR_GL_TEXTURE_WRAP_T, initialTexParams.fWrapT)); if (!this->uploadTexData(glTexDesc, true, 0, 0, glTexDesc.fWidth, glTexDesc.fHeight, desc.fConfig, srcData, rowBytes)) { GL_CALL(DeleteTextures(1, &glTexDesc.fTextureID)); return return_null_texture(); } GrGLTexture* tex; if (renderTarget) { // unbind the texture from the texture unit before binding it to the frame buffer GL_CALL(BindTexture(GR_GL_TEXTURE_2D, 0)); if (!this->createRenderTargetObjects(glTexDesc.fWidth, glTexDesc.fHeight, glTexDesc.fTextureID, &glRTDesc)) { GL_CALL(DeleteTextures(1, &glTexDesc.fTextureID)); return return_null_texture(); } tex = SkNEW_ARGS(GrGLTexture, (this, glTexDesc, glRTDesc)); } else { tex = SkNEW_ARGS(GrGLTexture, (this, glTexDesc)); } tex->setCachedTexParams(initialTexParams, this->getResetTimestamp()); #ifdef TRACE_TEXTURE_CREATION GrPrintf("--- new texture [%d] size=(%d %d) config=%d\n", glTexDesc.fTextureID, desc.fWidth, desc.fHeight, desc.fConfig); #endif return tex; } namespace { const GrGLuint kUnknownBitCount = GrGLStencilBuffer::kUnknownBitCount; void inline get_stencil_rb_sizes(const GrGLInterface* gl, GrGLuint rb, GrGLStencilBuffer::Format* format) { // we shouldn't ever know one size and not the other GrAssert((kUnknownBitCount == format->fStencilBits) == (kUnknownBitCount == format->fTotalBits)); if (kUnknownBitCount == format->fStencilBits) { GR_GL_GetRenderbufferParameteriv(gl, GR_GL_RENDERBUFFER, GR_GL_RENDERBUFFER_STENCIL_SIZE, (GrGLint*)&format->fStencilBits); if (format->fPacked) { GR_GL_GetRenderbufferParameteriv(gl, GR_GL_RENDERBUFFER, GR_GL_RENDERBUFFER_DEPTH_SIZE, (GrGLint*)&format->fTotalBits); format->fTotalBits += format->fStencilBits; } else { format->fTotalBits = format->fStencilBits; } } } } bool GrGpuGL::createStencilBufferForRenderTarget(GrRenderTarget* rt, int width, int height) { // All internally created RTs are also textures. We don't create // SBs for a client's standalone RT (that is a RT that isn't also a texture). GrAssert(rt->asTexture()); GrAssert(width >= rt->width()); GrAssert(height >= rt->height()); int samples = rt->numSamples(); GrGLuint sbID; GL_CALL(GenRenderbuffers(1, &sbID)); if (!sbID) { return false; } int stencilFmtCnt = this->glCaps().stencilFormats().count(); for (int i = 0; i < stencilFmtCnt; ++i) { GL_CALL(BindRenderbuffer(GR_GL_RENDERBUFFER, sbID)); // we start with the last stencil format that succeeded in hopes // that we won't go through this loop more than once after the // first (painful) stencil creation. int sIdx = (i + fLastSuccessfulStencilFmtIdx) % stencilFmtCnt; const GrGLCaps::StencilFormat& sFmt = this->glCaps().stencilFormats()[sIdx]; CLEAR_ERROR_BEFORE_ALLOC(this->glInterface()); // we do this "if" so that we don't call the multisample // version on a GL that doesn't have an MSAA extension. bool created; if (samples > 0) { created = renderbuffer_storage_msaa(fGLContextInfo, samples, sFmt.fInternalFormat, width, height); } else { GL_ALLOC_CALL(this->glInterface(), RenderbufferStorage(GR_GL_RENDERBUFFER, sFmt.fInternalFormat, width, height)); created = (GR_GL_NO_ERROR == CHECK_ALLOC_ERROR(this->glInterface())); } if (created) { // After sized formats we attempt an unsized format and take // whatever sizes GL gives us. In that case we query for the size. GrGLStencilBuffer::Format format = sFmt; get_stencil_rb_sizes(this->glInterface(), sbID, &format); static const bool kIsWrapped = false; SkAutoTUnref sb(SkNEW_ARGS(GrGLStencilBuffer, (this, kIsWrapped, sbID, width, height, samples, format))); if (this->attachStencilBufferToRenderTarget(sb, rt)) { fLastSuccessfulStencilFmtIdx = sIdx; sb->transferToCache(); rt->setStencilBuffer(sb); return true; } sb->abandon(); // otherwise we lose sbID } } GL_CALL(DeleteRenderbuffers(1, &sbID)); return false; } bool GrGpuGL::attachStencilBufferToRenderTarget(GrStencilBuffer* sb, GrRenderTarget* rt) { GrGLRenderTarget* glrt = (GrGLRenderTarget*) rt; GrGLuint fbo = glrt->renderFBOID(); if (NULL == sb) { if (NULL != rt->getStencilBuffer()) { GL_CALL(FramebufferRenderbuffer(GR_GL_FRAMEBUFFER, GR_GL_STENCIL_ATTACHMENT, GR_GL_RENDERBUFFER, 0)); GL_CALL(FramebufferRenderbuffer(GR_GL_FRAMEBUFFER, GR_GL_DEPTH_ATTACHMENT, GR_GL_RENDERBUFFER, 0)); #if GR_DEBUG GrGLenum status; GL_CALL_RET(status, CheckFramebufferStatus(GR_GL_FRAMEBUFFER)); GrAssert(GR_GL_FRAMEBUFFER_COMPLETE == status); #endif } return true; } else { GrGLStencilBuffer* glsb = (GrGLStencilBuffer*) sb; GrGLuint rb = glsb->renderbufferID(); fHWBoundRenderTarget = NULL; GL_CALL(BindFramebuffer(GR_GL_FRAMEBUFFER, fbo)); GL_CALL(FramebufferRenderbuffer(GR_GL_FRAMEBUFFER, GR_GL_STENCIL_ATTACHMENT, GR_GL_RENDERBUFFER, rb)); if (glsb->format().fPacked) { GL_CALL(FramebufferRenderbuffer(GR_GL_FRAMEBUFFER, GR_GL_DEPTH_ATTACHMENT, GR_GL_RENDERBUFFER, rb)); } else { GL_CALL(FramebufferRenderbuffer(GR_GL_FRAMEBUFFER, GR_GL_DEPTH_ATTACHMENT, GR_GL_RENDERBUFFER, 0)); } GrGLenum status; if (!this->glCaps().isColorConfigAndStencilFormatVerified(rt->config(), glsb->format())) { GL_CALL_RET(status, CheckFramebufferStatus(GR_GL_FRAMEBUFFER)); if (status != GR_GL_FRAMEBUFFER_COMPLETE) { GL_CALL(FramebufferRenderbuffer(GR_GL_FRAMEBUFFER, GR_GL_STENCIL_ATTACHMENT, GR_GL_RENDERBUFFER, 0)); if (glsb->format().fPacked) { GL_CALL(FramebufferRenderbuffer(GR_GL_FRAMEBUFFER, GR_GL_DEPTH_ATTACHMENT, GR_GL_RENDERBUFFER, 0)); } return false; } else { fGLContextInfo.caps().markColorConfigAndStencilFormatAsVerified( rt->config(), glsb->format()); } } return true; } } //////////////////////////////////////////////////////////////////////////////// GrVertexBuffer* GrGpuGL::onCreateVertexBuffer(uint32_t size, bool dynamic) { GrGLVertexBuffer::Desc desc; desc.fDynamic = dynamic; desc.fSizeInBytes = size; desc.fIsWrapped = false; if (this->glCaps().useNonVBOVertexAndIndexDynamicData() && desc.fDynamic) { desc.fID = 0; GrGLVertexBuffer* vertexBuffer = SkNEW_ARGS(GrGLVertexBuffer, (this, desc)); return vertexBuffer; } else { GL_CALL(GenBuffers(1, &desc.fID)); if (desc.fID) { GL_CALL(BindBuffer(GR_GL_ARRAY_BUFFER, desc.fID)); fHWGeometryState.setVertexBufferID(desc.fID); CLEAR_ERROR_BEFORE_ALLOC(this->glInterface()); // make sure driver can allocate memory for this buffer GL_ALLOC_CALL(this->glInterface(), BufferData(GR_GL_ARRAY_BUFFER, desc.fSizeInBytes, NULL, // data ptr desc.fDynamic ? GR_GL_DYNAMIC_DRAW : GR_GL_STATIC_DRAW)); if (CHECK_ALLOC_ERROR(this->glInterface()) != GR_GL_NO_ERROR) { GL_CALL(DeleteBuffers(1, &desc.fID)); // deleting bound buffer does implicit bind to 0 fHWGeometryState.setVertexBufferID(0); return NULL; } GrGLVertexBuffer* vertexBuffer = SkNEW_ARGS(GrGLVertexBuffer, (this, desc)); return vertexBuffer; } return NULL; } } GrIndexBuffer* GrGpuGL::onCreateIndexBuffer(uint32_t size, bool dynamic) { GrGLIndexBuffer::Desc desc; desc.fDynamic = dynamic; desc.fSizeInBytes = size; desc.fIsWrapped = false; if (this->glCaps().useNonVBOVertexAndIndexDynamicData() && desc.fDynamic) { desc.fID = 0; GrIndexBuffer* indexBuffer = SkNEW_ARGS(GrGLIndexBuffer, (this, desc)); return indexBuffer; } else { GL_CALL(GenBuffers(1, &desc.fID)); if (desc.fID) { GL_CALL(BindBuffer(GR_GL_ELEMENT_ARRAY_BUFFER, desc.fID)); fHWGeometryState.setIndexBufferID(desc.fID); CLEAR_ERROR_BEFORE_ALLOC(this->glInterface()); // make sure driver can allocate memory for this buffer GL_ALLOC_CALL(this->glInterface(), BufferData(GR_GL_ELEMENT_ARRAY_BUFFER, desc.fSizeInBytes, NULL, // data ptr desc.fDynamic ? GR_GL_DYNAMIC_DRAW : GR_GL_STATIC_DRAW)); if (CHECK_ALLOC_ERROR(this->glInterface()) != GR_GL_NO_ERROR) { GL_CALL(DeleteBuffers(1, &desc.fID)); // deleting bound buffer does implicit bind to 0 fHWGeometryState.setIndexBufferID(0); return NULL; } GrIndexBuffer* indexBuffer = SkNEW_ARGS(GrGLIndexBuffer, (this, desc)); return indexBuffer; } return NULL; } } GrPath* GrGpuGL::onCreatePath(const SkPath& inPath) { GrAssert(fCaps.pathStencilingSupport()); return SkNEW_ARGS(GrGLPath, (this, inPath)); } void GrGpuGL::flushScissor() { const GrDrawState& drawState = this->getDrawState(); const GrGLRenderTarget* rt = static_cast(drawState.getRenderTarget()); GrAssert(NULL != rt); const GrGLIRect& vp = rt->getViewport(); if (fScissorState.fEnabled) { GrGLIRect scissor; scissor.setRelativeTo(vp, fScissorState.fRect.fLeft, fScissorState.fRect.fTop, fScissorState.fRect.width(), fScissorState.fRect.height(), rt->origin()); // if the scissor fully contains the viewport then we fall through and // disable the scissor test. if (!scissor.contains(vp)) { if (fHWScissorSettings.fRect != scissor) { scissor.pushToGLScissor(this->glInterface()); fHWScissorSettings.fRect = scissor; } if (kYes_TriState != fHWScissorSettings.fEnabled) { GL_CALL(Enable(GR_GL_SCISSOR_TEST)); fHWScissorSettings.fEnabled = kYes_TriState; } return; } } if (kNo_TriState != fHWScissorSettings.fEnabled) { GL_CALL(Disable(GR_GL_SCISSOR_TEST)); fHWScissorSettings.fEnabled = kNo_TriState; return; } } void GrGpuGL::onClear(const GrIRect* rect, GrColor color) { const GrDrawState& drawState = this->getDrawState(); const GrRenderTarget* rt = drawState.getRenderTarget(); // parent class should never let us get here with no RT GrAssert(NULL != rt); GrIRect clippedRect; if (NULL != rect) { // flushScissor expects rect to be clipped to the target. clippedRect = *rect; GrIRect rtRect = SkIRect::MakeWH(rt->width(), rt->height()); if (clippedRect.intersect(rtRect)) { rect = &clippedRect; } else { return; } } this->flushRenderTarget(rect); GrAutoTRestore asr(&fScissorState); fScissorState.fEnabled = (NULL != rect); if (fScissorState.fEnabled) { fScissorState.fRect = *rect; } this->flushScissor(); GrGLfloat r, g, b, a; static const GrGLfloat scale255 = 1.f / 255.f; a = GrColorUnpackA(color) * scale255; GrGLfloat scaleRGB = scale255; r = GrColorUnpackR(color) * scaleRGB; g = GrColorUnpackG(color) * scaleRGB; b = GrColorUnpackB(color) * scaleRGB; GL_CALL(ColorMask(GR_GL_TRUE, GR_GL_TRUE, GR_GL_TRUE, GR_GL_TRUE)); fHWWriteToColor = kYes_TriState; GL_CALL(ClearColor(r, g, b, a)); GL_CALL(Clear(GR_GL_COLOR_BUFFER_BIT)); } void GrGpuGL::clearStencil() { if (NULL == this->getDrawState().getRenderTarget()) { return; } this->flushRenderTarget(&GrIRect::EmptyIRect()); GrAutoTRestore asr(&fScissorState); fScissorState.fEnabled = false; this->flushScissor(); GL_CALL(StencilMask(0xffffffff)); GL_CALL(ClearStencil(0)); GL_CALL(Clear(GR_GL_STENCIL_BUFFER_BIT)); fHWStencilSettings.invalidate(); } void GrGpuGL::clearStencilClip(const GrIRect& rect, bool insideClip) { const GrDrawState& drawState = this->getDrawState(); const GrRenderTarget* rt = drawState.getRenderTarget(); GrAssert(NULL != rt); // this should only be called internally when we know we have a // stencil buffer. GrAssert(NULL != rt->getStencilBuffer()); GrGLint stencilBitCount = rt->getStencilBuffer()->bits(); #if 0 GrAssert(stencilBitCount > 0); GrGLint clipStencilMask = (1 << (stencilBitCount - 1)); #else // we could just clear the clip bit but when we go through // ANGLE a partial stencil mask will cause clears to be // turned into draws. Our contract on GrDrawTarget says that // changing the clip between stencil passes may or may not // zero the client's clip bits. So we just clear the whole thing. static const GrGLint clipStencilMask = ~0; #endif GrGLint value; if (insideClip) { value = (1 << (stencilBitCount - 1)); } else { value = 0; } this->flushRenderTarget(&GrIRect::EmptyIRect()); GrAutoTRestore asr(&fScissorState); fScissorState.fEnabled = true; fScissorState.fRect = rect; this->flushScissor(); GL_CALL(StencilMask((uint32_t) clipStencilMask)); GL_CALL(ClearStencil(value)); GL_CALL(Clear(GR_GL_STENCIL_BUFFER_BIT)); fHWStencilSettings.invalidate(); } void GrGpuGL::onForceRenderTargetFlush() { this->flushRenderTarget(&GrIRect::EmptyIRect()); } bool GrGpuGL::readPixelsWillPayForYFlip(GrRenderTarget* renderTarget, int left, int top, int width, int height, GrPixelConfig config, size_t rowBytes) const { // If this rendertarget is aready TopLeft, we don't need to flip. if (kTopLeft_GrSurfaceOrigin == renderTarget->origin()) { return false; } // if GL can do the flip then we'll never pay for it. if (this->glCaps().packFlipYSupport()) { return false; } // If we have to do memcpy to handle non-trim rowBytes then we // get the flip for free. Otherwise it costs. if (this->glCaps().packRowLengthSupport()) { return true; } // If we have to do memcpys to handle rowBytes then y-flip is free // Note the rowBytes might be tight to the passed in data, but if data // gets clipped in x to the target the rowBytes will no longer be tight. if (left >= 0 && (left + width) < renderTarget->width()) { return 0 == rowBytes || GrBytesPerPixel(config) * width == rowBytes; } else { return false; } } bool GrGpuGL::onReadPixels(GrRenderTarget* target, int left, int top, int width, int height, GrPixelConfig config, void* buffer, size_t rowBytes) { GrGLenum format; GrGLenum type; bool flipY = kBottomLeft_GrSurfaceOrigin == target->origin(); if (!this->configToGLFormats(config, false, NULL, &format, &type)) { return false; } size_t bpp = GrBytesPerPixel(config); if (!adjust_pixel_ops_params(target->width(), target->height(), bpp, &left, &top, &width, &height, const_cast(&buffer), &rowBytes)) { return false; } // resolve the render target if necessary GrGLRenderTarget* tgt = static_cast(target); GrDrawState::AutoRenderTargetRestore artr; switch (tgt->getResolveType()) { case GrGLRenderTarget::kCantResolve_ResolveType: return false; case GrGLRenderTarget::kAutoResolves_ResolveType: artr.set(this->drawState(), target); this->flushRenderTarget(&GrIRect::EmptyIRect()); break; case GrGLRenderTarget::kCanResolve_ResolveType: this->onResolveRenderTarget(tgt); // we don't track the state of the READ FBO ID. GL_CALL(BindFramebuffer(GR_GL_READ_FRAMEBUFFER, tgt->textureFBOID())); break; default: GrCrash("Unknown resolve type"); } const GrGLIRect& glvp = tgt->getViewport(); // the read rect is viewport-relative GrGLIRect readRect; readRect.setRelativeTo(glvp, left, top, width, height, target->origin()); size_t tightRowBytes = bpp * width; if (0 == rowBytes) { rowBytes = tightRowBytes; } size_t readDstRowBytes = tightRowBytes; void* readDst = buffer; // determine if GL can read using the passed rowBytes or if we need // a scratch buffer. SkAutoSMalloc<32 * sizeof(GrColor)> scratch; if (rowBytes != tightRowBytes) { if (this->glCaps().packRowLengthSupport()) { GrAssert(!