/* * Copyright 2011 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "GrGLProgram.h" #include "GrAllocator.h" #include "GrEffect.h" #include "GrGLEffect.h" #include "GrGLShaderVar.h" #include "GrBackendEffectFactory.h" #include "SkTrace.h" #include "SkXfermode.h" SK_DEFINE_INST_COUNT(GrGLProgram) #define GL_CALL(X) GR_GL_CALL(fContextInfo.interface(), X) #define GL_CALL_RET(R, X) GR_GL_CALL_RET(fContextInfo.interface(), R, X) #define PRINT_SHADERS 0 #define COL_ATTR_NAME "aColor" #define COV_ATTR_NAME "aCoverage" #define EDGE_ATTR_NAME "aEdge" namespace { inline void tex_attr_name(int coordIdx, SkString* s) { *s = "aTexCoord"; s->appendS32(coordIdx); } inline const char* float_vector_type_str(int count) { return GrGLShaderVar::TypeString(GrSLFloatVectorType(count)); } inline const char* vector_all_coords(int count) { static const char* ALL[] = {"ERROR", "", ".xy", ".xyz", ".xyzw"}; GrAssert(count >= 1 && count < (int)GR_ARRAY_COUNT(ALL)); return ALL[count]; } inline const char* declared_color_output_name() { return "fsColorOut"; } inline const char* dual_source_output_name() { return "dualSourceOut"; } } GrGLProgram* GrGLProgram::Create(const GrGLContextInfo& gl, const Desc& desc, const GrEffectStage* stages[]) { GrGLProgram* program = SkNEW_ARGS(GrGLProgram, (gl, desc, stages)); if (!program->succeeded()) { delete program; program = NULL; } return program; } GrGLProgram::GrGLProgram(const GrGLContextInfo& gl, const Desc& desc, const GrEffectStage* stages[]) : fContextInfo(gl) , fUniformManager(gl) { fDesc = desc; fVShaderID = 0; fGShaderID = 0; fFShaderID = 0; fProgramID = 0; fViewMatrix = SkMatrix::InvalidMatrix(); fViewportSize.set(-1, -1); fColor = GrColor_ILLEGAL; fColorFilterColor = GrColor_ILLEGAL; fRTHeight = -1; for (int s = 0; s < GrDrawState::kNumStages; ++s) { fEffects[s] = NULL; } this->genProgram(stages); } GrGLProgram::~GrGLProgram() { if (fVShaderID) { GL_CALL(DeleteShader(fVShaderID)); } if (fGShaderID) { GL_CALL(DeleteShader(fGShaderID)); } if (fFShaderID) { GL_CALL(DeleteShader(fFShaderID)); } if (fProgramID) { GL_CALL(DeleteProgram(fProgramID)); } for (int i = 0; i < GrDrawState::kNumStages; ++i) { delete fEffects[i]; } } void GrGLProgram::abandon() { fVShaderID = 0; fGShaderID = 0; fFShaderID = 0; fProgramID = 0; } void GrGLProgram::overrideBlend(GrBlendCoeff* srcCoeff, GrBlendCoeff* dstCoeff) const { switch (fDesc.fDualSrcOutput) { case Desc::kNone_DualSrcOutput: break; // the prog will write a coverage value to the secondary // output and the dst is blended by one minus that value. case Desc::kCoverage_DualSrcOutput: case Desc::kCoverageISA_DualSrcOutput: case Desc::kCoverageISC_DualSrcOutput: *dstCoeff = (GrBlendCoeff)GrGpu::kIS2C_GrBlendCoeff; break; default: GrCrash("Unexpected dual source blend output"); break; } } // given two blend coeffecients determine whether the src // and/or dst computation can be omitted. static inline void needBlendInputs(SkXfermode::Coeff srcCoeff, SkXfermode::Coeff dstCoeff, bool* needSrcValue, bool* needDstValue) { if (SkXfermode::kZero_Coeff == srcCoeff) { switch (dstCoeff) { // these all read the src case SkXfermode::kSC_Coeff: case SkXfermode::kISC_Coeff: case SkXfermode::kSA_Coeff: case SkXfermode::kISA_Coeff: *needSrcValue = true; break; default: *needSrcValue = false; break; } } else { *needSrcValue = true; } if (SkXfermode::kZero_Coeff == dstCoeff) { switch (srcCoeff) { // these all read the dst case SkXfermode::kDC_Coeff: case SkXfermode::kIDC_Coeff: case SkXfermode::kDA_Coeff: case SkXfermode::kIDA_Coeff: *needDstValue = true; break; default: *needDstValue = false; break; } } else { *needDstValue = true; } } /** * Create a blend_coeff * value string to be used in shader code. Sets empty * string if result is trivially zero. */ static void blendTermString(SkString* str, SkXfermode::Coeff coeff, const char* src, const char* dst, const char* value) { switch (coeff) { case SkXfermode::kZero_Coeff: /** 0 */ *str = ""; break; case SkXfermode::kOne_Coeff: /** 1 */ *str = value; break; case SkXfermode::kSC_Coeff: str->printf("(%s * %s)", src, value); break; case SkXfermode::kISC_Coeff: str->printf("((%s - %s) * %s)", GrGLSLOnesVecf(4), src, value); break; case SkXfermode::kDC_Coeff: str->printf("(%s * %s)", dst, value); break; case SkXfermode::kIDC_Coeff: str->printf("((%s - %s) * %s)", GrGLSLOnesVecf(4), dst, value); break; case SkXfermode::kSA_Coeff: /** src alpha */ str->printf("(%s.a * %s)", src, value); break; case SkXfermode::kISA_Coeff: /** inverse src alpha (i.e. 1 - sa) */ str->printf("((1.0 - %s.a) * %s)", src, value); break; case SkXfermode::kDA_Coeff: /** dst alpha */ str->printf("(%s.a * %s)", dst, value); break; case SkXfermode::kIDA_Coeff: /** inverse dst alpha (i.e. 1 - da) */ str->printf("((1.0 - %s.a) * %s)", dst, value); break; default: GrCrash("Unexpected xfer coeff."); break; } } /** * Adds a line to the fragment shader code which modifies the color by * the specified color filter. */ static void addColorFilter(SkString* fsCode, const char * outputVar, SkXfermode::Coeff uniformCoeff, SkXfermode::Coeff colorCoeff, const char* filterColor, const char* inColor) { SkString colorStr, constStr; blendTermString(&colorStr, colorCoeff, filterColor, inColor, inColor); blendTermString(&constStr, uniformCoeff, filterColor, inColor, filterColor); fsCode->appendf("\t%s = ", outputVar); GrGLSLAdd4f(fsCode, colorStr.c_str(), constStr.c_str()); fsCode->append(";\n"); } bool GrGLProgram::genEdgeCoverage(SkString* coverageVar, GrGLShaderBuilder* builder) const { if (fDesc.fVertexLayout & GrDrawTarget::kEdge_VertexLayoutBit) { const char *vsName, *fsName; builder->addVarying(kVec4f_GrSLType, "Edge", &vsName, &fsName); builder->fVSAttrs.push_back().set(kVec4f_GrSLType, GrGLShaderVar::kAttribute_TypeModifier, EDGE_ATTR_NAME); builder->fVSCode.appendf("\t%s = " EDGE_ATTR_NAME ";\n", vsName); switch (fDesc.fVertexEdgeType) { case GrDrawState::kHairLine_EdgeType: builder->fFSCode.appendf("\tfloat edgeAlpha = abs(dot(vec3(%s.xy,1), %s.xyz));\n", builder->fragmentPosition(), fsName); builder->fFSCode.append("\tedgeAlpha = max(1.0 - edgeAlpha, 0.0);\n"); break; case GrDrawState::kQuad_EdgeType: builder->fFSCode.append("\tfloat edgeAlpha;\n"); // keep the derivative instructions outside the conditional builder->fFSCode.appendf("\tvec2 duvdx = dFdx(%s.xy);\n", fsName); builder->fFSCode.appendf("\tvec2 duvdy = dFdy(%s.xy);\n", fsName); builder->fFSCode.appendf("\tif (%s.z > 0.0 && %s.w > 0.0) {\n", fsName, fsName); // today we know z and w are in device space. We could use derivatives builder->fFSCode.appendf("\t\tedgeAlpha = min(min(%s.z, %s.w) + 0.5, 1.0);\n", fsName, fsName); builder->fFSCode.append ("\t} else {\n"); builder->fFSCode.appendf("\t\tvec2 gF = vec2(2.0*%s.x*duvdx.x - duvdx.y,\n" "\t\t 2.0*%s.x*duvdy.x - duvdy.y);\n", fsName, fsName); builder->fFSCode.appendf("\t\tedgeAlpha = (%s.x*%s.x - %s.y);\n", fsName, fsName, fsName); builder->fFSCode.append("\t\tedgeAlpha = clamp(0.5 - edgeAlpha / length(gF), 0.0, 1.0);\n" "\t}\n"); if (kES2_GrGLBinding == fContextInfo.binding()) { builder->fHeader.printf("#extension GL_OES_standard_derivatives: enable\n"); } break; case GrDrawState::kHairQuad_EdgeType: builder->fFSCode.appendf("\tvec2 duvdx = dFdx(%s.xy);\n", fsName); builder->fFSCode.appendf("\tvec2 duvdy = dFdy(%s.xy);\n", fsName); builder->fFSCode.appendf("\tvec2 gF = vec2(2.0*%s.x*duvdx.x - duvdx.y,\n" "\t 2.0*%s.x*duvdy.x - duvdy.y);\n", fsName, fsName); builder->fFSCode.appendf("\tfloat edgeAlpha = (%s.x*%s.x - %s.y);\n", fsName, fsName, fsName); builder->fFSCode.append("\tedgeAlpha = sqrt(edgeAlpha*edgeAlpha / dot(gF, gF));\n"); builder->fFSCode.append("\tedgeAlpha = max(1.0 - edgeAlpha, 0.0);\n"); if (kES2_GrGLBinding == fContextInfo.binding()) { builder->fHeader.printf("#extension GL_OES_standard_derivatives: enable\n"); } break; case GrDrawState::kCircle_EdgeType: builder->fFSCode.append("\tfloat edgeAlpha;\n"); builder->fFSCode.appendf("\tfloat d = distance(%s.xy, %s.xy);\n", builder->fragmentPosition(), fsName); builder->fFSCode.appendf("\tfloat outerAlpha = smoothstep(d - 0.5, d + 0.5, %s.z);\n", fsName); builder->fFSCode.appendf("\tfloat innerAlpha = %s.w == 0.0 ? 1.0 : smoothstep(%s.w - 0.5, %s.w + 0.5, d);\n", fsName, fsName, fsName); builder->fFSCode.append("\tedgeAlpha = outerAlpha * innerAlpha;\n"); break; default: GrCrash("Unknown Edge Type!"); break; } *coverageVar = "edgeAlpha"; return true; } else { coverageVar->reset(); return false; } } void GrGLProgram::genInputColor(GrGLShaderBuilder* builder, SkString* inColor) { switch (fDesc.fColorInput) { case GrGLProgram::Desc::kAttribute_ColorInput: { builder->fVSAttrs.push_back().set(kVec4f_GrSLType, GrGLShaderVar::kAttribute_TypeModifier, COL_ATTR_NAME); const char *vsName, *fsName; builder->addVarying(kVec4f_GrSLType, "Color", &vsName, &fsName); builder->fVSCode.appendf("\t%s = " COL_ATTR_NAME ";\n", vsName); *inColor = fsName; } break; case GrGLProgram::Desc::kUniform_ColorInput: { const char* name; fUniforms.fColorUni = builder->addUniform(GrGLShaderBuilder::kFragment_ShaderType, kVec4f_GrSLType, "Color", &name); *inColor = name; break; } case GrGLProgram::Desc::kTransBlack_ColorInput: GrAssert(!"needComputedColor should be false."); break; case GrGLProgram::Desc::kSolidWhite_ColorInput: break; default: GrCrash("Unknown color type."); break; } } void GrGLProgram::genUniformCoverage(GrGLShaderBuilder* builder, SkString* inOutCoverage) { const char* covUniName; fUniforms.fCoverageUni = builder->addUniform(GrGLShaderBuilder::kFragment_ShaderType, kVec4f_GrSLType, "Coverage", &covUniName); if (inOutCoverage->size()) { builder->fFSCode.appendf("\tvec4 uniCoverage = %s * %s;\n", covUniName, inOutCoverage->c_str()); *inOutCoverage = "uniCoverage"; } else { *inOutCoverage = covUniName; } } namespace { void gen_attribute_coverage(GrGLShaderBuilder* segments, SkString* inOutCoverage) { segments->fVSAttrs.push_back().set(kVec4f_GrSLType, GrGLShaderVar::kAttribute_TypeModifier, COV_ATTR_NAME); const char *vsName, *fsName; segments->addVarying(kVec4f_GrSLType, "Coverage", &vsName, &fsName); segments->fVSCode.appendf("\t%s = " COV_ATTR_NAME ";\n", vsName); if (inOutCoverage->size()) { segments->fFSCode.appendf("\tvec4 attrCoverage = %s * %s;\n", fsName, inOutCoverage->c_str()); *inOutCoverage = "attrCoverage"; } else { *inOutCoverage = fsName; } } } void GrGLProgram::genGeometryShader(GrGLShaderBuilder* segments) const { #if GR_GL_EXPERIMENTAL_GS if (fDesc.fExperimentalGS) { GrAssert(fContextInfo.glslGeneration() >= k150_GrGLSLGeneration); segments->fGSHeader.append("layout(triangles) in;\n" "layout(triangle_strip, max_vertices = 6) out;\n"); segments->fGSCode.append("\tfor (int i = 0; i < 3; ++i) {\n" "\t\tgl_Position = gl_in[i].gl_Position;\n"); if (fDesc.fEmitsPointSize) { segments->fGSCode.append("\t\tgl_PointSize = 1.0;\n"); } GrAssert(segments->fGSInputs.count() == segments->fGSOutputs.count()); int count = segments->fGSInputs.count(); for (int i = 0; i < count; ++i) { segments->fGSCode.appendf("\t\t%s = %s[i];\n", segments->fGSOutputs[i].getName().c_str(), segments->fGSInputs[i].getName().c_str()); } segments->fGSCode.append("\t\tEmitVertex();\n" "\t}\n" "\tEndPrimitive();\n"); } #endif } const char* GrGLProgram::adjustInColor(const SkString& inColor) const { if (inColor.size()) { return inColor.c_str(); } else { if (Desc::kSolidWhite_ColorInput == fDesc.fColorInput) { return GrGLSLOnesVecf(4); } else { return GrGLSLZerosVecf(4); } } } namespace { // prints a shader using params similar to glShaderSource void print_shader(GrGLint stringCnt, const GrGLchar** strings, GrGLint* stringLengths) { for (int i = 0; i < stringCnt; ++i) { if (NULL == stringLengths || stringLengths[i] < 0) { GrPrintf(strings[i]); } else { GrPrintf("%.*s", stringLengths[i], strings[i]); } } } // Compiles a GL shader, returns shader ID or 0 if failed params have same meaning as glShaderSource GrGLuint compile_shader(const GrGLContextInfo& gl, GrGLenum type, int stringCnt, const char** strings, int* stringLengths) { SK_TRACE_EVENT1("GrGLProgram::CompileShader", "stringCount", SkStringPrintf("%i", stringCnt).c_str()); GrGLuint shader; GR_GL_CALL_RET(gl.interface(), shader, CreateShader(type)); if (0 == shader) { return 0; } const GrGLInterface* gli = gl.interface(); GrGLint compiled = GR_GL_INIT_ZERO; GR_GL_CALL(gli, ShaderSource(shader, stringCnt, strings, stringLengths)); GR_GL_CALL(gli, CompileShader(shader)); GR_GL_CALL(gli, GetShaderiv(shader, GR_GL_COMPILE_STATUS, &compiled)); if (!compiled) { GrGLint infoLen = GR_GL_INIT_ZERO; GR_GL_CALL(gli, GetShaderiv(shader, GR_GL_INFO_LOG_LENGTH, &infoLen)); SkAutoMalloc log(sizeof(char)*(infoLen+1)); // outside if for debugger if (infoLen > 0) { // retrieve length even though we don't need it to workaround bug in chrome cmd buffer // param validation. GrGLsizei length = GR_GL_INIT_ZERO; GR_GL_CALL(gli, GetShaderInfoLog(shader, infoLen+1, &length, (char*)log.get())); print_shader(stringCnt, strings, stringLengths); GrPrintf("\n%s", log.get()); } GrAssert(!"Shader compilation failed!"); GR_GL_CALL(gli, DeleteShader(shader)); return 0; } return shader; } // helper version of above for when shader is already flattened into a single SkString GrGLuint compile_shader(const GrGLContextInfo& gl, GrGLenum type, const SkString& shader) { const GrGLchar* str = shader.c_str(); int length = shader.size(); return compile_shader(gl, type, 1, &str, &length); } } // compiles all the shaders from builder and stores the shader IDs bool GrGLProgram::compileShaders(const GrGLShaderBuilder& builder) { SkString shader; builder.getShader(GrGLShaderBuilder::kVertex_ShaderType, &shader); #if PRINT_SHADERS GrPrintf(shader.c_str()); GrPrintf("\n"); #endif if (!