/* * Copyright 2011 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "GrGpuGL.h" #include "GrGLStencilBuffer.h" #include "GrTypes.h" #include "SkTemplates.h" static const GrGLuint GR_MAX_GLUINT = ~0; static const GrGLint GR_INVAL_GLINT = ~0; #define GL_CALL(X) GR_GL_CALL(this->glInterface(), X) #define GL_CALL_RET(RET, X) GR_GL_CALL_RET(this->glInterface(), RET, X) // we use a spare texture unit to avoid // mucking with the state of any of the stages. static const int SPARE_TEX_UNIT = GrDrawState::kNumStages; #define SKIP_CACHE_CHECK true #if GR_GL_CHECK_ALLOC_WITH_GET_ERROR #define CLEAR_ERROR_BEFORE_ALLOC(iface) GrGLClearErr(iface) #define GL_ALLOC_CALL(iface, call) GR_GL_CALL_NOERRCHECK(iface, call) #define CHECK_ALLOC_ERROR(iface) GR_GL_GET_ERROR(iface) #else #define CLEAR_ERROR_BEFORE_ALLOC(iface) #define GL_ALLOC_CALL(iface, call) GR_GL_CALL(iface, call) #define CHECK_ALLOC_ERROR(iface) GR_GL_NO_ERROR #endif /////////////////////////////////////////////////////////////////////////////// static const GrGLenum gXfermodeCoeff2Blend[] = { GR_GL_ZERO, GR_GL_ONE, GR_GL_SRC_COLOR, GR_GL_ONE_MINUS_SRC_COLOR, GR_GL_DST_COLOR, GR_GL_ONE_MINUS_DST_COLOR, GR_GL_SRC_ALPHA, GR_GL_ONE_MINUS_SRC_ALPHA, GR_GL_DST_ALPHA, GR_GL_ONE_MINUS_DST_ALPHA, GR_GL_CONSTANT_COLOR, GR_GL_ONE_MINUS_CONSTANT_COLOR, GR_GL_CONSTANT_ALPHA, GR_GL_ONE_MINUS_CONSTANT_ALPHA, // extended blend coeffs GR_GL_SRC1_COLOR, GR_GL_ONE_MINUS_SRC1_COLOR, GR_GL_SRC1_ALPHA, GR_GL_ONE_MINUS_SRC1_ALPHA, }; bool GrGpuGL::BlendCoeffReferencesConstant(GrBlendCoeff coeff) { static const bool gCoeffReferencesBlendConst[] = { false, false, false, false, false, false, false, false, false, false, true, true, true, true, // extended blend coeffs false, false, false, false, }; return gCoeffReferencesBlendConst[coeff]; GR_STATIC_ASSERT(kTotalBlendCoeffCount == GR_ARRAY_COUNT(gCoeffReferencesBlendConst)); GR_STATIC_ASSERT(0 == kZero_BlendCoeff); GR_STATIC_ASSERT(1 == kOne_BlendCoeff); GR_STATIC_ASSERT(2 == kSC_BlendCoeff); GR_STATIC_ASSERT(3 == kISC_BlendCoeff); GR_STATIC_ASSERT(4 == kDC_BlendCoeff); GR_STATIC_ASSERT(5 == kIDC_BlendCoeff); GR_STATIC_ASSERT(6 == kSA_BlendCoeff); GR_STATIC_ASSERT(7 == kISA_BlendCoeff); GR_STATIC_ASSERT(8 == kDA_BlendCoeff); GR_STATIC_ASSERT(9 == kIDA_BlendCoeff); GR_STATIC_ASSERT(10 == kConstC_BlendCoeff); GR_STATIC_ASSERT(11 == kIConstC_BlendCoeff); GR_STATIC_ASSERT(12 == kConstA_BlendCoeff); GR_STATIC_ASSERT(13 == kIConstA_BlendCoeff); GR_STATIC_ASSERT(14 == kS2C_BlendCoeff); GR_STATIC_ASSERT(15 == kIS2C_BlendCoeff); GR_STATIC_ASSERT(16 == kS2A_BlendCoeff); GR_STATIC_ASSERT(17 == kIS2A_BlendCoeff); // assertion for gXfermodeCoeff2Blend have to be in GrGpu scope GR_STATIC_ASSERT(kTotalBlendCoeffCount == GR_ARRAY_COUNT(gXfermodeCoeff2Blend)); } /////////////////////////////////////////////////////////////////////////////// void GrGpuGL::AdjustTextureMatrix(const GrGLTexture* texture, GrSamplerState::SampleMode mode, GrMatrix* matrix) { GrAssert(NULL != texture); GrAssert(NULL != matrix); GrGLTexture::Orientation orientation = texture->orientation(); if (GrGLTexture::kBottomUp_Orientation == orientation) { GrMatrix invY; invY.setAll(GR_Scalar1, 0, 0, 0, -GR_Scalar1, GR_Scalar1, 0, 0, GrMatrix::I()[8]); matrix->postConcat(invY); } else { GrAssert(GrGLTexture::kTopDown_Orientation == orientation); } } bool GrGpuGL::TextureMatrixIsIdentity(const GrGLTexture* texture, const GrSamplerState& sampler) { GrAssert(NULL != texture); if (!sampler.getMatrix().isIdentity()) { return false; } GrGLTexture::Orientation orientation = texture->orientation(); if (GrGLTexture::kBottomUp_Orientation == orientation) { return false; } else { GrAssert(GrGLTexture::kTopDown_Orientation == orientation); } return true; } /////////////////////////////////////////////////////////////////////////////// static bool gPrintStartupSpew; static bool fbo_test(const GrGLInterface* gl, int w, int h) { GR_GL_CALL(gl, ActiveTexture(GR_GL_TEXTURE0 + SPARE_TEX_UNIT)); GrGLuint testFBO; GR_GL_CALL(gl, GenFramebuffers(1, &testFBO)); GR_GL_CALL(gl, BindFramebuffer(GR_GL_FRAMEBUFFER, testFBO)); GrGLuint testRTTex; GR_GL_CALL(gl, GenTextures(1, &testRTTex)); GR_GL_CALL(gl, BindTexture(GR_GL_TEXTURE_2D, testRTTex)); // some implementations require texture to be mip-map complete before // FBO with level 0 bound as color attachment will be framebuffer complete. GR_GL_CALL(gl, TexParameteri(GR_GL_TEXTURE_2D, GR_GL_TEXTURE_MIN_FILTER, GR_GL_NEAREST)); GR_GL_CALL(gl, TexImage2D(GR_GL_TEXTURE_2D, 0, GR_GL_RGBA, w, h, 0, GR_GL_RGBA, GR_GL_UNSIGNED_BYTE, NULL)); GR_GL_CALL(gl, BindTexture(GR_GL_TEXTURE_2D, 0)); GR_GL_CALL(gl, FramebufferTexture2D(GR_GL_FRAMEBUFFER, GR_GL_COLOR_ATTACHMENT0, GR_GL_TEXTURE_2D, testRTTex, 0)); GrGLenum status; GR_GL_CALL_RET(gl, status, CheckFramebufferStatus(GR_GL_FRAMEBUFFER)); GR_GL_CALL(gl, DeleteFramebuffers(1, &testFBO)); GR_GL_CALL(gl, DeleteTextures(1, &testRTTex)); return status == GR_GL_FRAMEBUFFER_COMPLETE; } GrGpuGL::GrGpuGL(const GrGLContextInfo& ctxInfo) : fGLContextInfo(ctxInfo) { GrAssert(ctxInfo.isInitialized()); fPrintedCaps = false; GrGLClearErr(fGLContextInfo.interface()); if (gPrintStartupSpew) { const GrGLubyte* ext; GL_CALL_RET(ext, GetString(GR_GL_EXTENSIONS)); const GrGLubyte* vendor; const GrGLubyte* renderer; const GrGLubyte* version; GL_CALL_RET(vendor, GetString(GR_GL_VENDOR)); GL_CALL_RET(renderer, GetString(GR_GL_RENDERER)); GL_CALL_RET(version, GetString(GR_GL_VERSION)); GrPrintf("------------------------- create GrGpuGL %p --------------\n", this); GrPrintf("------ VENDOR %s\n", vendor); GrPrintf("------ RENDERER %s\n", renderer); GrPrintf("------ VERSION %s\n", version); GrPrintf("------ EXTENSIONS\n %s \n", ext); } this->resetDirtyFlags(); this->initCaps(); fLastSuccessfulStencilFmtIdx = 0; } GrGpuGL::~GrGpuGL() { // This must be called by before the GrDrawTarget destructor this->releaseGeometry(); // This subclass must do this before the base class destructor runs // since we will unref the GrGLInterface. this->releaseResources(); } /////////////////////////////////////////////////////////////////////////////// void GrGpuGL::initCaps() { GrGLint maxTextureUnits; // check FS and fixed-function texture unit limits // we only use textures in the fragment stage currently. // checks are > to make sure we have a spare unit. const GrGLInterface* gl = this->glInterface(); GR_GL_GetIntegerv(gl, GR_GL_MAX_TEXTURE_IMAGE_UNITS, &maxTextureUnits); GrAssert(maxTextureUnits > GrDrawState::kNumStages); if (kES2_GrGLBinding != this->glBinding()) { GR_GL_GetIntegerv(gl, GR_GL_MAX_TEXTURE_UNITS, &maxTextureUnits); GrAssert(maxTextureUnits > GrDrawState::kNumStages); } GrGLint numFormats; GR_GL_GetIntegerv(gl, GR_GL_NUM_COMPRESSED_TEXTURE_FORMATS, &numFormats); SkAutoSTMalloc<10, GrGLint> formats(numFormats); GR_GL_GetIntegerv(gl, GR_GL_COMPRESSED_TEXTURE_FORMATS, formats); for (int i = 0; i < numFormats; ++i) { if (formats[i] == GR_GL_PALETTE8_RGBA8) { fCaps.f8BitPaletteSupport = true; break; } } if (kDesktop_GrGLBinding == this->glBinding()) { // we could also look for GL_ATI_separate_stencil extension or // GL_EXT_stencil_two_side but they use different function signatures // than GL2.0+ (and than each other). fCaps.fTwoSidedStencilSupport = (this->glVersion() >= GR_GL_VER(2,0)); // supported on GL 1.4 and higher or by extension fCaps.fStencilWrapOpsSupport = (this->glVersion() >= GR_GL_VER(1,4)) || this->hasExtension("GL_EXT_stencil_wrap"); } else { // ES 2 has two sided stencil and stencil wrap fCaps.fTwoSidedStencilSupport = true; fCaps.fStencilWrapOpsSupport = true; } if (kDesktop_GrGLBinding == this->glBinding()) { fCaps.fBufferLockSupport = true; // we require VBO support and the desktop VBO // extension includes glMapBuffer. } else { fCaps.fBufferLockSupport = this->hasExtension("GL_OES_mapbuffer"); } if (kDesktop_GrGLBinding == this->glBinding()) { if (this->glVersion() >= GR_GL_VER(2,0) || this->hasExtension("GL_ARB_texture_non_power_of_two")) { fCaps.fNPOTTextureTileSupport = true; } else { fCaps.fNPOTTextureTileSupport = false; } } else { // Unextended ES2 supports NPOT textures with clamp_to_edge and non-mip filters only fCaps.fNPOTTextureTileSupport = this->hasExtension("GL_OES_texture_npot"); } fCaps.fHWAALineSupport = (kDesktop_GrGLBinding == this->glBinding()); //////////////////////////////////////////////////////////////////////////// // Experiments to determine limitations that can't be queried. // TODO: Make these a preprocess that generate some compile time constants. // TODO: probe once at startup, rather than once per context creation. GR_GL_GetIntegerv(gl, GR_GL_MAX_TEXTURE_SIZE, &fCaps.fMaxTextureSize); GR_GL_GetIntegerv(gl, GR_GL_MAX_RENDERBUFFER_SIZE, &fCaps.fMaxRenderTargetSize); // Our render targets are always created with textures as the color // attachment, hence this min: fCaps.fMaxRenderTargetSize = GrMin(fCaps.fMaxTextureSize, fCaps.fMaxRenderTargetSize); fCaps.fFSAASupport = GrGLCaps::kNone_MSFBOType != this->glCaps().msFBOType(); } GrPixelConfig GrGpuGL::preferredReadPixelsConfig(GrPixelConfig config) const { if (GR_GL_RGBA_8888_PIXEL_OPS_SLOW && GrPixelConfigIsRGBA8888(config)) { return GrPixelConfigSwapRAndB(config); } else { return config; } } GrPixelConfig GrGpuGL::preferredWritePixelsConfig(GrPixelConfig config) const { if (GR_GL_RGBA_8888_PIXEL_OPS_SLOW && GrPixelConfigIsRGBA8888(config)) { return GrPixelConfigSwapRAndB(config); } else { return config; } } bool GrGpuGL::fullReadPixelsIsFasterThanPartial() const { return SkToBool(GR_GL_FULL_READPIXELS_FASTER_THAN_PARTIAL); } void GrGpuGL::onResetContext() { if (gPrintStartupSpew && !fPrintedCaps) { fPrintedCaps = true; this->getCaps().print(); this->glCaps().print(); } // We detect cases when blending is effectively off fHWBlendDisabled = false; GL_CALL(Enable(GR_GL_BLEND)); // we don't use the zb at all GL_CALL(Disable(GR_GL_DEPTH_TEST)); GL_CALL(DepthMask(GR_GL_FALSE)); GL_CALL(Disable(GR_GL_CULL_FACE)); GL_CALL(FrontFace(GR_GL_CCW)); fHWDrawState.setDrawFace(GrDrawState::kBoth_DrawFace); GL_CALL(Disable(GR_GL_DITHER)); if (kDesktop_GrGLBinding == this->glBinding()) { GL_CALL(Disable(GR_GL_LINE_SMOOTH)); GL_CALL(Disable(GR_GL_POINT_SMOOTH)); GL_CALL(Disable(GR_GL_MULTISAMPLE)); fHWAAState.fMSAAEnabled = false; fHWAAState.fSmoothLineEnabled = false; } GL_CALL(ColorMask(GR_GL_TRUE, GR_GL_TRUE, GR_GL_TRUE, GR_GL_TRUE)); fHWDrawState.resetStateFlags(); // we only ever use lines in hairline mode GL_CALL(LineWidth(1)); // invalid fActiveTextureUnitIdx = -1; // illegal values fHWDrawState.setBlendFunc((GrBlendCoeff)0xFF, (GrBlendCoeff)0xFF); fHWDrawState.setBlendConstant(0x00000000); GL_CALL(BlendColor(0,0,0,0)); fHWDrawState.setColor(GrColor_ILLEGAL); fHWDrawState.setViewMatrix(GrMatrix::InvalidMatrix()); for (int s = 0; s < GrDrawState::kNumStages; ++s) { fHWDrawState.setTexture(s, NULL); fHWDrawState.sampler(s)->setRadial2Params(-GR_ScalarMax, -GR_ScalarMax, true); *fHWDrawState.sampler(s)->matrix() = GrMatrix::InvalidMatrix(); fHWDrawState.sampler(s)->setConvolutionParams(0, NULL, NULL); } fHWBounds.fScissorRect.invalidate(); fHWBounds.fScissorEnabled = false; GL_CALL(Disable(GR_GL_SCISSOR_TEST)); fHWBounds.fViewportRect.invalidate(); fHWDrawState.stencil()->invalidate(); fHWStencilClip = false; fClipInStencil = false; fHWGeometryState.fIndexBuffer = NULL; fHWGeometryState.fVertexBuffer = NULL; fHWGeometryState.fArrayPtrsDirty = true; GL_CALL(ColorMask(GR_GL_TRUE, GR_GL_TRUE, GR_GL_TRUE, GR_GL_TRUE)); fHWDrawState.setRenderTarget(NULL); // we assume these values if (this->glCaps().unpackRowLengthSupport()) { GL_CALL(PixelStorei(GR_GL_UNPACK_ROW_LENGTH, 0)); } if (this->glCaps().packRowLengthSupport()) { GL_CALL(PixelStorei(GR_GL_PACK_ROW_LENGTH, 0)); } if (this->glCaps().unpackFlipYSupport()) { GL_CALL(PixelStorei(GR_GL_UNPACK_FLIP_Y, GR_GL_FALSE)); } if (this->glCaps().packFlipYSupport()) { GL_CALL(PixelStorei(GR_GL_PACK_REVERSE_ROW_ORDER, GR_GL_FALSE)); } } GrTexture* GrGpuGL::onCreatePlatformTexture(const GrPlatformTextureDesc& desc) { GrGLTexture::Desc glTexDesc; if (!configToGLFormats(desc.fConfig, false, NULL, NULL, NULL)) { return NULL; } glTexDesc.fWidth = desc.fWidth; glTexDesc.fHeight = desc.fHeight; glTexDesc.fConfig = desc.fConfig; glTexDesc.fTextureID = static_cast(desc.fTextureHandle); glTexDesc.fOwnsID = false; glTexDesc.fOrientation = GrGLTexture::kBottomUp_Orientation; GrGLTexture* texture = NULL; if (desc.fFlags & kRenderTarget_GrPlatformTextureFlag) { GrGLRenderTarget::Desc glRTDesc; glRTDesc.fRTFBOID = 0; glRTDesc.fTexFBOID = 0; glRTDesc.fMSColorRenderbufferID = 0; glRTDesc.fOwnIDs = true; glRTDesc.fConfig = desc.fConfig; glRTDesc.fSampleCnt = desc.fSampleCnt; if (!this->createRenderTargetObjects(glTexDesc.fWidth, glTexDesc.fHeight, glTexDesc.fTextureID, &glRTDesc)) { return NULL; } texture = new GrGLTexture(this, glTexDesc, glRTDesc); } else { texture = new GrGLTexture(this, glTexDesc); } if (NULL == texture) { return NULL; } this->setSpareTextureUnit(); return texture; } GrRenderTarget* GrGpuGL::onCreatePlatformRenderTarget(const GrPlatformRenderTargetDesc& desc) { GrGLRenderTarget::Desc glDesc; glDesc.fConfig = desc.fConfig; glDesc.fRTFBOID = static_cast(desc.fRenderTargetHandle); glDesc.fMSColorRenderbufferID = 0; glDesc.fTexFBOID = GrGLRenderTarget::kUnresolvableFBOID; glDesc.fSampleCnt = desc.fSampleCnt; glDesc.fOwnIDs = false; GrGLIRect viewport; viewport.fLeft = 0; viewport.fBottom = 0; viewport.fWidth = desc.fWidth; viewport.fHeight = desc.fHeight; GrRenderTarget* tgt = new GrGLRenderTarget(this, glDesc, viewport); if (desc.fStencilBits) { GrGLStencilBuffer::Format format; format.fInternalFormat = GrGLStencilBuffer::kUnknownInternalFormat; format.fPacked = false; format.fStencilBits = desc.fStencilBits; format.fTotalBits = desc.fStencilBits; GrGLStencilBuffer* sb = new GrGLStencilBuffer(this, 0, desc.fWidth, desc.fHeight, desc.fSampleCnt, format); tgt->setStencilBuffer(sb); sb->unref(); } return tgt; } //////////////////////////////////////////////////////////////////////////////// void GrGpuGL::onWriteTexturePixels(GrTexture* texture, int left, int top, int width, int height, GrPixelConfig config, const void* buffer, size_t rowBytes) { if (NULL == buffer) { return; } GrGLTexture* glTex = static_cast(texture); this->setSpareTextureUnit(); GL_CALL(BindTexture(GR_GL_TEXTURE_2D, glTex->textureID())); GrGLTexture::Desc desc; desc.fConfig = glTex->config(); desc.fWidth = glTex->width(); desc.fHeight = glTex->height(); desc.fOrientation = glTex->orientation(); desc.fTextureID = glTex->textureID(); this->uploadTexData(desc, false, left, top, width, height, config, buffer, rowBytes); } namespace { bool adjust_pixel_ops_params(int surfaceWidth, int surfaceHeight, size_t bpp, int* left, int* top, int* width, int* height, const void** data, size_t* rowBytes) { if (!*rowBytes) { *rowBytes = *width * bpp; } GrIRect subRect = GrIRect::MakeXYWH(*left, *top, *width, *height); GrIRect bounds = GrIRect::MakeWH(surfaceWidth, surfaceHeight); if (!subRect.intersect(bounds)) { return false; } *data = reinterpret_cast(reinterpret_cast(*data) + (subRect.fTop - *top) * *rowBytes + (subRect.fLeft - *left) * bpp); *left = subRect.fLeft; *top = subRect.fTop; *width = subRect.width(); *height = subRect.height(); return true; } } bool GrGpuGL::uploadTexData(const GrGLTexture::Desc& desc, bool isNewTexture, int left, int top, int width, int height, GrPixelConfig dataConfig, const void* data, size_t rowBytes) { GrAssert(NULL != data || isNewTexture); size_t bpp = GrBytesPerPixel(dataConfig); if (!adjust_pixel_ops_params(desc.fWidth, desc.fHeight, bpp, &left, &top, &width, &height, &data, &rowBytes)) { return false; } size_t trimRowBytes = width * bpp; // in case we need a temporary, trimmed copy of the src pixels SkAutoSMalloc<128 * 128> tempStorage; bool useTexStorage = isNewTexture && this->glCaps().texStorageSupport(); if (useTexStorage) { if (kDesktop_GrGLBinding == this->glBinding()) { // 565 is not a sized internal format on desktop GL. So on desktop // with 565 we always use an unsized internal format to let the // system pick the best sized format to convert the 565 data to. // Since glTexStorage only allows sized internal formats we will // instead fallback to glTexImage2D. useTexStorage = desc.fConfig != kRGB_565_GrPixelConfig; } else { // ES doesn't allow paletted