/* * Copyright 2013 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "gl/builders/GrGLFragmentShaderBuilder.h" #include "GrGLProgramDesc.h" #include "GrBackendProcessorFactory.h" #include "GrProcessor.h" #include "GrGpuGL.h" #include "GrOptDrawState.h" #include "SkChecksum.h" /** * The key for an individual coord transform is made up of a matrix type and a bit that * indicates the source of the input coords. */ enum { kMatrixTypeKeyBits = 1, kMatrixTypeKeyMask = (1 << kMatrixTypeKeyBits) - 1, kPositionCoords_Flag = (1 << kMatrixTypeKeyBits), kTransformKeyBits = kMatrixTypeKeyBits + 1, }; /** * We specialize the vertex code for each of these matrix types. */ enum MatrixType { kNoPersp_MatrixType = 0, kGeneral_MatrixType = 1, }; /** * Do we need to either map r,g,b->a or a->r. configComponentMask indicates which channels are * present in the texture's config. swizzleComponentMask indicates the channels present in the * shader swizzle. */ static bool swizzle_requires_alpha_remapping(const GrGLCaps& caps, uint32_t configComponentMask, uint32_t swizzleComponentMask) { if (caps.textureSwizzleSupport()) { // Any remapping is handled using texture swizzling not shader modifications. return false; } // check if the texture is alpha-only if (kA_GrColorComponentFlag == configComponentMask) { if (caps.textureRedSupport() && (kA_GrColorComponentFlag & swizzleComponentMask)) { // we must map the swizzle 'a's to 'r'. return true; } if (kRGB_GrColorComponentFlags & swizzleComponentMask) { // The 'r', 'g', and/or 'b's must be mapped to 'a' according to our semantics that // alpha-only textures smear alpha across all four channels when read. return true; } } return false; } static uint32_t gen_attrib_key(const GrGeometryProcessor& proc) { uint32_t key = 0; const GrGeometryProcessor::VertexAttribArray& vars = proc.getVertexAttribs(); int numAttributes = vars.count(); SkASSERT(numAttributes <= 2); for (int a = 0; a < numAttributes; ++a) { uint32_t value = 1 << a; key |= value; } return key; } static uint32_t gen_transform_key(const GrFragmentStage& effectStage, bool useExplicitLocalCoords) { uint32_t totalKey = 0; int numTransforms = effectStage.getProcessor()->numTransforms(); for (int t = 0; t < numTransforms; ++t) { uint32_t key = 0; if (effectStage.isPerspectiveCoordTransform(t, useExplicitLocalCoords)) { key |= kGeneral_MatrixType; } else { key |= kNoPersp_MatrixType; } const GrCoordTransform& coordTransform = effectStage.getProcessor()->coordTransform(t); if (kLocal_GrCoordSet != coordTransform.sourceCoords() && useExplicitLocalCoords) { key |= kPositionCoords_Flag; } key <<= kTransformKeyBits * t; SkASSERT(0 == (totalKey & key)); // keys for each transform ought not to overlap totalKey |= key; } return totalKey; } static uint32_t gen_texture_key(const GrProcessor& proc, const GrGLCaps& caps) { uint32_t key = 0; int numTextures = proc.numTextures(); for (int t = 0; t < numTextures; ++t) { const GrTextureAccess& access = proc.textureAccess(t); uint32_t configComponentMask = GrPixelConfigComponentMask(access.getTexture()->config()); if (swizzle_requires_alpha_remapping(caps, configComponentMask, access.swizzleMask())) { key |= 1 << t; } } return key; } /** * A function which emits a meta key into the key builder. This is required because shader code may * be dependent on properties of the effect that the effect itself doesn't use * in its key (e.g. the pixel format of textures used). So we create a meta-key for * every effect using this function. It is also responsible for inserting the effect's class ID * which must be different for every GrProcessor subclass. It can fail if an effect uses too many * textures, transforms, etc, for the space allotted in the meta-key. NOTE, both FPs and GPs share * this function because it is hairy, though FPs do not have attribs, and GPs do not have transforms */ static bool get_meta_key(const GrProcessor& proc, const GrGLCaps& caps, uint32_t transformKey, uint32_t attribKey, GrProcessorKeyBuilder* b, uint16_t* processorKeySize) { const GrBackendProcessorFactory& factory = proc.getFactory(); factory.getGLProcessorKey(proc, caps, b); size_t size = b->size(); if (size > SK_MaxU16) { *processorKeySize = 0; // suppresses a warning. return false; } *processorKeySize = SkToU16(size); uint32_t textureKey = gen_texture_key(proc, caps); uint32_t classID = proc.getFactory().classID(); // Currently we allow 16 bits for each of the above portions of the meta-key. Fail if they // don't fit. static const uint32_t kMetaKeyInvalidMask = ~((uint32_t) SK_MaxU16); if ((textureKey | transformKey | classID) & kMetaKeyInvalidMask) { return false; } uint32_t* key = b->add32n(2); key[0] = (textureKey << 16 | transformKey); key[1] = (classID << 16); return true; } struct GeometryProcessorKeyBuilder { typedef GrGeometryProcessor StagedProcessor; static bool GetProcessorKey(const GrGeometryProcessor& gp, const GrGLCaps& caps, bool, GrProcessorKeyBuilder* b, uint16_t* keySize) { /* 0 because no transforms on a GP */ return get_meta_key(gp, caps, 0, gen_attrib_key(gp), b, keySize); } }; struct FragmentProcessorKeyBuilder { typedef GrFragmentStage StagedProcessor; static bool GetProcessorKey(const GrFragmentStage& fps, const GrGLCaps& caps, bool useLocalCoords, GrProcessorKeyBuilder* b, uint16_t* keySize) { /* 0 because no attribs on a fP */ return get_meta_key(*fps.getProcessor(), caps, gen_transform_key(fps, useLocalCoords), 0, b, keySize); } }; template bool GrGLProgramDesc::BuildStagedProcessorKey(const typename ProcessorKeyBuilder::StagedProcessor& stage, const GrGLCaps& caps, bool requiresLocalCoordAttrib, GrGLProgramDesc* desc, int* offsetAndSizeIndex) { GrProcessorKeyBuilder b(&desc->fKey); uint16_t processorKeySize; uint32_t processorOffset = desc->fKey.count(); if (processorOffset > SK_MaxU16 || !ProcessorKeyBuilder::GetProcessorKey(stage, caps, requiresLocalCoordAttrib, &b, &processorKeySize)){ desc->fKey.reset(); return false; } uint16_t* offsetAndSize = reinterpret_cast(desc->fKey.begin() + kEffectKeyOffsetsAndLengthOffset + *offsetAndSizeIndex * 2 * sizeof(uint16_t)); offsetAndSize[0] = SkToU16(processorOffset); offsetAndSize[1] = processorKeySize; ++(*offsetAndSizeIndex); return true; } bool GrGLProgramDesc::Build(const GrOptDrawState& optState, GrGpu::DrawType drawType, GrGpuGL* gpu, const GrDeviceCoordTexture* dstCopy, GrGLProgramDesc* desc) { bool inputColorIsUsed = optState.inputColorIsUsed(); bool inputCoverageIsUsed = optState.inputCoverageIsUsed(); // The descriptor is used as a cache key. Thus when a field of the // descriptor will not affect program generation (because of the attribute // bindings in use or other descriptor field settings) it should be set // to a canonical value to avoid duplicate programs with different keys. bool requiresLocalCoordAttrib = optState.requiresLocalCoordAttrib(); int numStages = optState.numTotalStages(); GR_STATIC_ASSERT(0 == kEffectKeyOffsetsAndLengthOffset % sizeof(uint32_t)); // Make room for everything up to and including the array of offsets to effect keys. desc->fKey.reset(); desc->fKey.push_back_n(kEffectKeyOffsetsAndLengthOffset + 2 * sizeof(uint16_t) * numStages); int offsetAndSizeIndex = 0; // We can only have one effect which touches the vertex shader if (optState.hasGeometryProcessor()) { if (!BuildStagedProcessorKey(*optState.getGeometryProcessor(), gpu->glCaps(), false, desc, &offsetAndSizeIndex)) { return false; } } for (int s = 0; s < optState.numFragmentStages(); ++s) { if (!BuildStagedProcessorKey(optState.getFragmentStage(s), gpu->glCaps(), requiresLocalCoordAttrib, desc, &offsetAndSizeIndex)) { return false; } } // --------DO NOT MOVE HEADER ABOVE THIS LINE-------------------------------------------------- // Because