(fVShaderID = compile_shader(fContextInfo, GR_GL_VERTEX_SHADER, shader))) { return false; } if (builder.fUsesGS) { builder.getShader(GrGLShaderBuilder::kGeometry_ShaderType, &shader); #if PRINT_SHADERS GrPrintf(shader.c_str()); GrPrintf("\n"); #endif if (!(fGShaderID = compile_shader(fContextInfo, GR_GL_GEOMETRY_SHADER, shader))) { return false; } } else { fGShaderID = 0; } builder.getShader(GrGLShaderBuilder::kFragment_ShaderType, &shader); #if PRINT_SHADERS GrPrintf(shader.c_str()); GrPrintf("\n"); #endif if (!(fFShaderID = compile_shader(fContextInfo, GR_GL_FRAGMENT_SHADER, shader))) { return false; } return true; } bool GrGLProgram::genProgram(const GrEffectStage* stages[]) { GrAssert(0 == fProgramID); GrGLShaderBuilder builder(fContextInfo, fUniformManager); const uint32_t& layout = fDesc.fVertexLayout; #if GR_GL_EXPERIMENTAL_GS builder.fUsesGS = fDesc.fExperimentalGS; #endif SkXfermode::Coeff colorCoeff, uniformCoeff; // The rest of transfer mode color filters have not been implemented if (fDesc.fColorFilterXfermode < SkXfermode::kCoeffModesCnt) { GR_DEBUGCODE(bool success =) SkXfermode::ModeAsCoeff(static_cast (fDesc.fColorFilterXfermode), &uniformCoeff, &colorCoeff); GR_DEBUGASSERT(success); } else { colorCoeff = SkXfermode::kOne_Coeff; uniformCoeff = SkXfermode::kZero_Coeff; } // no need to do the color filter if coverage is 0. The output color is scaled by the coverage. // All the dual source outputs are scaled by the coverage as well. if (Desc::kTransBlack_ColorInput == fDesc.fCoverageInput) { colorCoeff = SkXfermode::kZero_Coeff; uniformCoeff = SkXfermode::kZero_Coeff; } // If we know the final color is going to be all zeros then we can // simplify the color filter coefficients. needComputedColor will then // come out false below. if (Desc::kTransBlack_ColorInput == fDesc.fColorInput) { colorCoeff = SkXfermode::kZero_Coeff; if (SkXfermode::kDC_Coeff == uniformCoeff || SkXfermode::kDA_Coeff == uniformCoeff) { uniformCoeff = SkXfermode::kZero_Coeff; } else if (SkXfermode::kIDC_Coeff == uniformCoeff || SkXfermode::kIDA_Coeff == uniformCoeff) { uniformCoeff = SkXfermode::kOne_Coeff; } } bool needColorFilterUniform; bool needComputedColor; needBlendInputs(uniformCoeff, colorCoeff, &needColorFilterUniform, &needComputedColor); // the dual source output has no canonical var name, have to // declare an output, which is incompatible with gl_FragColor/gl_FragData. bool dualSourceOutputWritten = false; builder.fHeader.append(GrGetGLSLVersionDecl(fContextInfo.binding(), fContextInfo.glslGeneration())); GrGLShaderVar colorOutput; bool isColorDeclared = GrGLSLSetupFSColorOuput(fContextInfo.glslGeneration(), declared_color_output_name(), &colorOutput); if (isColorDeclared) { builder.fFSOutputs.push_back(colorOutput); } const char* viewMName; fUniforms.fViewMatrixUni = builder.addUniform(GrGLShaderBuilder::kVertex_ShaderType, kMat33f_GrSLType, "ViewM", &viewMName); builder.fVSCode.appendf("\tvec3 pos3 = %s * vec3(%s, 1);\n" "\tgl_Position = vec4(pos3.xy, 