(rowBytes % sizeof(GrColor))); GL_CALL(PixelStorei(GR_GL_PACK_ROW_LENGTH, rowBytes / sizeof(GrColor))); readDstRowBytes = rowBytes; } else { scratch.reset(tightRowBytes * height); readDst = scratch.get(); } } if (flipY && this->glCaps().packFlipYSupport()) { GL_CALL(PixelStorei(GR_GL_PACK_REVERSE_ROW_ORDER, 1)); } GL_CALL(ReadPixels(readRect.fLeft, readRect.fBottom, readRect.fWidth, readRect.fHeight, format, type, readDst)); if (readDstRowBytes != tightRowBytes) { GrAssert(this->glCaps().packRowLengthSupport()); GL_CALL(PixelStorei(GR_GL_PACK_ROW_LENGTH, 0)); } if (flipY && this->glCaps().packFlipYSupport()) { GL_CALL(PixelStorei(GR_GL_PACK_REVERSE_ROW_ORDER, 0)); flipY = false; } // now reverse the order of the rows, since GL's are bottom-to-top, but our // API presents top-to-bottom. We must preserve the padding contents. Note // that the above readPixels did not overwrite the padding. if (readDst == buffer) { GrAssert(rowBytes == readDstRowBytes); if (flipY) { scratch.reset(tightRowBytes); void* tmpRow = scratch.get(); // flip y in-place by rows const int halfY = height >> 1; char* top = reinterpret_cast(buffer); char* bottom = top + (height - 1) * rowBytes; for (int y = 0; y < halfY; y++) { memcpy(tmpRow, top, tightRowBytes); memcpy(top, bottom, tightRowBytes); memcpy(bottom, tmpRow, tightRowBytes); top += rowBytes; bottom -= rowBytes; } } } else { GrAssert(readDst != buffer); GrAssert(rowBytes != tightRowBytes); // copy from readDst to buffer while flipping y // const int halfY = height >> 1; const char* src = reinterpret_cast(readDst); char* dst = reinterpret_cast(buffer); if (flipY) { dst += (height-1) * rowBytes; } for (int y = 0; y < height; y++) { memcpy(dst, src, tightRowBytes); src += readDstRowBytes; if (!flipY) { dst += rowBytes; } else { dst -= rowBytes; } } } return true; } void GrGpuGL::flushRenderTarget(const GrIRect* bound) { GrGLRenderTarget* rt = static_cast(this->drawState()->getRenderTarget()); GrAssert(NULL != rt); if (fHWBoundRenderTarget != rt) { GL_CALL(BindFramebuffer(GR_GL_FRAMEBUFFER, rt->renderFBOID())); #if GR_DEBUG GrGLenum status; GL_CALL_RET(status, CheckFramebufferStatus(GR_GL_FRAMEBUFFER)); if (status != GR_GL_FRAMEBUFFER_COMPLETE) { GrPrintf("GrGpuGL::flushRenderTarget glCheckFramebufferStatus %x\n", status); } #endif fHWBoundRenderTarget = rt; const GrGLIRect& vp = rt->getViewport(); if (fHWViewport != vp) { vp.pushToGLViewport(this->glInterface()); fHWViewport = vp; } } if (NULL == bound || !bound->isEmpty()) { rt->flagAsNeedingResolve(bound); } } GrGLenum gPrimitiveType2GLMode[] = { GR_GL_TRIANGLES, GR_GL_TRIANGLE_STRIP, GR_GL_TRIANGLE_FAN, GR_GL_POINTS, GR_GL_LINES, GR_GL_LINE_STRIP }; #define SWAP_PER_DRAW 0 #if SWAP_PER_DRAW #if GR_MAC_BUILD #include #elif GR_WIN32_BUILD #include void SwapBuf() { DWORD procID = GetCurrentProcessId(); HWND hwnd = GetTopWindow(GetDesktopWindow()); while(hwnd) { DWORD wndProcID = 0; GetWindowThreadProcessId(hwnd, &wndProcID); if(wndProcID == procID) { SwapBuffers(GetDC(hwnd)); } hwnd = GetNextWindow(hwnd, GW_HWNDNEXT); } } #endif #endif void GrGpuGL::onGpuDraw(const DrawInfo& info) { size_t indexOffsetInBytes; this->setupGeometry(info, &indexOffsetInBytes); GrAssert((size_t)info.primitiveType() < GR_ARRAY_COUNT(gPrimitiveType2GLMode)); if (info.isIndexed()) { GrGLvoid* indices = reinterpret_cast(indexOffsetInBytes + sizeof(uint16_t) * info.startIndex()); // info.startVertex() was accounted for by setupGeometry. GL_CALL(DrawElements(gPrimitiveType2GLMode[info.primitiveType()], info.indexCount(), GR_GL_UNSIGNED_SHORT, indices)); } else { // Pass 0 for parameter first. We have to adjust glVertexAttribPointer() to account for // startVertex in the DrawElements case. So we always rely on setupGeometry to have // accounted for startVertex. GL_CALL(DrawArrays(gPrimitiveType2GLMode[info.primitiveType()], 0, info.vertexCount())); } #if SWAP_PER_DRAW glFlush(); #if GR_MAC_BUILD aglSwapBuffers(aglGetCurrentContext()); int set_a_break_pt_here = 9; aglSwapBuffers(aglGetCurrentContext()); #elif GR_WIN32_BUILD SwapBuf(); int set_a_break_pt_here = 9; SwapBuf(); #endif #endif } namespace { static const uint16_t kOnes16 = static_cast(~0); const GrStencilSettings& winding_nv_path_stencil_settings() { GR_STATIC_CONST_SAME_STENCIL_STRUCT(gSettings, kIncClamp_StencilOp, kIncClamp_StencilOp, kAlwaysIfInClip_StencilFunc, kOnes16, kOnes16, kOnes16); return *GR_CONST_STENCIL_SETTINGS_PTR_FROM_STRUCT_PTR(&gSettings); } const GrStencilSettings& even_odd_nv_path_stencil_settings() { GR_STATIC_CONST_SAME_STENCIL_STRUCT(gSettings, kInvert_StencilOp, kInvert_StencilOp, kAlwaysIfInClip_StencilFunc, kOnes16, kOnes16, kOnes16); return *GR_CONST_STENCIL_SETTINGS_PTR_FROM_STRUCT_PTR(&gSettings); } } void GrGpuGL::setStencilPathSettings(const GrPath&, SkPath::FillType fill, GrStencilSettings* settings) { switch (fill) { case SkPath::kEvenOdd_FillType: *settings = even_odd_nv_path_stencil_settings(); return; case SkPath::kWinding_FillType: *settings = winding_nv_path_stencil_settings(); return; default: GrCrash("Unexpected path fill."); } } void GrGpuGL::onGpuStencilPath(const GrPath* path, SkPath::FillType fill) { GrAssert(fCaps.pathStencilingSupport()); GrGLuint id = static_cast(path)->pathID(); GrDrawState* drawState = this->drawState(); GrAssert(NULL != drawState->getRenderTarget()); if (NULL == drawState->getRenderTarget()->getStencilBuffer()) { return; } // Decide how to manipulate the stencil buffer