textures to be used with tex storage useTexStorage = desc.fConfig != kIndex_8_GrPixelConfig; } } GrGLenum internalFormat; GrGLenum externalFormat; GrGLenum externalType; // glTexStorage requires sized internal formats on both desktop and ES. ES // glTexImage requires an unsized format. if (!this->configToGLFormats(dataConfig, useTexStorage, &internalFormat, &externalFormat, &externalType)) { return false; } if (!isNewTexture && GR_GL_PALETTE8_RGBA8 == internalFormat) { // paletted textures cannot be updated return false; } /* * check whether to allocate a temporary buffer for flipping y or * because our srcData has extra bytes past each row. If so, we need * to trim those off here, since GL ES may not let us specify * GL_UNPACK_ROW_LENGTH. */ bool restoreGLRowLength = false; bool swFlipY = false; bool glFlipY = false; if (NULL != data) { if (GrGLTexture::kBottomUp_Orientation == desc.fOrientation) { if (this->glCaps().unpackFlipYSupport()) { glFlipY = true; } else { swFlipY = true; } } if (this->glCaps().unpackRowLengthSupport() && !swFlipY) { // can't use this for flipping, only non-neg values allowed. :( if (rowBytes != trimRowBytes) { GrGLint rowLength = static_cast(rowBytes / bpp); GL_CALL(PixelStorei(GR_GL_UNPACK_ROW_LENGTH, rowLength)); restoreGLRowLength = true; } } else { if (trimRowBytes != rowBytes || swFlipY) { // copy data into our new storage, skipping the trailing bytes size_t trimSize = height * trimRowBytes; const char* src = (const char*)data; if (swFlipY) { src += (height - 1) * rowBytes; } char* dst = (char*)tempStorage.reset(trimSize); for (int y = 0; y < height; y++) { memcpy(dst, src, trimRowBytes); if (swFlipY) { src -= rowBytes; } else { src += rowBytes; } dst += trimRowBytes; } // now point data to our copied version data = tempStorage.get(); } } if (glFlipY) { GL_CALL(PixelStorei(GR_GL_UNPACK_FLIP_Y, GR_GL_TRUE)); } GL_CALL(PixelStorei(GR_GL_UNPACK_ALIGNMENT, static_cast(bpp))); } bool succeeded = true; if (isNewTexture && 0 == left && 0 == top && desc.fWidth == width && desc.fHeight == height) { CLEAR_ERROR_BEFORE_ALLOC(this->glInterface()); if (useTexStorage) { // We never resize or change formats of textures. We don't use // mipmaps currently. GL_ALLOC_CALL(this->glInterface(), TexStorage2D(GR_GL_TEXTURE_2D, 1, // levels internalFormat, desc.fWidth, desc.fHeight)); } else { if (GR_GL_PALETTE8_RGBA8 == internalFormat) { GrGLsizei imageSize = desc.fWidth * desc.fHeight + kGrColorTableSize; GL_ALLOC_CALL(this->glInterface(), CompressedTexImage2D(GR_GL_TEXTURE_2D, 0, // level internalFormat, desc.fWidth, desc.fHeight, 0, // border imageSize, data)); } else { GL_ALLOC_CALL(this->glInterface(), TexImage2D(GR_GL_TEXTURE_2D, 0, // level internalFormat, desc.fWidth, desc.fHeight, 0, // border externalFormat, externalType, data)); } } GrGLenum error = CHECK_ALLOC_ERROR(this->glInterface()); if (error != GR_GL_NO_ERROR) { succeeded = false; } else { // if we have data and we used TexStorage to create the texture, we // now upload with TexSubImage. if (NULL != data && useTexStorage) { GL_CALL(TexSubImage2D(GR_GL_TEXTURE_2D, 0, // level left, top, width, height, externalFormat, externalType, data)); } } } else { if (swFlipY || glFlipY) { top = desc.fHeight - (top + height); } GL_CALL(TexSubImage2D(GR_GL_TEXTURE_2D, 0, // level left, top, width, height, externalFormat, externalType, data)); } if (restoreGLRowLength) { GrAssert(this->glCaps().unpackRowLengthSupport()); GL_CALL(PixelStorei(GR_GL_UNPACK_ROW_LENGTH, 0)); } if (glFlipY) { GL_CALL(PixelStorei(GR_GL_UNPACK_FLIP_Y, GR_GL_FALSE)); } return succeeded; } bool GrGpuGL::createRenderTargetObjects(int width, int height, GrGLuint texID, GrGLRenderTarget::Desc* desc) { desc->fMSColorRenderbufferID = 0; desc->fRTFBOID = 0; desc->fTexFBOID = 0; desc->fOwnIDs = true; GrGLenum status; GrGLint err; GrGLenum msColorFormat = 0; // suppress warning GL_CALL(GenFramebuffers(1, &desc->fTexFBOID)); if (!desc->fTexFBOID) { goto FAILED; } // If we are using multisampling we will create two FBOS. We render // to one and then resolve to the texture bound to the other. if (desc->fSampleCnt > 0) { if (GrGLCaps::kNone_MSFBOType == this->glCaps().msFBOType()) { goto FAILED; } GL_CALL(GenFramebuffers(1, &desc->fRTFBOID)); GL_CALL(GenRenderbuffers(1, &desc->fMSColorRenderbufferID)); if (!desc->fRTFBOID || !desc->fMSColorRenderbufferID || !this->configToGLFormats(desc->fConfig, // GLES requires sized internal formats kES2_GrGLBinding == this->glBinding(), &msColorFormat, NULL, NULL)) { goto FAILED; } } else { desc->fRTFBOID = desc->fTexFBOID; } // below here we may bind the FBO fHWDrawState.setRenderTarget(NULL); if (desc->fRTFBOID != desc->fTexFBOID) { GrAssert(desc->fSampleCnt > 1); GL_CALL(BindRenderbuffer(GR_GL_RENDERBUFFER, desc->fMSColorRenderbufferID)); CLEAR_ERROR_BEFORE_ALLOC(this->glInterface()); GL_ALLOC_CALL(this->glInterface(), RenderbufferStorageMultisample(GR_GL_RENDERBUFFER, desc->fSampleCnt, msColorFormat, width, height)); err = CHECK_ALLOC_ERROR(this->glInterface()); if (err != GR_GL_NO_ERROR) { goto FAILED; } GL_CALL(BindFramebuffer(GR_GL_FRAMEBUFFER, desc->fRTFBOID)); GL_CALL(FramebufferRenderbuffer(GR_GL_FRAMEBUFFER, GR_GL_COLOR_ATTACHMENT0, GR_GL_RENDERBUFFER, desc->fMSColorRenderbufferID)); if (!this->glCaps().isConfigVerifiedColorAttachment(desc->fConfig)) { GL_CALL_RET(status, CheckFramebufferStatus(GR_GL_FRAMEBUFFER)); if (status != GR_GL_FRAMEBUFFER_COMPLETE) { goto FAILED; } fGLContextInfo.caps().markConfigAsValidColorAttachment( desc->fConfig); } } GL_CALL(BindFramebuffer(GR_GL_FRAMEBUFFER, desc->fTexFBOID)); GL_CALL(FramebufferTexture2D(GR_GL_FRAMEBUFFER, GR_GL_COLOR_ATTACHMENT0, GR_GL_TEXTURE_2D, texID, 0)); if (!this->glCaps().isConfigVerifiedColorAttachment(desc->fConfig)) { GL_CALL_RET(status, CheckFramebufferStatus(GR_GL_FRAMEBUFFER)); if (status != GR_GL_FRAMEBUFFER_COMPLETE) { goto FAILED; } fGLContextInfo.caps().markConfigAsValidColorAttachment(desc->fConfig); } return true; FAILED: if (desc->fMSColorRenderbufferID) { GL_CALL(DeleteRenderbuffers(1, &desc->fMSColorRenderbufferID)); } if (desc->fRTFBOID != desc->fTexFBOID) { GL_CALL(DeleteFramebuffers(1, &desc->fRTFBOID)); } if (desc->fTexFBOID) { GL_CALL(DeleteFramebuffers(1, &desc->fTexFBOID)); } return false; } // good to set a break-point here to know when createTexture fails static GrTexture* return_null_texture() { // GrAssert(!"null texture"); return NULL; } #if GR_DEBUG static size_t as_size_t(int x) { return x; } #endif GrTexture* GrGpuGL::onCreateTexture(const GrTextureDesc& desc, const void* srcData, size_t rowBytes) { #if GR_COLLECT_STATS ++fStats.fTextureCreateCnt; #endif GrGLTexture::Desc glTexDesc; GrGLRenderTarget::Desc glRTDesc; // Attempt to catch un- or wrongly initialized sample counts; GrAssert(desc.fSampleCnt >= 0 && desc.fSampleCnt <= 64); glTexDesc.fWidth = desc.fWidth; glTexDesc.fHeight = desc.fHeight; glTexDesc.fConfig = desc.fConfig; glTexDesc.fOwnsID = true; glRTDesc.fMSColorRenderbufferID = 0; glRTDesc.fRTFBOID = 0; glRTDesc.fTexFBOID = 0; glRTDesc.fOwnIDs = true; glRTDesc.fConfig = glTexDesc.fConfig; bool renderTarget = 0 != (desc.fFlags & kRenderTarget_GrTextureFlagBit); const Caps& caps = this->getCaps(); // We keep GrRenderTargets in GL's normal orientation so that they // can be drawn to by the outside world without the client having // to render upside down. glTexDesc.fOrientation = renderTarget ? GrGLTexture::kBottomUp_Orientation : GrGLTexture::kTopDown_Orientation; glRTDesc.fSampleCnt = desc.fSampleCnt; if (GrGLCaps::kNone_MSFBOType == this->glCaps().msFBOType() && desc.fSampleCnt) { GrPrintf("MSAA RT requested but not supported on this platform."); } if (renderTarget) { if (glTexDesc.fWidth > caps.fMaxRenderTargetSize || glTexDesc.fHeight > caps.fMaxRenderTargetSize) { return return_null_texture(); } } GL_CALL(GenTextures(1, &glTexDesc.fTextureID)); if (renderTarget && this->glCaps().textureUsageSupport()) { // provides a hint about how this texture will be used GL_CALL(TexParameteri(GR_GL_TEXTURE_2D, GR_GL_TEXTURE_USAGE, GR_GL_FRAMEBUFFER_ATTACHMENT)); } if (!glTexDesc.fTextureID) { return return_null_texture(); } this->setSpareTextureUnit(); GL_CALL(BindTexture(GR_GL_TEXTURE_2D, glTexDesc.fTextureID)); // Some