0, pos3.z);\n", viewMName, builder.positionAttribute().getName().c_str()); // incoming color to current stage being processed. SkString inColor; if (needComputedColor) { this->genInputColor(&builder, &inColor); } // we output point size in the GS if present if (fDesc.fEmitsPointSize && !builder.fUsesGS){ builder.fVSCode.append("\tgl_PointSize = 1.0;\n"); } // add texture coordinates that are used to the list of vertex attr decls SkString texCoordAttrs[GrDrawState::kMaxTexCoords]; for (int t = 0; t < GrDrawState::kMaxTexCoords; ++t) { if (GrDrawTarget::VertexUsesTexCoordIdx(t, layout)) { tex_attr_name(t, texCoordAttrs + t); builder.fVSAttrs.push_back().set(kVec2f_GrSLType, GrGLShaderVar::kAttribute_TypeModifier, texCoordAttrs[t].c_str()); } } /////////////////////////////////////////////////////////////////////////// // compute the final color // if we have color stages string them together, feeding the output color // of each to the next and generating code for each stage. if (needComputedColor) { SkString outColor; for (int s = 0; s < fDesc.fFirstCoverageStage; ++s) { if (GrGLEffect::kNoEffectKey != fDesc.fEffectKeys[s]) { // create var to hold stage result outColor = "color"; outColor.appendS32(s); builder.fFSCode.appendf("\tvec4 %s;\n", outColor.c_str()); const char* inCoords; // figure out what our input coords are int tcIdx = GrDrawTarget::VertexTexCoordsForStage(s, layout); if (tcIdx < 0) { inCoords = builder.positionAttribute().c_str(); } else { // must have input tex coordinates if stage is enabled. GrAssert(texCoordAttrs[tcIdx].size()); inCoords = texCoordAttrs[tcIdx].c_str(); } builder.setCurrentStage(s); fEffects[s] = GenStageCode(*stages[s], fDesc.fEffectKeys[s], &fUniforms.fStages[s], inColor.size() ? inColor.c_str() : NULL, outColor.c_str(), inCoords, &builder); builder.setNonStage(); inColor = outColor; } } } // if have all ones or zeros for the "dst" input to the color filter then we // may be able to make additional optimizations. if (needColorFilterUniform && needComputedColor && !inColor.size()) { GrAssert(Desc::kSolidWhite_ColorInput == fDesc.fColorInput); bool uniformCoeffIsZero = SkXfermode::kIDC_Coeff == uniformCoeff || SkXfermode::kIDA_Coeff == uniformCoeff; if (uniformCoeffIsZero) { uniformCoeff = SkXfermode::kZero_Coeff; bool bogus; needBlendInputs(SkXfermode::kZero_Coeff, colorCoeff, &needColorFilterUniform, &bogus); } } const char* colorFilterColorUniName = NULL; if (needColorFilterUniform) { fUniforms.fColorFilterUni = builder.addUniform(GrGLShaderBuilder::kFragment_ShaderType, kVec4f_GrSLType, "FilterColor", &colorFilterColorUniName); } bool wroteFragColorZero = false; if (SkXfermode::kZero_Coeff == uniformCoeff && SkXfermode::kZero_Coeff == colorCoeff) { builder.fFSCode.appendf("\t%s = %s;\n", colorOutput.getName().c_str(), GrGLSLZerosVecf(4)); wroteFragColorZero = true; } else if (SkXfermode::kDst_Mode != fDesc.fColorFilterXfermode) { builder.fFSCode.append("\tvec4 filteredColor;\n"); const char* color = adjustInColor(inColor); addColorFilter(&builder.fFSCode, "filteredColor", uniformCoeff, colorCoeff, colorFilterColorUniName, color); inColor = "filteredColor"; } /////////////////////////////////////////////////////////////////////////// // compute the partial coverage (coverage stages and edge aa) SkString inCoverage; bool coverageIsZero = Desc::kTransBlack_ColorInput == fDesc.fCoverageInput; // we