based on the fill rule. // Also, assert that the stencil settings we set in setStencilPathSettings // are present. GrAssert(!fStencilSettings.isTwoSided()); GrGLenum fillMode; switch (fill) { case SkPath::kWinding_FillType: fillMode = GR_GL_COUNT_UP; GrAssert(kIncClamp_StencilOp == fStencilSettings.passOp(GrStencilSettings::kFront_Face)); GrAssert(kIncClamp_StencilOp == fStencilSettings.failOp(GrStencilSettings::kFront_Face)); break; case SkPath::kEvenOdd_FillType: fillMode = GR_GL_INVERT; GrAssert(kInvert_StencilOp == fStencilSettings.passOp(GrStencilSettings::kFront_Face)); GrAssert(kInvert_StencilOp == fStencilSettings.failOp(GrStencilSettings::kFront_Face)); break; default: // Only the above two fill rules are allowed. GrCrash("Unexpected path fill."); return; // suppress unused var warning. } GrGLint writeMask = fStencilSettings.writeMask(GrStencilSettings::kFront_Face); GL_CALL(StencilFillPath(id, fillMode, writeMask)); } void GrGpuGL::onResolveRenderTarget(GrRenderTarget* target) { GrGLRenderTarget* rt = static_cast(target); if (rt->needsResolve()) { GrAssert(GrGLCaps::kNone_MSFBOType != this->glCaps().msFBOType()); GrAssert(rt->textureFBOID() != rt->renderFBOID()); GL_CALL(BindFramebuffer(GR_GL_READ_FRAMEBUFFER, rt->renderFBOID())); GL_CALL(BindFramebuffer(GR_GL_DRAW_FRAMEBUFFER, rt->textureFBOID())); // make sure we go through flushRenderTarget() since we've modified // the bound DRAW FBO ID. fHWBoundRenderTarget = NULL; const GrGLIRect& vp = rt->getViewport(); const GrIRect dirtyRect = rt->getResolveRect(); GrGLIRect r; r.setRelativeTo(vp, dirtyRect.fLeft, dirtyRect.fTop, dirtyRect.width(), dirtyRect.height(), target->origin()); GrAutoTRestore asr; if (GrGLCaps::kAppleES_MSFBOType == this->glCaps().msFBOType()) { // Apple's extension uses the scissor as the blit bounds. asr.reset(&fScissorState); fScissorState.fEnabled = true; fScissorState.fRect = dirtyRect; this->flushScissor(); GL_CALL(ResolveMultisampleFramebuffer()); } else { if (GrGLCaps::kDesktopARB_MSFBOType != this->glCaps().msFBOType()) { // this respects the scissor during the blit, so disable it. GrAssert(GrGLCaps::kDesktopEXT_MSFBOType == this->glCaps().msFBOType()); asr.reset(&fScissorState); fScissorState.fEnabled = false; this->flushScissor(); } int right = r.fLeft + r.fWidth; int top = r.fBottom + r.fHeight; GL_CALL(BlitFramebuffer(r.fLeft, r.fBottom, right, top, r.fLeft, r.fBottom, right, top, GR_GL_COLOR_BUFFER_BIT, GR_GL_NEAREST)); } rt->flagAsResolved(); } } namespace { GrGLenum gr_to_gl_stencil_func(GrStencilFunc basicFunc) { static const GrGLenum gTable[] = { GR_GL_ALWAYS, // kAlways_StencilFunc GR_GL_NEVER, // kNever_StencilFunc GR_GL_GREATER, // kGreater_StencilFunc GR_GL_GEQUAL, // kGEqual_StencilFunc GR_GL_LESS, // kLess_StencilFunc GR_GL_LEQUAL, // kLEqual_StencilFunc, GR_GL_EQUAL, // kEqual_StencilFunc, GR_GL_NOTEQUAL, // kNotEqual_StencilFunc, }; GR_STATIC_ASSERT(GR_ARRAY_COUNT(gTable) == kBasicStencilFuncCount); GR_STATIC_ASSERT(0 == kAlways_StencilFunc); GR_STATIC_ASSERT(1 == kNever_StencilFunc); GR_STATIC_ASSERT(2 == kGreater_StencilFunc); GR_STATIC_ASSERT(3 == kGEqual_StencilFunc); GR_STATIC_ASSERT(4 == kLess_StencilFunc); GR_STATIC_ASSERT(5 == kLEqual_StencilFunc); GR_STATIC_ASSERT(6 == kEqual_StencilFunc); GR_STATIC_ASSERT(7 == kNotEqual_StencilFunc); GrAssert((unsigned) basicFunc < kBasicStencilFuncCount); return gTable[basicFunc]; } GrGLenum gr_to_gl_stencil_op(GrStencilOp op) { static const GrGLenum gTable[] = { GR_GL_KEEP, // kKeep_StencilOp GR_GL_REPLACE, // kReplace_StencilOp GR_GL_INCR_WRAP, // kIncWrap_StencilOp GR_GL_INCR, // kIncClamp_StencilOp GR_GL_DECR_WRAP, // kDecWrap_StencilOp GR_GL_DECR, // kDecClamp_StencilOp GR_GL_ZERO, // kZero_StencilOp GR_GL_INVERT, // kInvert_StencilOp }; GR_STATIC_ASSERT(GR_ARRAY_COUNT(gTable) == kStencilOpCount); GR_STATIC_ASSERT(0 == kKeep_StencilOp); GR_STATIC_ASSERT(1 == kReplace_StencilOp); GR_STATIC_ASSERT(2 == kIncWrap_StencilOp); GR_STATIC_ASSERT(3 == kIncClamp_StencilOp); GR_STATIC_ASSERT(4 == kDecWrap_StencilOp); GR_STATIC_ASSERT(5 == kDecClamp_StencilOp); GR_STATIC_ASSERT(6 == kZero_StencilOp); GR_STATIC_ASSERT(7 == kInvert_StencilOp); GrAssert((unsigned) op < kStencilOpCount); return gTable[op]; } void set_gl_stencil(const GrGLInterface* gl, const GrStencilSettings& settings, GrGLenum glFace, GrStencilSettings::Face grFace) { GrGLenum glFunc = gr_to_gl_stencil_func(settings.func(grFace)); GrGLenum glFailOp = gr_to_gl_stencil_op(settings.failOp(grFace)); GrGLenum glPassOp = gr_to_gl_stencil_op(settings.passOp(grFace)); GrGLint ref = settings.funcRef(grFace); GrGLint mask = settings.funcMask(grFace); GrGLint writeMask = settings.writeMask(grFace); if (GR_GL_FRONT_AND_BACK == glFace) { // we call the combined func just in case separate stencil is not // supported. GR_GL_CALL(gl, StencilFunc(glFunc, ref, mask)); GR_GL_CALL(gl, StencilMask(writeMask)); GR_GL_CALL(gl, StencilOp(glFailOp, glPassOp, glPassOp)); } else { GR_GL_CALL(gl, StencilFuncSeparate(glFace, glFunc, ref, mask)); GR_GL_CALL(gl, StencilMaskSeparate(glFace, writeMask)); GR_GL_CALL(gl, StencilOpSeparate(glFace, glFailOp, glPassOp, glPassOp)); } } } void GrGpuGL::flushStencil(DrawType type) { if (kStencilPath_DrawType == type) { GrAssert(!fStencilSettings.isTwoSided()); // Just the func, ref, and mask is set here. The op and write mask are params to the call // that draws the path to the SB (glStencilFillPath) GrGLenum func = gr_to_gl_stencil_func(fStencilSettings.func(GrStencilSettings::kFront_Face)); GL_CALL(PathStencilFunc(func, fStencilSettings.funcRef(GrStencilSettings::kFront_Face), fStencilSettings.funcMask(GrStencilSettings::kFront_Face))); } else if (fHWStencilSettings != fStencilSettings) { if (fStencilSettings.isDisabled()) { if (kNo_TriState != fHWStencilTestEnabled) { GL_CALL(Disable(GR_GL_STENCIL_TEST)); fHWStencilTestEnabled = kNo_TriState; } } else { if (kYes_TriState != fHWStencilTestEnabled) { GL_CALL(Enable(GR_GL_STENCIL_TEST)); fHWStencilTestEnabled = kYes_TriState; } } if (!fStencilSettings.isDisabled()) { if (this->getCaps().twoSidedStencilSupport()) { set_gl_stencil(this->glInterface(), fStencilSettings, GR_GL_FRONT, GrStencilSettings::kFront_Face); set_gl_stencil(this->glInterface(), fStencilSettings, GR_GL_BACK, GrStencilSettings::kBack_Face); } else { set_gl_stencil(this->glInterface(), fStencilSettings, GR_GL_FRONT_AND_BACK, GrStencilSettings::kFront_Face); } } fHWStencilSettings = fStencilSettings; } } void GrGpuGL::flushAAState(DrawType type) { const GrRenderTarget* rt = this->getDrawState().getRenderTarget(); if (kDesktop_GrGLBinding == this->glBinding()) { // ES doesn't support toggling GL_MULTISAMPLE and doesn't have // smooth lines. // we prefer smooth lines over multisampled lines bool smoothLines = false; if (kDrawLines_DrawType == type) { smoothLines = this->willUseHWAALines(); if (smoothLines) { if (kYes_TriState != fHWAAState.fSmoothLineEnabled) { GL_CALL(Enable(GR_GL_LINE_SMOOTH)); fHWAAState.fSmoothLineEnabled = kYes_TriState; // must disable msaa to use line smoothing if (rt->isMultisampled() && kNo_TriState != fHWAAState.fMSAAEnabled) { GL_CALL(Disable(GR_GL_MULTISAMPLE)); fHWAAState.fMSAAEnabled = kNo_TriState; } } } else { if (kNo_TriState != fHWAAState.fSmoothLineEnabled) { GL_CALL(Disable(GR_GL_LINE_SMOOTH)); fHWAAState.fSmoothLineEnabled = kNo_TriState; } } } if (!smoothLines && rt->isMultisampled()) { // FIXME: GL_NV_pr doesn't seem to like MSAA disabled. The paths // convex hulls of each segment appear to get filled. bool enableMSAA = kStencilPath_DrawType == type || this->getDrawState().isHWAntialiasState(); if (enableMSAA) { if (kYes_TriState != fHWAAState.fMSAAEnabled) { GL_CALL(Enable(GR_GL_MULTISAMPLE)); fHWAAState.fMSAAEnabled = kYes_TriState; } } else { if (kNo_TriState != fHWAAState.fMSAAEnabled) { GL_CALL(Disable(GR_GL_MULTISAMPLE)); fHWAAState.fMSAAEnabled = kNo_TriState; } } } } } void GrGpuGL::flushBlend(bool isLines, GrBlendCoeff srcCoeff, GrBlendCoeff dstCoeff) { if (isLines && this->willUseHWAALines()) { if (kYes_TriState != fHWBlendState.fEnabled) { GL_CALL(Enable(GR_GL_BLEND)); fHWBlendState.fEnabled = kYes_TriState; } if (kSA_GrBlendCoeff != fHWBlendState.fSrcCoeff || kISA_GrBlendCoeff != fHWBlendState.fDstCoeff) { GL_CALL(BlendFunc(gXfermodeCoeff2Blend[kSA_GrBlendCoeff], gXfermodeCoeff2Blend[kISA_GrBlendCoeff])); fHWBlendState.fSrcCoeff = kSA_GrBlendCoeff; fHWBlendState.fDstCoeff = kISA_GrBlendCoeff; } } else { // any optimization to disable blending should // have already been applied and tweaked the coeffs // to (1, 0). bool blendOff = kOne_GrBlendCoeff == srcCoeff && kZero_GrBlendCoeff == dstCoeff; if (blendOff) { if (kNo_TriState != fHWBlendState.fEnabled) { GL_CALL(Disable(GR_GL_BLEND)); fHWBlendState.fEnabled = kNo_TriState; } } else { if (kYes_TriState != fHWBlendState.fEnabled) { GL_CALL(Enable(GR_GL_BLEND)); fHWBlendState.fEnabled = kYes_TriState; } if (fHWBlendState.fSrcCoeff != srcCoeff || fHWBlendState.fDstCoeff != dstCoeff) { GL_CALL(BlendFunc(gXfermodeCoeff2Blend[srcCoeff], gXfermodeCoeff2Blend[dstCoeff])); fHWBlendState.fSrcCoeff = srcCoeff; fHWBlendState.fDstCoeff = dstCoeff; } GrColor blendConst = this->getDrawState().getBlendConstant(); if ((BlendCoeffReferencesConstant(srcCoeff) || BlendCoeffReferencesConstant(dstCoeff)) && (!fHWBlendState.fConstColorValid || fHWBlendState.fConstColor != blendConst)) { GrGLfloat c[4]; GrColorToRGBAFloat(blendConst, c); GL_CALL(BlendColor(c[0], c[1], c[2], c[3])); fHWBlendState.fConstColor = blendConst; fHWBlendState.fConstColorValid = true; } } } } namespace { inline void set_tex_swizzle(GrGLenum swizzle[4], const GrGLInterface* gl) { GR_GL_CALL(gl, TexParameteriv(GR_GL_TEXTURE_2D, GR_GL_TEXTURE_SWIZZLE_RGBA, reinterpret_cast(swizzle))); } inline GrGLenum tile_to_gl_wrap(SkShader::TileMode tm) { static const GrGLenum gWrapModes[] = { GR_GL_CLAMP_TO_EDGE, GR_GL_REPEAT, GR_GL_MIRRORED_REPEAT }; GrAssert((unsigned) tm <= SK_ARRAY_COUNT(gWrapModes)); GR_STATIC_ASSERT(0 == SkShader::kClamp_TileMode); GR_STATIC_ASSERT(1 == SkShader::kRepeat_TileMode); GR_STATIC_ASSERT(2 == SkShader::kMirror_TileMode); return gWrapModes[tm]; } } void GrGpuGL::bindTexture(int unitIdx, const GrTextureParams& params, GrGLTexture* texture) { GrAssert(NULL != texture); // If we created a rt/tex and rendered to it without using a texture and now we're texturing // from the rt it will still be the last bound texture, but it needs resolving. So keep this // out of the "last != next" check. GrGLRenderTarget* texRT = static_cast(texture->asRenderTarget()); if (NULL != texRT) { this->onResolveRenderTarget(texRT); } if (fHWBoundTextures[unitIdx] != texture) { this->setTextureUnit(unitIdx); GL_CALL(BindTexture(GR_GL_TEXTURE_2D, texture->textureID())); fHWBoundTextures[unitIdx] = texture; } ResetTimestamp timestamp; const GrGLTexture::TexParams& oldTexParams = texture->getCachedTexParams(×tamp); bool setAll = timestamp < this->getResetTimestamp(); GrGLTexture::TexParams newTexParams; newTexParams.fFilter = params.isBilerp() ? GR_GL_LINEAR : GR_GL_NEAREST; newTexParams.fWrapS = tile_to_gl_wrap(params.getTileModeX()); newTexParams.fWrapT = tile_to_gl_wrap(params.getTileModeY()); memcpy(newTexParams.fSwizzleRGBA, GrGLShaderBuilder::GetTexParamSwizzle(texture->config(), this->glCaps()), sizeof(newTexParams.fSwizzleRGBA)); if (setAll || newTexParams.fFilter != oldTexParams.fFilter) { this->setTextureUnit(unitIdx); GL_CALL(TexParameteri(GR_GL_TEXTURE_2D, GR_GL_TEXTURE_MAG_FILTER, newTexParams.fFilter)); GL_CALL(TexParameteri(GR_GL_TEXTURE_2D, GR_GL_TEXTURE_MIN_FILTER, newTexParams.fFilter)); } if (setAll || newTexParams.fWrapS != oldTexParams.fWrapS) { this->setTextureUnit(unitIdx); GL_CALL(TexParameteri(GR_GL_TEXTURE_2D, GR_GL_TEXTURE_WRAP_S, newTexParams.fWrapS)); } if (setAll || newTexParams.fWrapT != oldTexParams.fWrapT) { this->setTextureUnit(unitIdx); GL_CALL(TexParameteri(GR_GL_TEXTURE_2D, GR_GL_TEXTURE_WRAP_T, newTexParams.fWrapT)); } if (this->glCaps().textureSwizzleSupport() && (setAll || memcmp(newTexParams.fSwizzleRGBA, oldTexParams.fSwizzleRGBA, sizeof(newTexParams.fSwizzleRGBA)))) { this->setTextureUnit(unitIdx); set_tex_swizzle(newTexParams.fSwizzleRGBA, this->glInterface()); } texture->setCachedTexParams(newTexParams, this->getResetTimestamp()); } void GrGpuGL::flushMiscFixedFunctionState() { const GrDrawState& drawState = this->getDrawState(); if (drawState.isDitherState()) { if (kYes_TriState != fHWDitherEnabled) { GL_CALL(Enable(GR_GL_DITHER)); fHWDitherEnabled = kYes_TriState; } } else { if (kNo_TriState != fHWDitherEnabled) { GL_CALL(Disable(GR_GL_DITHER)); fHWDitherEnabled = kNo_TriState; } } if (drawState.isColorWriteDisabled()) { if (kNo_TriState != fHWWriteToColor) { GL_CALL(ColorMask(GR_GL_FALSE, GR_GL_FALSE, GR_GL_FALSE, GR_GL_FALSE)); fHWWriteToColor = kNo_TriState; } } else { if (kYes_TriState != fHWWriteToColor) { GL_CALL(ColorMask(GR_GL_TRUE, GR_GL_TRUE, GR_GL_TRUE, GR_GL_TRUE)); fHWWriteToColor = kYes_TriState; } } if (fHWDrawFace != drawState.getDrawFace()) { switch (this->getDrawState().getDrawFace()) { case GrDrawState::kCCW_DrawFace: GL_CALL(Enable(GR_GL_CULL_FACE)); GL_CALL(CullFace(GR_GL_BACK)); break; case GrDrawState::kCW_DrawFace: GL_CALL(Enable(GR_GL_CULL_FACE)); GL_CALL(CullFace(GR_GL_FRONT)); break; case GrDrawState::kBoth_DrawFace: GL_CALL(Disable(GR_GL_CULL_FACE)); break; default: GrCrash("Unknown draw face."); } fHWDrawFace = drawState.getDrawFace(); } } void GrGpuGL::notifyVertexBufferBind(GrGLuint id) { fHWGeometryState.setVertexBufferID(id); } void GrGpuGL::notifyVertexBufferDelete(GrGLuint id) { fHWGeometryState.notifyVertexBufferDelete(id); } void GrGpuGL::notifyIndexBufferBind(GrGLuint id) { fHWGeometryState.setIndexBufferID(id); } void GrGpuGL::notifyIndexBufferDelete(GrGLuint id) { fHWGeometryState.notifyIndexBufferDelete(id); } void GrGpuGL::notifyRenderTargetDelete(GrRenderTarget* renderTarget) { GrAssert(NULL != renderTarget); if (fHWBoundRenderTarget == renderTarget) { fHWBoundRenderTarget = NULL; } } void GrGpuGL::notifyTextureDelete(GrGLTexture* texture) { for (int s = 0; s < GrDrawState::kNumStages; ++s) { if (fHWBoundTextures[s] == texture) { // deleting bound texture does implied bind to 0 fHWBoundTextures[s] = NULL; } } } bool GrGpuGL::configToGLFormats(GrPixelConfig config, bool getSizedInternalFormat, GrGLenum* internalFormat, GrGLenum* externalFormat, GrGLenum* externalType) { GrGLenum dontCare; if (NULL == internalFormat) { internalFormat = &dontCare; } if (NULL == externalFormat) { externalFormat = &dontCare; } if (NULL == externalType) { externalType = &dontCare; } switch (config) { case kRGBA_8888_GrPixelConfig: *internalFormat = GR_GL_RGBA; *externalFormat = GR_GL_RGBA; if (getSizedInternalFormat) { *internalFormat = GR_GL_RGBA8; } else { *internalFormat = GR_GL_RGBA; } *externalType = GR_GL_UNSIGNED_BYTE; break; case