drivers like to know filter/wrap before seeing glTexImage2D. Some // drivers have a bug where an FBO won't be complete if it includes a // texture that is not mipmap complete (considering the filter in use). GrGLTexture::TexParams initialTexParams; // we only set a subset here so invalidate first initialTexParams.invalidate(); initialTexParams.fFilter = GR_GL_NEAREST; initialTexParams.fWrapS = GR_GL_CLAMP_TO_EDGE; initialTexParams.fWrapT = GR_GL_CLAMP_TO_EDGE; GL_CALL(TexParameteri(GR_GL_TEXTURE_2D, GR_GL_TEXTURE_MAG_FILTER, initialTexParams.fFilter)); GL_CALL(TexParameteri(GR_GL_TEXTURE_2D, GR_GL_TEXTURE_MIN_FILTER, initialTexParams.fFilter)); GL_CALL(TexParameteri(GR_GL_TEXTURE_2D, GR_GL_TEXTURE_WRAP_S, initialTexParams.fWrapS)); GL_CALL(TexParameteri(GR_GL_TEXTURE_2D, GR_GL_TEXTURE_WRAP_T, initialTexParams.fWrapT)); if (!this->uploadTexData(glTexDesc, true, 0, 0, glTexDesc.fWidth, glTexDesc.fHeight, desc.fConfig, srcData, rowBytes)) { GL_CALL(DeleteTextures(1, &glTexDesc.fTextureID)); return return_null_texture(); } GrGLTexture* tex; if (renderTarget) { #if GR_COLLECT_STATS ++fStats.fRenderTargetCreateCnt; #endif if (!this->createRenderTargetObjects(glTexDesc.fWidth, glTexDesc.fHeight, glTexDesc.fTextureID, &glRTDesc)) { GL_CALL(DeleteTextures(1, &glTexDesc.fTextureID)); return return_null_texture(); } tex = new GrGLTexture(this, glTexDesc, glRTDesc); } else { tex = new GrGLTexture(this, glTexDesc); } tex->setCachedTexParams(initialTexParams, this->getResetTimestamp()); #ifdef TRACE_TEXTURE_CREATION GrPrintf("--- new texture [%d] size=(%d %d) config=%d\n", glTexDesc.fTextureID, desc.fWidth, desc.fHeight, desc.fConfig); #endif return tex; } namespace { const GrGLuint kUnknownBitCount = GrGLStencilBuffer::kUnknownBitCount; void inline get_stencil_rb_sizes(const GrGLInterface* gl, GrGLuint rb, GrGLStencilBuffer::Format* format) { // we shouldn't ever know one size and not the other GrAssert((kUnknownBitCount == format->fStencilBits) == (kUnknownBitCount == format->fTotalBits)); if (kUnknownBitCount == format->fStencilBits) { GR_GL_GetRenderbufferParameteriv(gl, GR_GL_RENDERBUFFER, GR_GL_RENDERBUFFER_STENCIL_SIZE, (GrGLint*)&format->fStencilBits); if (format->fPacked) { GR_GL_GetRenderbufferParameteriv(gl, GR_GL_RENDERBUFFER, GR_GL_RENDERBUFFER_DEPTH_SIZE, (GrGLint*)&format->fTotalBits); format->fTotalBits += format->fStencilBits; } else { format->fTotalBits = format->fStencilBits; } } } } bool GrGpuGL::createStencilBufferForRenderTarget(GrRenderTarget* rt, int width, int height) { // All internally created RTs are also textures. We don't create // SBs for a client's standalone RT (that is RT that isnt also a texture). GrAssert(rt->asTexture()); GrAssert(width >= rt->width()); GrAssert(height >= rt->height()); int samples = rt->numSamples(); GrGLuint sbID; GL_CALL(GenRenderbuffers(1, &sbID)); if (!sbID) { return false; } GrGLStencilBuffer* sb = NULL; int stencilFmtCnt = this->glCaps().stencilFormats().count(); for (int i = 0; i < stencilFmtCnt; ++i) { GL_CALL(BindRenderbuffer(GR_GL_RENDERBUFFER, sbID)); // we start with the last stencil format that succeeded in hopes // that we won't go through this loop more than once after the // first (painful) stencil creation. int sIdx = (i + fLastSuccessfulStencilFmtIdx) % stencilFmtCnt; const GrGLCaps::StencilFormat& sFmt = this->glCaps().stencilFormats()[sIdx]; CLEAR_ERROR_BEFORE_ALLOC(this->glInterface()); // we do this "if" so that we don't call the multisample // version on a GL that doesn't have an MSAA extension. if (samples > 1) { GL_ALLOC_CALL(this->glInterface(), RenderbufferStorageMultisample(GR_GL_RENDERBUFFER, samples, sFmt.fInternalFormat, width, height)); } else { GL_ALLOC_CALL(this->glInterface(), RenderbufferStorage(GR_GL_RENDERBUFFER, sFmt.fInternalFormat, width, height)); } GrGLenum err = CHECK_ALLOC_ERROR(this->glInterface()); if (err == GR_GL_NO_ERROR) { // After sized formats we attempt an unsized format and take whatever // sizes GL gives us. In that case we query for the size. GrGLStencilBuffer::Format format = sFmt; get_stencil_rb_sizes(this->glInterface(), sbID, &format); sb = new GrGLStencilBuffer(this, sbID, width, height, samples, format); if (this->attachStencilBufferToRenderTarget(sb, rt)) { fLastSuccessfulStencilFmtIdx = sIdx; rt->setStencilBuffer(sb); sb->unref(); return true; } sb->abandon(); // otherwise we lose sbID sb->unref(); } } GL_CALL(DeleteRenderbuffers(1, &sbID)); return false; } bool GrGpuGL::attachStencilBufferToRenderTarget(GrStencilBuffer* sb, GrRenderTarget* rt) { GrGLRenderTarget* glrt = (GrGLRenderTarget*) rt; GrGLuint fbo = glrt->renderFBOID(); if (NULL == sb) { if (NULL != rt->getStencilBuffer()) { GL_CALL(FramebufferRenderbuffer(GR_GL_FRAMEBUFFER, GR_GL_STENCIL_ATTACHMENT, GR_GL_RENDERBUFFER, 0)); GL_CALL(FramebufferRenderbuffer(GR_GL_FRAMEBUFFER, GR_GL_DEPTH_ATTACHMENT, GR_GL_RENDERBUFFER, 0)); #if GR_DEBUG GrGLenum status; GL_CALL_RET(status, CheckFramebufferStatus(GR_GL_FRAMEBUFFER)); GrAssert(GR_GL_FRAMEBUFFER_COMPLETE == status); #endif } return true; } else { GrGLStencilBuffer* glsb = (GrGLStencilBuffer*) sb; GrGLuint rb = glsb->renderbufferID(); fHWDrawState.setRenderTarget(NULL); GL_CALL(BindFramebuffer(GR_GL_FRAMEBUFFER, fbo)); GL_CALL(FramebufferRenderbuffer(GR_GL_FRAMEBUFFER, GR_GL_STENCIL_ATTACHMENT, GR_GL_RENDERBUFFER, rb)); if (glsb->format().fPacked) { GL_CALL(FramebufferRenderbuffer(GR_GL_FRAMEBUFFER, GR_GL_DEPTH_ATTACHMENT, GR_GL_RENDERBUFFER, rb)); } else { GL_CALL(FramebufferRenderbuffer(GR_GL_FRAMEBUFFER, GR_GL_DEPTH_ATTACHMENT, GR_GL_RENDERBUFFER, 0)); } GrGLenum status; if (!this->glCaps().isColorConfigAndStencilFormatVerified(rt->config(), glsb->format())) { GL_CALL_RET(status, CheckFramebufferStatus(GR_GL_FRAMEBUFFER)); if (status != GR_GL_FRAMEBUFFER_COMPLETE) { GL_CALL(FramebufferRenderbuffer(GR_GL_FRAMEBUFFER, GR_GL_STENCIL_ATTACHMENT, GR_GL_RENDERBUFFER, 0)); if (glsb->format().fPacked) { GL_CALL(FramebufferRenderbuffer(GR_GL_FRAMEBUFFER, GR_GL_DEPTH_ATTACHMENT, GR_GL_RENDERBUFFER, 0)); } return false; } else { fGLContextInfo.caps().markColorConfigAndStencilFormatAsVerified( rt->config(), glsb->format()); } } return true; } } //////////////////////////////////////////////////////////////////////////////// GrVertexBuffer* GrGpuGL::onCreateVertexBuffer(uint32_t size, bool dynamic) { GrGLuint id; GL_CALL(GenBuffers(1, &id)); if (id) { GL_CALL(BindBuffer(GR_GL_ARRAY_BUFFER, id)); fHWGeometryState.fArrayPtrsDirty = true; CLEAR_ERROR_BEFORE_ALLOC(this->glInterface()); // make sure driver can allocate memory for this buffer GL_ALLOC_CALL(this->glInterface(), BufferData(GR_GL_ARRAY_BUFFER, size, NULL, // data ptr dynamic ? GR_GL_DYNAMIC_DRAW : GR_GL_STATIC_DRAW)); if (CHECK_ALLOC_ERROR(this->glInterface()) != GR_GL_NO_ERROR) { GL_CALL(DeleteBuffers(1, &id)); // deleting bound buffer does implicit bind to 0 fHWGeometryState.fVertexBuffer = NULL; return NULL; } GrGLVertexBuffer* vertexBuffer = new GrGLVertexBuffer(this, id, size, dynamic); fHWGeometryState.fVertexBuffer = vertexBuffer; return vertexBuffer; } return NULL; } GrIndexBuffer* GrGpuGL::onCreateIndexBuffer(uint32_t size, bool dynamic) { GrGLuint id; GL_CALL(GenBuffers(1, &id)); if (id) { GL_CALL(BindBuffer(GR_GL_ELEMENT_ARRAY_BUFFER, id)); CLEAR_ERROR_BEFORE_ALLOC(this->glInterface()); // make sure driver can allocate memory for this buffer GL_ALLOC_CALL(this->glInterface(), BufferData(GR_GL_ELEMENT_ARRAY_BUFFER, size, NULL, // data ptr dynamic ? GR_GL_DYNAMIC_DRAW : GR_GL_STATIC_DRAW)); if (CHECK_ALLOC_ERROR(this->glInterface()) != GR_GL_NO_ERROR) { GL_CALL(DeleteBuffers(1, &id)); // deleting bound buffer does implicit bind to 0 fHWGeometryState.fIndexBuffer = NULL; return NULL; } GrIndexBuffer* indexBuffer = new GrGLIndexBuffer(this, id, size, dynamic); fHWGeometryState.fIndexBuffer = indexBuffer; return indexBuffer; } return NULL; } void GrGpuGL::flushScissor(const GrIRect* rect) { const GrDrawState& drawState = this->getDrawState(); const GrGLRenderTarget* rt = static_cast(drawState.getRenderTarget()); GrAssert(NULL != rt); const GrGLIRect& vp = rt->getViewport(); GrGLIRect scissor; if (NULL != rect) { scissor.setRelativeTo(vp, rect->fLeft, rect->fTop, rect->width(), rect->height()); if (scissor.contains(vp)) { rect = NULL; } } if (NULL != rect) { if (fHWBounds.fScissorRect != scissor) { scissor.pushToGLScissor(this->glInterface()); fHWBounds.fScissorRect = scissor; } if (!fHWBounds.fScissorEnabled) { GL_CALL(Enable(GR_GL_SCISSOR_TEST)); fHWBounds.fScissorEnabled = true; } } else { if (fHWBounds.fScissorEnabled) { GL_CALL(Disable(GR_GL_SCISSOR_TEST)); fHWBounds.fScissorEnabled = false; } } } void GrGpuGL::onClear(const GrIRect* rect, GrColor color) { const GrDrawState& drawState = this->getDrawState(); const GrRenderTarget* rt = drawState.getRenderTarget(); // parent class should never let us get here with no RT GrAssert(NULL != rt); GrIRect clippedRect; if (NULL != rect) { // flushScissor expects rect to be clipped to the target. clippedRect = *rect; GrIRect rtRect = SkIRect::MakeWH(rt->width(), rt->height()); if (clippedRect.intersect(rtRect)) { rect = &clippedRect; } else { return; } } this->flushRenderTarget(rect); this->flushScissor(rect); GrGLfloat r, g, b, a; static const GrGLfloat scale255 = 1.f / 255.f; a = GrColorUnpackA(color) * scale255; GrGLfloat scaleRGB = scale255; if (GrPixelConfigIsUnpremultiplied(rt->config())) { scaleRGB *= a; } r = GrColorUnpackR(color) * scaleRGB; g = GrColorUnpackG(color) * scaleRGB; b = GrColorUnpackB(color) * scaleRGB; GL_CALL(ColorMask(GR_GL_TRUE, GR_GL_TRUE, GR_GL_TRUE, GR_GL_TRUE)); fHWDrawState.disableState(GrDrawState::kNoColorWrites_StateBit); GL_CALL(ClearColor(r, g, b, a)); GL_CALL(Clear(GR_GL_COLOR_BUFFER_BIT)); } void GrGpuGL::clearStencil() { if (NULL == this->getDrawState().getRenderTarget()) { return; } this->flushRenderTarget(&GrIRect::EmptyIRect()); if (fHWBounds.fScissorEnabled) { GL_CALL(Disable(GR_GL_SCISSOR_TEST)); fHWBounds.fScissorEnabled = false; } GL_CALL(StencilMask(0xffffffff)); GL_CALL(ClearStencil(0)); GL_CALL(Clear(GR_GL_STENCIL_BUFFER_BIT)); fHWDrawState.stencil()->invalidate(); } void GrGpuGL::clearStencilClip(const GrIRect& rect, bool insideClip) { const GrDrawState& drawState = this->getDrawState(); const GrRenderTarget* rt = drawState.getRenderTarget(); GrAssert(NULL != rt); // this should only be called internally when we know we have a // stencil buffer. GrAssert(NULL != rt->getStencilBuffer()); GrGLint stencilBitCount = rt->getStencilBuffer()->bits(); #if 0 GrAssert(stencilBitCount > 0); GrGLint clipStencilMask = (1 << (stencilBitCount - 1)); #else // we could just clear the clip bit but when we go through // ANGLE a partial stencil mask will cause clears to be // turned into draws. Our contract on GrDrawTarget says that // changing the clip between stencil passes may or may not // zero the client's clip bits. So we just clear the whole thing. static const GrGLint clipStencilMask = ~0; #endif GrGLint value; if (insideClip) { value = (1 << (stencilBitCount - 1)); } else { value = 0; } this->flushRenderTarget(&GrIRect::EmptyIRect()); this->flushScissor(&rect); GL_CALL(StencilMask(clipStencilMask)); GL_CALL(ClearStencil(value)); GL_CALL(Clear(GR_GL_STENCIL_BUFFER_BIT)); fHWDrawState.stencil()->invalidate(); } void GrGpuGL::onForceRenderTargetFlush() { this->flushRenderTarget(&GrIRect::EmptyIRect()); } bool GrGpuGL::readPixelsWillPayForYFlip(GrRenderTarget* renderTarget, int left, int top, int width, int height, GrPixelConfig config, size_t rowBytes) const { // if GL can do the flip then we'll never pay for it. if (this->glCaps().packFlipYSupport()) { return false; } // If we have to do memcpy to handle non-trim rowBytes then we // get the flip for free. Otherwise it costs. if (this->glCaps().packRowLengthSupport()) { return true; } // If we have to do memcpys to handle rowBytes then y-flip is free // Note the rowBytes might be tight to the passed in data, but if data // gets clipped in x to the target the rowBytes will no longer be tight. if (left >= 0 && (left + width) < renderTarget->width()) { return 0 == rowBytes || GrBytesPerPixel(config) * width == rowBytes; } else { return false; } } bool GrGpuGL::onReadPixels(GrRenderTarget* target, int left, int top, int width, int height, GrPixelConfig config, void* buffer, size_t rowBytes, bool invertY) { GrGLenum format; GrGLenum type; if (!this->configToGLFormats(config, false, NULL, &format, &type)) { return false; } size_t bpp = GrBytesPerPixel(config); if (!adjust_pixel_ops_params(target->width(), target->height(), bpp, &left, &top, &width, &height, const_cast(&buffer), &rowBytes)) { return false; } // resolve the render target if necessary GrGLRenderTarget* tgt = static_cast(target); GrDrawState::AutoRenderTargetRestore artr; switch (tgt->getResolveType()) { case GrGLRenderTarget::kCantResolve_ResolveType: return false; case GrGLRenderTarget::kAutoResolves_ResolveType: artr.set(this->drawState(), target); this->flushRenderTarget(&GrIRect::EmptyIRect()); break; case GrGLRenderTarget::kCanResolve_ResolveType: this->onResolveRenderTarget(tgt); // we don't track the state of the READ FBO ID. GL_CALL(BindFramebuffer(GR_GL_READ_FRAMEBUFFER, tgt->textureFBOID())); break; default: GrCrash("Unknown resolve type"); } const GrGLIRect& glvp = tgt->getViewport(); // the read rect is viewport-relative GrGLIRect readRect; readRect.setRelativeTo(glvp, left, top, width, height); size_t tightRowBytes = bpp * width; if (0 == rowBytes) { rowBytes = tightRowBytes; } size_t readDstRowBytes = tightRowBytes; void* readDst = buffer; // determine if GL can read using the passed rowBytes or if we need // a scratch buffer. SkAutoSMalloc<32 * sizeof(GrColor)> scratch; if (rowBytes != tightRowBytes) { if (this->glCaps().packRowLengthSupport()) { GrAssert(!(rowBytes % sizeof(GrColor))); GL_CALL(PixelStorei(GR_GL_PACK_ROW_LENGTH, rowBytes / sizeof(GrColor))); readDstRowBytes = rowBytes; } else { scratch.reset(tightRowBytes * height); readDst = scratch.get(); } } if (!invertY && this->glCaps().packFlipYSupport()) { GL_CALL(PixelStorei(GR_GL_PACK_REVERSE_ROW_ORDER, 1)); } GL_CALL(ReadPixels(readRect.fLeft, readRect.fBottom, readRect.fWidth, readRect.fHeight, format, type, readDst)); if (readDstRowBytes != tightRowBytes) { GrAssert(this->glCaps().packRowLengthSupport()); GL_CALL(PixelStorei(GR_GL_PACK_ROW_LENGTH, 0)); } if (!invertY && this->glCaps().packFlipYSupport()) { GL_CALL(PixelStorei(GR_GL_PACK_REVERSE_ROW_ORDER, 0)); invertY = true; } // now reverse the order of the rows, since GL's are bottom-to-top, but our // API presents top-to-bottom. We must preserve the padding contents. Note // that the above readPixels did not overwrite the padding. if (readDst == buffer) { GrAssert(rowBytes == readDstRowBytes); if (!invertY) { scratch.reset(tightRowBytes); void* tmpRow = scratch.get(); // flip y in-place by rows const int halfY = height >> 1; char* top = reinterpret_cast(buffer); char* bottom = top + (height - 1) * rowBytes; for (int y = 0; y < halfY; y++) { memcpy(tmpRow, top, tightRowBytes); memcpy(top, bottom, tightRowBytes); memcpy(bottom, tmpRow, tightRowBytes); top += rowBytes; bottom -= rowBytes; } } } else { GrAssert(readDst != buffer); GrAssert(rowBytes != tightRowBytes); // copy from readDst to buffer while flipping y const int halfY = height >> 1; const char* src = reinterpret_cast(readDst); char* dst = reinterpret_cast(buffer); if (!invertY) { dst += (height-1) * rowBytes; } for (int y = 0; y < height; y++) { memcpy(dst, src, tightRowBytes); src += readDstRowBytes; if (invertY) { dst += rowBytes; } else { dst -= rowBytes; } } } return true; } void GrGpuGL::flushRenderTarget(const GrIRect* bound) { GrGLRenderTarget* rt = static_cast(this->drawState()->getRenderTarget()); GrAssert(NULL != rt); if (fHWDrawState.getRenderTarget() != rt) { GL_CALL(BindFramebuffer(GR_GL_FRAMEBUFFER, rt->renderFBOID())); #if GR_COLLECT_STATS ++fStats.fRenderTargetChngCnt; #endif #if GR_DEBUG GrGLenum status; GL_CALL_RET(status, CheckFramebufferStatus(GR_GL_FRAMEBUFFER)); if (status != GR_GL_FRAMEBUFFER_COMPLETE) { GrPrintf("GrGpuGL::flushRenderTarget glCheckFramebufferStatus %x\n", status); } #endif fDirtyFlags.fRenderTargetChanged = true; fHWDrawState.setRenderTarget(rt); const GrGLIRect& vp = rt->getViewport(); if (fHWBounds.fViewportRect != vp) { vp.pushToGLViewport(this->glInterface()); fHWBounds.fViewportRect = vp; } } if (NULL == bound || !bound->isEmpty()) { rt->flagAsNeedingResolve(bound); } } GrGLenum gPrimitiveType2GLMode[] = { GR_GL_TRIANGLES, GR_GL_TRIANGLE_STRIP, GR_GL_TRIANGLE_FAN, GR_GL_POINTS, GR_GL_LINES, GR_GL_LINE_STRIP }; #define SWAP_PER_DRAW 0 #if SWAP_PER_DRAW #if GR_MAC_BUILD #include #elif GR_WIN32_BUILD void SwapBuf() { DWORD procID = GetCurrentProcessId(); HWND hwnd = GetTopWindow(GetDesktopWindow()); while(hwnd) { DWORD wndProcID = 0; GetWindowThreadProcessId(hwnd, &wndProcID); if(wndProcID == procID) { SwapBuffers(GetDC(hwnd)); } hwnd = GetNextWindow(hwnd, GW_HWNDNEXT); } } #endif #endif void GrGpuGL::onGpuDrawIndexed(GrPrimitiveType type, uint32_t startVertex, uint32_t startIndex, uint32_t vertexCount, uint32_t indexCount) { GrAssert((size_t)type < GR_ARRAY_COUNT(gPrimitiveType2GLMode)); GrGLvoid* indices = (GrGLvoid*)(sizeof(uint16_t) * startIndex); GrAssert(NULL != fHWGeometryState.fIndexBuffer); GrAssert(NULL != fHWGeometryState.fVertexBuffer); // our setupGeometry better have adjusted this to zero since // DrawElements always draws from the begining of the arrays for idx 0. GrAssert(0 == startVertex); GL_CALL(DrawElements(gPrimitiveType2GLMode[type], indexCount, GR_GL_UNSIGNED_SHORT, indices)); #if SWAP_PER_DRAW glFlush(); #if GR_MAC_BUILD aglSwapBuffers(aglGetCurrentContext()); int set_a_break_pt_here = 9; aglSwapBuffers(aglGetCurrentContext()); #elif GR_WIN32_BUILD SwapBuf(); int set_a_break_pt_here = 9; SwapBuf(); #endif #endif } void GrGpuGL::onGpuDrawNonIndexed(GrPrimitiveType type, uint32_t startVertex, uint32_t vertexCount) { GrAssert((size_t)type < GR_ARRAY_COUNT(gPrimitiveType2GLMode)); GrAssert(NULL != fHWGeometryState.fVertexBuffer); // our setupGeometry better have adjusted this to zero. // DrawElements doesn't take an offset so we always adjus the startVertex. GrAssert(0 == startVertex); // pass 0 for parameter first. We have to adjust gl*Pointer() to // account for startVertex in the DrawElements case. So we always // rely on setupGeometry to have accounted for startVertex. GL_CALL(DrawArrays(gPrimitiveType2GLMode[type], 0, vertexCount)); #if SWAP_PER_DRAW glFlush(); #if GR_MAC_BUILD aglSwapBuffers(aglGetCurrentContext()); int set_a_break_pt_here = 9; aglSwapBuffers(aglGetCurrentContext()); #elif GR_WIN32_BUILD SwapBuf(); int set_a_break_pt_here = 9; SwapBuf(); #endif #endif } void GrGpuGL::onResolveRenderTarget(GrRenderTarget* target) { GrGLRenderTarget* rt = static_cast(target); if (rt->needsResolve()) { GrAssert(GrGLCaps::kNone_MSFBOType != this->glCaps().msFBOType()); GrAssert(rt->textureFBOID() != rt->renderFBOID()); GL_CALL(BindFramebuffer(GR_GL_READ_FRAMEBUFFER, rt->renderFBOID())); GL_CALL(BindFramebuffer(GR_GL_DRAW_FRAMEBUFFER, rt->textureFBOID())); #if GR_COLLECT_STATS ++fStats.fRenderTargetChngCnt; #endif // make sure we go through flushRenderTarget() since we've modified // the bound DRAW FBO ID. fHWDrawState.setRenderTarget(NULL); const GrGLIRect& vp = rt->getViewport(); const GrIRect dirtyRect = rt->getResolveRect(); GrGLIRect r; r.setRelativeTo(vp, dirtyRect.fLeft, dirtyRect.fTop, dirtyRect.width(), dirtyRect.height()); if (GrGLCaps::kAppleES_MSFBOType == this->glCaps().msFBOType()) { // Apple's extension uses the scissor as the blit bounds. GL_CALL(Enable(GR_GL_SCISSOR_TEST)); GL_CALL(Scissor(r.fLeft, r.fBottom, r.fWidth, r.fHeight)); GL_CALL(ResolveMultisampleFramebuffer()); fHWBounds.fScissorRect.invalidate(); fHWBounds.fScissorEnabled = true; } else { if (GrGLCaps::kDesktopARB_MSFBOType != this->glCaps().msFBOType()) { // this respects the scissor during the blit, so disable it. GrAssert(GrGLCaps::kDesktopEXT_MSFBOType == this->glCaps().msFBOType()); this->flushScissor(NULL); } int right = r.fLeft + r.fWidth; int top = r.fBottom + r.fHeight; GL_CALL(BlitFramebuffer(r.fLeft, r.fBottom, right, top, r.fLeft, r.fBottom, right, top, GR_GL_COLOR_BUFFER_BIT, GR_GL_NEAREST)); } rt->flagAsResolved(); } } static const GrGLenum grToGLStencilFunc[] = { GR_GL_ALWAYS, // kAlways_StencilFunc GR_GL_NEVER, // kNever_StencilFunc GR_GL_GREATER, // kGreater_StencilFunc GR_GL_GEQUAL, // kGEqual_StencilFunc GR_GL_LESS, // kLess_StencilFunc GR_GL_LEQUAL, // kLEqual_StencilFunc, GR_GL_EQUAL, // kEqual_StencilFunc, GR_GL_NOTEQUAL, // kNotEqual_StencilFunc, }; GR_STATIC_ASSERT(GR_ARRAY_COUNT(grToGLStencilFunc) == kBasicStencilFuncCount); GR_STATIC_ASSERT(0 == kAlways_StencilFunc); GR_STATIC_ASSERT(1 == kNever_StencilFunc); GR_STATIC_ASSERT(2 == kGreater_StencilFunc); GR_STATIC_ASSERT(3 == kGEqual_StencilFunc); GR_STATIC_ASSERT(4 == kLess_StencilFunc); GR_STATIC_ASSERT(5 == kLEqual_StencilFunc); GR_STATIC_ASSERT(6 == kEqual_StencilFunc); GR_STATIC_ASSERT(7 == kNotEqual_StencilFunc); static const GrGLenum grToGLStencilOp[] = { GR_GL_KEEP, // kKeep_StencilOp GR_GL_REPLACE, // kReplace_StencilOp GR_GL_INCR_WRAP, // kIncWrap_StencilOp GR_GL_INCR, // kIncClamp_StencilOp GR_GL_DECR_WRAP, // kDecWrap_StencilOp GR_GL_DECR, // kDecClamp_StencilOp GR_GL_ZERO, // kZero_StencilOp GR_GL_INVERT, // kInvert_StencilOp }; GR_STATIC_ASSERT(GR_ARRAY_COUNT(grToGLStencilOp) == kStencilOpCount); GR_STATIC_ASSERT(0 == kKeep_StencilOp); GR_STATIC_ASSERT(1 == kReplace_StencilOp); GR_STATIC_ASSERT(2 == kIncWrap_StencilOp); GR_STATIC_ASSERT(3 == kIncClamp_StencilOp); GR_STATIC_ASSERT(4 == kDecWrap_StencilOp); GR_STATIC_ASSERT(5 == kDecClamp_StencilOp); GR_STATIC_ASSERT(6 == kZero_StencilOp); GR_STATIC_ASSERT(7 == kInvert_StencilOp); void GrGpuGL::flushStencil() { const GrDrawState& drawState = this->getDrawState(); const GrStencilSettings* settings = &drawState.getStencil(); // use stencil for clipping if clipping is enabled and the clip // has been written into the stencil. bool stencilClip = fClipInStencil && drawState.isClipState(); bool drawClipToStencil = drawState.isStateFlagEnabled(kModifyStencilClip_StateBit); bool stencilChange = (fHWDrawState.getStencil() != *settings) || (fHWStencilClip != stencilClip) || (fHWDrawState.isStateFlagEnabled(kModifyStencilClip_StateBit) != drawClipToStencil); if (stencilChange) { // we can't simultaneously perform stencil-clipping and // modify the stencil clip GrAssert(!stencilClip || !drawClipToStencil); if (settings->isDisabled()) { if (stencilClip) { settings = GetClipStencilSettings(); } } if (settings->isDisabled()) { GL_CALL(Disable(GR_GL_STENCIL_TEST)); } else { GL_CALL(Enable(GR_GL_STENCIL_TEST)); #if GR_DEBUG if (!this->getCaps().fStencilWrapOpsSupport) { GrAssert(settings->frontPassOp() != kIncWrap_StencilOp); GrAssert(settings->frontPassOp() != kDecWrap_StencilOp); GrAssert(settings->frontFailOp() != kIncWrap_StencilOp); GrAssert(settings->backFailOp() != kDecWrap_StencilOp); GrAssert(settings->backPassOp() != kIncWrap_StencilOp); GrAssert(settings->backPassOp() != kDecWrap_StencilOp); GrAssert(settings->backFailOp() != kIncWrap_StencilOp); GrAssert(settings->frontFailOp() != kDecWrap_StencilOp); } #endif int stencilBits = 0; GrStencilBuffer* stencilBuffer = drawState.getRenderTarget()->getStencilBuffer(); if (NULL != stencilBuffer) { stencilBits = stencilBuffer->bits(); } // TODO: dynamically attach a stencil buffer GrAssert(stencilBits || settings->isDisabled()); GrGLuint clipStencilMask = 0; GrGLuint userStencilMask = ~0; if (stencilBits > 0) { clipStencilMask = 1 << (stencilBits - 1); userStencilMask = clipStencilMask - 1; } unsigned int frontRef = settings->frontFuncRef(); unsigned int frontMask = settings->frontFuncMask(); unsigned int frontWriteMask = settings->frontWriteMask(); GrGLenum frontFunc; if (drawClipToStencil) { GrAssert(settings->frontFunc() < kBasicStencilFuncCount); frontFunc = grToGLStencilFunc[settings->frontFunc()]; } else { frontFunc = grToGLStencilFunc[ConvertStencilFunc( stencilClip, settings->frontFunc())]; ConvertStencilFuncAndMask(settings->frontFunc(), stencilClip, clipStencilMask, userStencilMask, &frontRef, &frontMask); frontWriteMask &= userStencilMask; } GrAssert((size_t) settings->frontFailOp() < GR_ARRAY_COUNT(grToGLStencilOp)); GrAssert((size_t) settings->frontPassOp() < GR_ARRAY_COUNT(grToGLStencilOp)); GrAssert((size_t) settings->backFailOp() < GR_ARRAY_COUNT(grToGLStencilOp)); GrAssert((size_t) settings->backPassOp() < GR_ARRAY_COUNT(grToGLStencilOp)); if (this->getCaps().fTwoSidedStencilSupport) { GrGLenum backFunc; unsigned int backRef = settings->backFuncRef(); unsigned int backMask = settings->backFuncMask(); unsigned int backWriteMask = settings->backWriteMask(); if (drawClipToStencil) { GrAssert(settings->backFunc() < kBasicStencilFuncCount); backFunc = grToGLStencilFunc[settings->backFunc()]; } else { backFunc = grToGLStencilFunc[ConvertStencilFunc( stencilClip, settings->backFunc())]; ConvertStencilFuncAndMask(settings->backFunc(), stencilClip, clipStencilMask, userStencilMask, &backRef, &backMask); backWriteMask &= userStencilMask; } GL_CALL(StencilFuncSeparate(GR_GL_FRONT, frontFunc, frontRef, frontMask)); GL_CALL(StencilMaskSeparate(GR_GL_FRONT, frontWriteMask)); GL_CALL(StencilFuncSeparate(GR_GL_BACK, backFunc, backRef, backMask)); GL_CALL(StencilMaskSeparate(GR_GL_BACK, backWriteMask)); GL_CALL(StencilOpSeparate(GR_GL_FRONT, grToGLStencilOp[settings->frontFailOp()], grToGLStencilOp[settings->frontPassOp()], grToGLStencilOp[settings->frontPassOp()])); GL_CALL(StencilOpSeparate(GR_GL_BACK, grToGLStencilOp[settings->backFailOp()], grToGLStencilOp[settings->backPassOp()], grToGLStencilOp[settings->backPassOp()])); } else { GL_CALL(StencilFunc(frontFunc, frontRef, frontMask)); GL_CALL(StencilMask(frontWriteMask)); GL_CALL(StencilOp(grToGLStencilOp[settings->frontFailOp()], grToGLStencilOp[settings->frontPassOp()], grToGLStencilOp[settings->frontPassOp()])); } } *fHWDrawState.stencil() = *settings; fHWStencilClip = stencilClip; } } void GrGpuGL::flushAAState(GrPrimitiveType type) { const GrRenderTarget* rt = this->getDrawState().getRenderTarget(); if (kDesktop_GrGLBinding == this->glBinding()) { // ES doesn't support toggling GL_MULTISAMPLE and doesn't have // smooth lines. // we prefer smooth lines over multisampled lines // msaa should be disabled if drawing smooth lines. if (GrIsPrimTypeLines(type)) { bool smooth = this->willUseHWAALines(); if (!fHWAAState.fSmoothLineEnabled && smooth) { GL_CALL(Enable(GR_GL_LINE_SMOOTH)); fHWAAState.fSmoothLineEnabled = true; } else if (fHWAAState.fSmoothLineEnabled && !smooth) { GL_CALL(Disable(GR_GL_LINE_SMOOTH)); fHWAAState.fSmoothLineEnabled = false; } if (rt->isMultisampled() && fHWAAState.fMSAAEnabled) { GL_CALL(Disable(GR_GL_MULTISAMPLE)); fHWAAState.fMSAAEnabled = false; } } else if (rt->isMultisampled() && this->getDrawState().isHWAntialiasState() != fHWAAState.fMSAAEnabled) { if (fHWAAState.fMSAAEnabled) { GL_CALL(Disable(GR_GL_MULTISAMPLE)); fHWAAState.fMSAAEnabled = false; } else { GL_CALL(Enable(GR_GL_MULTISAMPLE)); fHWAAState.fMSAAEnabled = true; } } } } void GrGpuGL::flushBlend(GrPrimitiveType type, GrBlendCoeff srcCoeff, GrBlendCoeff dstCoeff) { if (GrIsPrimTypeLines(type) && this->willUseHWAALines()) { if (fHWBlendDisabled) { GL_CALL(Enable(GR_GL_BLEND)); fHWBlendDisabled = false; } if (kSA_BlendCoeff != fHWDrawState.getSrcBlendCoeff() || kISA_BlendCoeff != fHWDrawState.getDstBlendCoeff()) { GL_CALL(BlendFunc(gXfermodeCoeff2Blend[kSA_BlendCoeff], gXfermodeCoeff2Blend[kISA_BlendCoeff])); fHWDrawState.setBlendFunc(kSA_BlendCoeff, kISA_BlendCoeff); } } else { // any optimization to disable blending should // have already been applied and tweaked the coeffs // to (1, 0). bool blendOff = kOne_BlendCoeff == srcCoeff && kZero_BlendCoeff == dstCoeff; if (fHWBlendDisabled != blendOff) { if (blendOff) { GL_CALL(Disable(GR_GL_BLEND)); } else { GL_CALL(Enable(GR_GL_BLEND)); } fHWBlendDisabled = blendOff; } if (!blendOff) { if (fHWDrawState.getSrcBlendCoeff() != srcCoeff || fHWDrawState.getDstBlendCoeff() != dstCoeff) { GL_CALL(BlendFunc(gXfermodeCoeff2Blend[srcCoeff], gXfermodeCoeff2Blend[dstCoeff])); fHWDrawState.setBlendFunc(srcCoeff, dstCoeff); } GrColor blendConst = fCurrDrawState.getBlendConstant(); if ((BlendCoeffReferencesConstant(srcCoeff) || BlendCoeffReferencesConstant(dstCoeff)) && fHWDrawState.getBlendConstant() != blendConst) { float c[] = { GrColorUnpackR(blendConst) / 255.f, GrColorUnpackG(blendConst) / 255.f, GrColorUnpackB(blendConst) / 255.f, GrColorUnpackA(blendConst) / 255.f }; GL_CALL(BlendColor(c[0], c[1], c[2], c[3])); fHWDrawState.setBlendConstant(blendConst); } } } } namespace { unsigned gr_to_gl_filter(GrSamplerState::Filter filter) { switch (filter) { case GrSamplerState::kBilinear_Filter: case GrSamplerState::k4x4Downsample_Filter: return GR_GL_LINEAR; case GrSamplerState::kNearest_Filter: case GrSamplerState::kConvolution_Filter: return GR_GL_NEAREST; default: GrAssert(!"Unknown filter type"); return GR_GL_LINEAR; } } const GrGLenum* get_swizzle(GrPixelConfig config, const GrSamplerState& sampler) { if (GrPixelConfigIsAlphaOnly(config)) { static const GrGLenum gAlphaSmear[] = { GR_GL_ALPHA, GR_GL_ALPHA, GR_GL_ALPHA, GR_GL_ALPHA }; return gAlphaSmear; } else if (sampler.swapsRAndB()) { static const GrGLenum gRedBlueSwap[] = { GR_GL_BLUE, GR_GL_GREEN, GR_GL_RED, GR_GL_ALPHA }; return gRedBlueSwap; } else { static const GrGLenum gStraight[] = { GR_GL_RED, GR_GL_GREEN, GR_GL_BLUE, GR_GL_ALPHA }; return gStraight; } } void set_tex_swizzle(GrGLenum swizzle[4], const GrGLInterface* gl) { // should add texparameteri to interface to make 1 instead of 4 calls here GR_GL_CALL(gl, TexParameteri(GR_GL_TEXTURE_2D, GR_GL_TEXTURE_SWIZZLE_R, swizzle[0])); GR_GL_CALL(gl, TexParameteri(GR_GL_TEXTURE_2D, GR_GL_TEXTURE_SWIZZLE_G, swizzle[1])); GR_GL_CALL(gl, TexParameteri(GR_GL_TEXTURE_2D, GR_GL_TEXTURE_SWIZZLE_B, swizzle[2])); GR_GL_CALL(gl, TexParameteri(GR_GL_TEXTURE_2D, GR_GL_TEXTURE_SWIZZLE_A, swizzle[3])); } } bool GrGpuGL::flushGLStateCommon(GrPrimitiveType type) { GrDrawState* drawState = this->drawState(); // GrGpu::setupClipAndFlushState should have already checked this // and bailed if not true. GrAssert(NULL != drawState->getRenderTarget()); for (int s = 0; s < GrDrawState::kNumStages; ++s) { // bind texture and set sampler state if (this->isStageEnabled(s)) { GrGLTexture* nextTexture = static_cast(drawState->getTexture(s)); // true for now, but maybe not with GrEffect. GrAssert(NULL != nextTexture); // if we created a rt/tex and rendered to it without using a // texture and now we're texuring from the rt it will still be // the last bound texture, but it needs resolving. So keep this // out of the "last != next" check. GrGLRenderTarget* texRT = static_cast(nextTexture->asRenderTarget()); if (NULL != texRT) { this->onResolveRenderTarget(texRT); } if (fHWDrawState.getTexture(s) != nextTexture) { setTextureUnit(s); GL_CALL(BindTexture(GR_GL_TEXTURE_2D, nextTexture->textureID())); #if GR_COLLECT_STATS ++fStats.fTextureChngCnt; #endif //GrPrintf("---- bindtexture %d\n", nextTexture->textureID()); fHWDrawState.setTexture(s, nextTexture); // The texture matrix has to compensate for texture width/height // and NPOT-embedded-in-POT fDirtyFlags.fTextureChangedMask |= (1 << s); } const GrSamplerState& sampler = drawState->getSampler(s); ResetTimestamp timestamp; const GrGLTexture::TexParams& oldTexParams = nextTexture->getCachedTexParams(×tamp); bool setAll = timestamp < this->getResetTimestamp(); GrGLTexture::TexParams newTexParams; newTexParams.fFilter = gr_to_gl_filter(sampler.getFilter()); const GrGLenum* wraps = GrGLTexture::WrapMode2GLWrap(); newTexParams.fWrapS = wraps[sampler.getWrapX()]; newTexParams.fWrapT = wraps[sampler.getWrapY()]; memcpy(newTexParams.fSwizzleRGBA, get_swizzle(nextTexture->config(), sampler), sizeof(newTexParams.fSwizzleRGBA)); if (setAll || newTexParams.fFilter != oldTexParams.fFilter) { setTextureUnit(s); GL_CALL(TexParameteri(GR_GL_TEXTURE_2D, GR_GL_TEXTURE_MAG_FILTER, newTexParams.fFilter)); GL_CALL(TexParameteri(GR_GL_TEXTURE_2D, GR_GL_TEXTURE_MIN_FILTER, newTexParams.fFilter)); } if (setAll || newTexParams.fWrapS != oldTexParams.fWrapS) { setTextureUnit(s); GL_CALL(TexParameteri(GR_GL_TEXTURE_2D, GR_GL_TEXTURE_WRAP_S, newTexParams.fWrapS)); } if (setAll || newTexParams.fWrapT != oldTexParams.fWrapT) { setTextureUnit(s); GL_CALL(TexParameteri(GR_GL_TEXTURE_2D, GR_GL_TEXTURE_WRAP_T, newTexParams.fWrapT)); } if (this->glCaps().textureSwizzleSupport() && (setAll || memcmp(newTexParams.fSwizzleRGBA, oldTexParams.fSwizzleRGBA, sizeof(newTexParams.fSwizzleRGBA)))) { setTextureUnit(s); set_tex_swizzle(newTexParams.fSwizzleRGBA, this->glInterface()); } nextTexture->setCachedTexParams(newTexParams, this->getResetTimestamp()); } } GrIRect* rect = NULL; GrIRect clipBounds; if (drawState->isClipState() && fClip.hasConservativeBounds()) { fClip.getConservativeBounds().roundOut(&clipBounds); rect = &clipBounds; } this->flushRenderTarget(rect); this->flushAAState(type); if (drawState->isDitherState() != fHWDrawState.isDitherState()) { if (drawState->isDitherState()) { GL_CALL(Enable(GR_GL_DITHER)); } else { GL_CALL(Disable(GR_GL_DITHER)); } } if (drawState->isColorWriteDisabled() != fHWDrawState.isColorWriteDisabled()) { GrGLenum mask; if (drawState->isColorWriteDisabled()) { mask = GR_GL_FALSE; } else { mask = GR_GL_TRUE; } GL_CALL(ColorMask(mask, mask, mask, mask)); } if (fHWDrawState.getDrawFace() != drawState->getDrawFace()) { switch (fCurrDrawState.getDrawFace()) { case GrDrawState::kCCW_DrawFace: GL_CALL(Enable(GR_GL_CULL_FACE)); GL_CALL(CullFace(GR_GL_BACK)); break; case GrDrawState::kCW_DrawFace: GL_CALL(Enable(GR_GL_CULL_FACE)); GL_CALL(CullFace(GR_GL_FRONT)); break; case GrDrawState::kBoth_DrawFace: GL_CALL(Disable(GR_GL_CULL_FACE)); break; default: GrCrash("Unknown draw face."); } fHWDrawState.setDrawFace(drawState->getDrawFace()); } #if GR_DEBUG // check for circular rendering for (int s = 0; s < GrDrawState::kNumStages; ++s) { GrAssert(!this->isStageEnabled(s) || NULL == drawState->getRenderTarget() || NULL == drawState->getTexture(s) || drawState->getTexture(s)->asRenderTarget() != drawState->getRenderTarget()); } #endif this->flushStencil(); // This copy must happen after flushStencil() is called. flushStencil() // relies on detecting when the kModifyStencilClip_StateBit state has // changed since the last draw. fHWDrawState.copyStateFlags(*drawState); return true; } void GrGpuGL::notifyVertexBufferBind(const GrGLVertexBuffer* buffer) { if (fHWGeometryState.fVertexBuffer != buffer) { fHWGeometryState.fArrayPtrsDirty = true; fHWGeometryState.fVertexBuffer = buffer; } } void GrGpuGL::notifyVertexBufferDelete(const GrGLVertexBuffer* buffer) { if (fHWGeometryState.fVertexBuffer == buffer) { // deleting bound buffer does implied bind to 0 fHWGeometryState.fVertexBuffer = NULL; fHWGeometryState.fArrayPtrsDirty = true; } } void GrGpuGL::notifyIndexBufferBind(const GrGLIndexBuffer* buffer) { fHWGeometryState.fIndexBuffer = buffer; } void GrGpuGL::notifyIndexBufferDelete(const GrGLIndexBuffer* buffer) { if (fHWGeometryState.fIndexBuffer == buffer) { // deleting bound buffer does implied bind to 0 fHWGeometryState.fIndexBuffer = NULL; } } void GrGpuGL::notifyRenderTargetDelete(GrRenderTarget* renderTarget) { GrAssert(NULL != renderTarget); GrDrawState* drawState = this->drawState(); if (drawState->getRenderTarget() == renderTarget) { drawState->setRenderTarget(NULL); } if (fHWDrawState.getRenderTarget() == renderTarget) { fHWDrawState.setRenderTarget(NULL); } } void GrGpuGL::notifyTextureDelete(GrGLTexture* texture) { for (int s = 0; s < GrDrawState::kNumStages; ++s) { GrDrawState* drawState = this->drawState(); if (drawState->getTexture(s) == texture) { fCurrDrawState.setTexture(s, NULL); } if (fHWDrawState.getTexture(s) == texture) { // deleting bound texture does implied bind to 0 fHWDrawState.setTexture(s, NULL); } } } bool GrGpuGL::configToGLFormats(GrPixelConfig config, bool getSizedInternalFormat, GrGLenum* internalFormat, GrGLenum* externalFormat, GrGLenum* externalType) { GrGLenum dontCare; if (NULL == internalFormat) { internalFormat = &dontCare; } if (NULL == externalFormat) { externalFormat = &dontCare; } if (NULL == externalType) { externalType = &dontCare; } switch (config) { case kRGBA_8888_PM_GrPixelConfig: case kRGBA_8888_UPM_GrPixelConfig: *internalFormat = GR_GL_RGBA; *externalFormat = GR_GL_RGBA; if (getSizedInternalFormat) { *internalFormat = GR_GL_RGBA8; } else { *internalFormat = GR_GL_RGBA; } *externalType = GR_GL_UNSIGNED_BYTE; break; case kBGRA_8888_PM_GrPixelConfig: case kBGRA_8888_UPM_GrPixelConfig: if (!this->glCaps().bgraFormatSupport()) { return false; } if (this->glCaps().bgraIsInternalFormat()) { if (getSizedInternalFormat) { *internalFormat = GR_GL_BGRA8; } else { *internalFormat = GR_GL_BGRA; } } else { if (getSizedInternalFormat) { *internalFormat = GR_GL_RGBA8; } else { *internalFormat = GR_GL_RGBA; } } *externalFormat = GR_GL_BGRA; *externalType = GR_GL_UNSIGNED_BYTE; break; case kRGB_565_GrPixelConfig: *internalFormat = GR_GL_RGB; *externalFormat = GR_GL_RGB; if (getSizedInternalFormat) { if (this->glBinding() == kDesktop_GrGLBinding) { return false; } else { *internalFormat = GR_GL_RGB565; } } else { *internalFormat = GR_GL_RGB; } *externalType = GR_GL_UNSIGNED_SHORT_5_6_5; break; case kRGBA_4444_GrPixelConfig: *internalFormat = GR_GL_RGBA; *externalFormat = GR_GL_RGBA; if (getSizedInternalFormat) { *internalFormat = GR_GL_RGBA4; } else { *internalFormat = GR_GL_RGBA; } *externalType = GR_GL_UNSIGNED_SHORT_4_4_4_4; break; case kIndex_8_GrPixelConfig: if (this->getCaps().f8BitPaletteSupport) { *internalFormat = GR_GL_PALETTE8_RGBA8; // glCompressedTexImage doesn't take external params *externalFormat = GR_GL_PALETTE8_RGBA8; // no sized/unsized internal format distinction here *internalFormat = GR_GL_PALETTE8_RGBA8; // unused with CompressedTexImage *externalType = GR_GL_UNSIGNED_BYTE; } else { return false; } break; case kAlpha_8_GrPixelConfig: *internalFormat = GR_GL_ALPHA; *externalFormat = GR_GL_ALPHA; if (getSizedInternalFormat) { *internalFormat = GR_GL_ALPHA8; } else { *internalFormat = GR_GL_ALPHA; } *externalType = GR_GL_UNSIGNED_BYTE; break; default: return false; } return true; } void GrGpuGL::setTextureUnit(int unit) { GrAssert(unit >= 0 && unit < GrDrawState::kNumStages); if (fActiveTextureUnitIdx != unit) { GL_CALL(ActiveTexture(GR_GL_TEXTURE0 + unit)); fActiveTextureUnitIdx = unit; } } void GrGpuGL::setSpareTextureUnit() { if (fActiveTextureUnitIdx != (GR_GL_TEXTURE0 + SPARE_TEX_UNIT)) { GL_CALL(ActiveTexture(GR_GL_TEXTURE0 + SPARE_TEX_UNIT)); fActiveTextureUnitIdx = SPARE_TEX_UNIT; } } void GrGpuGL::resetDirtyFlags() { Gr_bzero(&fDirtyFlags, sizeof(fDirtyFlags)); } void GrGpuGL::setBuffers(bool indexed, int* extraVertexOffset, int* extraIndexOffset) { GrAssert(NULL != extraVertexOffset); const GeometryPoolState& geoPoolState = this->getGeomPoolState(); GrGLVertexBuffer* vbuf; switch (this->getGeomSrc().fVertexSrc) { case kBuffer_GeometrySrcType: *extraVertexOffset = 0; vbuf = (GrGLVertexBuffer*) this->getGeomSrc().fVertexBuffer; break; case kArray_GeometrySrcType: case kReserved_GeometrySrcType: this->finalizeReservedVertices(); *extraVertexOffset = geoPoolState.fPoolStartVertex; vbuf = (GrGLVertexBuffer*) geoPoolState.fPoolVertexBuffer; break; default: vbuf = NULL; // suppress warning GrCrash("Unknown geometry src type!"); } GrAssert(NULL != vbuf); GrAssert(!vbuf->isLocked()); if (fHWGeometryState.fVertexBuffer != vbuf) { GL_CALL(BindBuffer(GR_GL_ARRAY_BUFFER, vbuf->bufferID())); fHWGeometryState.fArrayPtrsDirty = true; fHWGeometryState.fVertexBuffer = vbuf; } if (indexed) { GrAssert(NULL != extraIndexOffset); GrGLIndexBuffer* ibuf; switch (this->getGeomSrc().fIndexSrc) { case kBuffer_GeometrySrcType: *extraIndexOffset = 0; ibuf = (GrGLIndexBuffer*)this->getGeomSrc().fIndexBuffer; break; case kArray_GeometrySrcType: case kReserved_GeometrySrcType: this->finalizeReservedIndices(); *extraIndexOffset = geoPoolState.fPoolStartIndex; ibuf = (GrGLIndexBuffer*) geoPoolState.fPoolIndexBuffer; break; default: ibuf = NULL; // suppress warning GrCrash("Unknown geometry src type!"); } GrAssert(NULL != ibuf); GrAssert(!ibuf->isLocked()); if (fHWGeometryState.fIndexBuffer != ibuf) { GL_CALL(BindBuffer(GR_GL_ELEMENT_ARRAY_BUFFER, ibuf->bufferID())); fHWGeometryState.fIndexBuffer = ibuf; } } } int GrGpuGL::getMaxEdges() const { // FIXME: This is a pessimistic estimate based on how many other things // want to add uniforms. This should be centralized somewhere. return GR_CT_MIN(this->glCaps().maxFragmentUniformVectors() - 8, GrDrawState::kMaxEdges); }