header is a pointer into the dynamic array, we can't push any new data into the key // below here. KeyHeader* header = desc->header(); // make sure any padding in the header is zeroed. memset(header, 0, kHeaderSize); header->fHasGeometryProcessor = optState.hasGeometryProcessor(); header->fEmitsPointSize = GrGpu::kDrawPoints_DrawType == drawType; if (gpu->caps()->pathRenderingSupport() && GrGpu::IsPathRenderingDrawType(drawType) && gpu->glPathRendering()->texturingMode() == GrGLPathRendering::FixedFunction_TexturingMode) { header->fUseFragShaderOnly = true; SkASSERT(!optState.hasGeometryProcessor()); } else { header->fUseFragShaderOnly = false; } bool defaultToUniformInputs = GrGpu::IsPathRenderingDrawType(drawType) || GR_GL_NO_CONSTANT_ATTRIBUTES; if (!inputColorIsUsed) { header->fColorInput = kAllOnes_ColorInput; } else if (defaultToUniformInputs && !optState.hasColorVertexAttribute()) { header->fColorInput = kUniform_ColorInput; } else { header->fColorInput = kAttribute_ColorInput; SkASSERT(!header->fUseFragShaderOnly); } bool covIsSolidWhite = !optState.hasCoverageVertexAttribute() && 0xffffffff == optState.getCoverageColor(); if (covIsSolidWhite || !inputCoverageIsUsed) { header->fCoverageInput = kAllOnes_ColorInput; } else if (defaultToUniformInputs && !optState.hasCoverageVertexAttribute()) { header->fCoverageInput = kUniform_ColorInput; } else { header->fCoverageInput = kAttribute_ColorInput; SkASSERT(!header->fUseFragShaderOnly); } if (optState.readsDst()) { SkASSERT(dstCopy || gpu->caps()->dstReadInShaderSupport()); const GrTexture* dstCopyTexture = NULL; if (dstCopy) { dstCopyTexture = dstCopy->texture(); } header->fDstReadKey = GrGLFragmentShaderBuilder::KeyForDstRead(dstCopyTexture, gpu->glCaps()); SkASSERT(0 != header->fDstReadKey); } else { header->fDstReadKey = 0; } if (optState.readsFragPosition()) { header->fFragPosKey = GrGLFragmentShaderBuilder::KeyForFragmentPosition(optState.getRenderTarget(), gpu->glCaps()); } else { header->fFragPosKey = 0; } // Record attribute indices header->fPositionAttributeIndex = optState.positionAttributeIndex(); header->fLocalCoordAttributeIndex = optState.localCoordAttributeIndex(); // For constant color and coverage we need an attribute with an index beyond those already set int availableAttributeIndex = optState.getVertexAttribCount(); if (optState.hasColorVertexAttribute()) { header->fColorAttributeIndex = optState.colorVertexAttributeIndex(); } else if (GrGLProgramDesc::kAttribute_ColorInput == header->fColorInput) { SkASSERT(availableAttributeIndex < GrDrawState::kMaxVertexAttribCnt); header->fColorAttributeIndex = availableAttributeIndex; availableAttributeIndex++; } else { header->fColorAttributeIndex = -1; } if (optState.hasCoverageVertexAttribute()) { header->fCoverageAttributeIndex = optState.coverageVertexAttributeIndex(); } else if (GrGLProgramDesc::kAttribute_ColorInput == header->fCoverageInput) { SkASSERT(availableAttributeIndex < GrDrawState::kMaxVertexAttribCnt); header->fCoverageAttributeIndex = availableAttributeIndex; } else { header->fCoverageAttributeIndex = -1; } header->fPrimaryOutputType = optState.getPrimaryOutputType(); header->fSecondaryOutputType = optState.getSecondaryOutputType(); header->fColorEffectCnt = optState.numColorStages(); header->fCoverageEffectCnt = optState.numCoverageStages(); desc->finalize(); return true; } void GrGLProgramDesc::finalize() { int keyLength = fKey.count(); SkASSERT(0 == (keyLength % 4)); *this->atOffset() = SkToU32(keyLength); uint32_t* checksum = this->atOffset(); *checksum = 0; *checksum = SkChecksum::Compute(reinterpret_cast(fKey.begin()), keyLength); } GrGLProgramDesc& GrGLProgramDesc::operator= (const GrGLProgramDesc& other) { size_t keyLength = other.keyLength(); fKey.reset(keyLength); memcpy(fKey.begin(), other.fKey.begin(), keyLength); return *this; }