kBGRA_8888_GrPixelConfig: if (!this->glCaps().bgraFormatSupport()) { return false; } if (this->glCaps().bgraIsInternalFormat()) { if (getSizedInternalFormat) { *internalFormat = GR_GL_BGRA8; } else { *internalFormat = GR_GL_BGRA; } } else { if (getSizedInternalFormat) { *internalFormat = GR_GL_RGBA8; } else { *internalFormat = GR_GL_RGBA; } } *externalFormat = GR_GL_BGRA; *externalType = GR_GL_UNSIGNED_BYTE; break; case kRGB_565_GrPixelConfig: *internalFormat = GR_GL_RGB; *externalFormat = GR_GL_RGB; if (getSizedInternalFormat) { if (this->glBinding() == kDesktop_GrGLBinding) { return false; } else { *internalFormat = GR_GL_RGB565; } } else { *internalFormat = GR_GL_RGB; } *externalType = GR_GL_UNSIGNED_SHORT_5_6_5; break; case kRGBA_4444_GrPixelConfig: *internalFormat = GR_GL_RGBA; *externalFormat = GR_GL_RGBA; if (getSizedInternalFormat) { *internalFormat = GR_GL_RGBA4; } else { *internalFormat = GR_GL_RGBA; } *externalType = GR_GL_UNSIGNED_SHORT_4_4_4_4; break; case kIndex_8_GrPixelConfig: if (this->getCaps().eightBitPaletteSupport()) { *internalFormat = GR_GL_PALETTE8_RGBA8; // glCompressedTexImage doesn't take external params *externalFormat = GR_GL_PALETTE8_RGBA8; // no sized/unsized internal format distinction here *internalFormat = GR_GL_PALETTE8_RGBA8; // unused with CompressedTexImage *externalType = GR_GL_UNSIGNED_BYTE; } else { return false; } break; case kAlpha_8_GrPixelConfig: if (this->glCaps().textureRedSupport()) { *internalFormat = GR_GL_RED; *externalFormat = GR_GL_RED; if (getSizedInternalFormat) { *internalFormat = GR_GL_R8; } else { *internalFormat = GR_GL_RED; } *externalType = GR_GL_UNSIGNED_BYTE; } else { *internalFormat = GR_GL_ALPHA; *externalFormat = GR_GL_ALPHA; if (getSizedInternalFormat) { *internalFormat = GR_GL_ALPHA8; } else { *internalFormat = GR_GL_ALPHA; } *externalType = GR_GL_UNSIGNED_BYTE; } break; default: return false; } return true; } void GrGpuGL::setTextureUnit(int unit) { GrAssert(unit >= 0 && unit < GrDrawState::kNumStages); if (fHWActiveTextureUnitIdx != unit) { GL_CALL(ActiveTexture(GR_GL_TEXTURE0 + unit)); fHWActiveTextureUnitIdx = unit; } } void GrGpuGL::setSpareTextureUnit() { if (fHWActiveTextureUnitIdx != (GR_GL_TEXTURE0 + SPARE_TEX_UNIT)) { GL_CALL(ActiveTexture(GR_GL_TEXTURE0 + SPARE_TEX_UNIT)); fHWActiveTextureUnitIdx = SPARE_TEX_UNIT; } } GrGLVertexBuffer* GrGpuGL::setBuffers(bool indexed, size_t* vertexOffsetInBytes, size_t* indexOffsetInBytes) { GrAssert(NULL != vertexOffsetInBytes); const GeometryPoolState& geoPoolState = this->getGeomPoolState(); GrGLVertexBuffer* vbuf; switch (this->getGeomSrc().fVertexSrc) { case kBuffer_GeometrySrcType: *vertexOffsetInBytes = 0; vbuf = (GrGLVertexBuffer*) this->getGeomSrc().fVertexBuffer; break; case kArray_GeometrySrcType: case kReserved_GeometrySrcType: this->finalizeReservedVertices(); *vertexOffsetInBytes = geoPoolState.fPoolStartVertex * this->getGeomSrc().fVertexSize; vbuf = (GrGLVertexBuffer*) geoPoolState.fPoolVertexBuffer; break; default: vbuf = NULL; // suppress warning GrCrash("Unknown geometry src type!"); } GrAssert(NULL != vbuf); GrAssert(!vbuf->isLocked()); *vertexOffsetInBytes += vbuf->baseOffset(); if (indexed) { GrAssert(NULL != indexOffsetInBytes); GrGLIndexBuffer* ibuf; switch (this->getGeomSrc().fIndexSrc) { case kBuffer_GeometrySrcType: *indexOffsetInBytes = 0; ibuf = (GrGLIndexBuffer*)this->getGeomSrc().fIndexBuffer; break; case kArray_GeometrySrcType: case kReserved_GeometrySrcType: this->finalizeReservedIndices(); *indexOffsetInBytes = geoPoolState.fPoolStartIndex * sizeof(GrGLushort); ibuf = (GrGLIndexBuffer*) geoPoolState.fPoolIndexBuffer; break; default: ibuf = NULL; // suppress warning GrCrash("Unknown geometry src type!"); } GrAssert(NULL != ibuf); GrAssert(!ibuf->isLocked()); *indexOffsetInBytes += ibuf->baseOffset(); if (!fHWGeometryState.isIndexBufferIDBound(ibuf->bufferID())) { ibuf->bind(); fHWGeometryState.setIndexBufferID(ibuf->bufferID()); } } return vbuf; } /////////////////////////////////////////////////////////////////////////////// void GrGpuGL::HWGeometryState::AttribArray::set(const GrGpuGL* gpu, HWGeometryState* geoState, int index, GrGLVertexBuffer* buffer, GrGLint size, GrGLenum type, GrGLboolean normalized, GrGLsizei stride, GrGLvoid* offset) { if (!fEnableIsValid || !fEnabled) { GR_GL_CALL(gpu->glInterface(), EnableVertexAttribArray(index)); fEnableIsValid = true; fEnabled = true; } if (!fAttribPointerIsValid || fVertexBufferID != buffer->bufferID() || fSize != size || fNormalized != normalized || fStride != stride || offset != fOffset) { GrGLuint bufferID = buffer->bufferID(); if (!geoState->isVertexBufferIDBound(bufferID)) { buffer->bind(); geoState->setVertexBufferID(bufferID); } GR_GL_CALL(gpu->glInterface(), VertexAttribPointer(index, size, type, normalized, stride, offset)); fAttribPointerIsValid = true; fVertexBufferID = bufferID; fSize = size; fNormalized = normalized; fStride = stride; fOffset = offset; } }