don't need to compute coverage at all if we know the final shader // output will be zero and we don't have a dual src blend output. if (!wroteFragColorZero || Desc::kNone_DualSrcOutput != fDesc.fDualSrcOutput) { if (!coverageIsZero) { bool inCoverageIsScalar = this->genEdgeCoverage(&inCoverage, &builder); switch (fDesc.fCoverageInput) { case Desc::kSolidWhite_ColorInput: // empty string implies solid white break; case Desc::kAttribute_ColorInput: gen_attribute_coverage(&builder, &inCoverage); inCoverageIsScalar = false; break; case Desc::kUniform_ColorInput: this->genUniformCoverage(&builder, &inCoverage); inCoverageIsScalar = false; break; default: GrCrash("Unexpected input coverage."); } SkString outCoverage; const int& startStage = fDesc.fFirstCoverageStage; for (int s = startStage; s < GrDrawState::kNumStages; ++s) { if (fDesc.fEffectKeys[s]) { // create var to hold stage output outCoverage = "coverage"; outCoverage.appendS32(s); builder.fFSCode.appendf("\tvec4 %s;\n", outCoverage.c_str()); const char* inCoords; // figure out what our input coords are int tcIdx = GrDrawTarget::VertexTexCoordsForStage(s, layout); if (tcIdx < 0) { inCoords = builder.positionAttribute().c_str(); } else { // must have input tex coordinates if stage is // enabled. GrAssert(texCoordAttrs[tcIdx].size()); inCoords = texCoordAttrs[tcIdx].c_str(); } // stages don't know how to deal with a scalar input. (Maybe they should. We // could pass a GrGLShaderVar) if (inCoverageIsScalar) { builder.fFSCode.appendf("\tvec4 %s4 = vec4(%s);\n", inCoverage.c_str(), inCoverage.c_str()); inCoverage.append("4"); } builder.setCurrentStage(s); fEffects[s] = GenStageCode(*stages[s], fDesc.fEffectKeys[s], &fUniforms.fStages[s], inCoverage.size() ? inCoverage.c_str() : NULL, outCoverage.c_str(), inCoords, &builder); builder.setNonStage(); inCoverage = outCoverage; } } } if (Desc::kNone_DualSrcOutput != fDesc.fDualSrcOutput) { builder.fFSOutputs.push_back().set(kVec4f_GrSLType, GrGLShaderVar::kOut_TypeModifier, dual_source_output_name()); bool outputIsZero = coverageIsZero; SkString coeff; if (!outputIsZero && Desc::kCoverage_DualSrcOutput != fDesc.fDualSrcOutput && !wroteFragColorZero) { if (!inColor.size()) { outputIsZero = true; } else { if (Desc::kCoverageISA_DualSrcOutput == fDesc.fDualSrcOutput) { coeff.printf("(1 - %s.a)", inColor.c_str()); } else { coeff.printf("(vec4(1,1,1,1) - %s)", inColor.c_str()); } } } if (outputIsZero) { builder.fFSCode.appendf("\t%s = %s;\n", dual_source_output_name(), GrGLSLZerosVecf(4)); } else { builder.fFSCode.appendf("\t%s =", dual_source_output_name()); GrGLSLModulate4f(&builder.fFSCode, coeff.c_str(), inCoverage.c_str()); builder.fFSCode.append(";\n"); } dualSourceOutputWritten = true; } } /////////////////////////////////////////////////////////////////////////// // combine color and coverage as frag color if (!wroteFragColorZero) { if (coverageIsZero) { builder.fFSCode.appendf("\t%s = %s;\n", colorOutput.getName().c_str(), GrGLSLZerosVecf(4)); } else { builder.fFSCode.appendf("\t%s = ", colorOutput.getName().c_str()); GrGLSLModulate4f(&builder.fFSCode, inColor.c_str(), inCoverage.c_str()); builder.fFSCode.append(";\n"); } } /////////////////////////////////////////////////////////////////////////// // insert GS #if GR_DEBUG this->genGeometryShader(&builder); #endif /////////////////////////////////////////////////////////////////////////// // compile and setup attribs and unis if (!this->compileShaders(builder)) { return false; } if (!this->bindOutputsAttribsAndLinkProgram(builder, texCoordAttrs, isColorDeclared, dualSourceOutputWritten)) { return false; } builder.finished(fProgramID); this->initSamplerUniforms(); fUniforms.fRTHeight = builder.getRTHeightUniform(); return true; } bool GrGLProgram::bindOutputsAttribsAndLinkProgram(const GrGLShaderBuilder& builder, SkString texCoordAttrNames[], bool bindColorOut, bool bindDualSrcOut) { GL_CALL_RET(fProgramID, CreateProgram()); if (!fProgramID) { return false; } GL_CALL(AttachShader(fProgramID, fVShaderID)); if (fGShaderID) { GL_CALL(AttachShader(fProgramID, fGShaderID)); } GL_CALL(AttachShader(fProgramID, fFShaderID)); if (bindColorOut) { GL_CALL(BindFragDataLocation(fProgramID, 0, declared_color_output_name())); } if (bindDualSrcOut) { GL_CALL(BindFragDataLocationIndexed(fProgramID, 0, 1, dual_source_output_name())); } // Bind the attrib locations to same values for all shaders GL_CALL(BindAttribLocation(fProgramID, PositionAttributeIdx(), builder.positionAttribute().c_str())); for (int t = 0; t < GrDrawState::kMaxTexCoords; ++t) { if (texCoordAttrNames[t].size()) { GL_CALL(BindAttribLocation(fProgramID, TexCoordAttributeIdx(t), texCoordAttrNames[t].c_str())); } } GL_CALL(BindAttribLocation(fProgramID, ColorAttributeIdx(), COL_ATTR_NAME)); GL_CALL(BindAttribLocation(fProgramID, CoverageAttributeIdx(), COV_ATTR_NAME)); GL_CALL(BindAttribLocation(fProgramID, EdgeAttributeIdx(), EDGE_ATTR_NAME)); GL_CALL(LinkProgram(fProgramID)); GrGLint linked = GR_GL_INIT_ZERO; GL_CALL(GetProgramiv(fProgramID, GR_GL_LINK_STATUS, &linked)); if (!linked) { GrGLint infoLen = GR_GL_INIT_ZERO; GL_CALL(GetProgramiv(fProgramID, GR_GL_INFO_LOG_LENGTH, &infoLen)); SkAutoMalloc log(sizeof(char)*(infoLen+1)); // outside if for debugger if (infoLen > 0) { // retrieve length even though we don't need it to workaround // bug in chrome cmd buffer param validation. GrGLsizei length = GR_GL_INIT_ZERO; GL_CALL(GetProgramInfoLog(fProgramID, infoLen+1, &length, (char*)log.get())); GrPrintf((char*)log.get()); } GrAssert(!"Error linking program"); GL_CALL(DeleteProgram(fProgramID)); fProgramID = 0; return false; } return true; } void GrGLProgram::initSamplerUniforms() { GL_CALL(UseProgram(fProgramID)); for (int s = 0; s < GrDrawState::kNumStages; ++s) { int count = fUniforms.fStages[s].fSamplerUniforms.count(); // FIXME: We're still always reserving one texture per stage. After GrTextureParams are // expressed by the effect rather than the GrEffectStage we can move texture binding // into GrGLProgram and it should be easier to fix this. GrAssert(count <= 1); for (int t = 0; t < count; ++t) { UniformHandle uh = fUniforms.fStages[s].fSamplerUniforms[t]; if (GrGLUniformManager::kInvalidUniformHandle != uh) { fUniformManager.setSampler(uh, s); } } } } /////////////////////////////////////////////////////////////////////////////// // Stage code generation // TODO: Move this function to GrGLShaderBuilder GrGLEffect* GrGLProgram::GenStageCode(const GrEffectStage& stage, GrGLEffect::EffectKey key, StageUniforms* uniforms, const char* fsInColor, // NULL means no incoming color const char* fsOutColor, const char* vsInCoord, GrGLShaderBuilder* builder) { const GrEffect* effect = stage.getEffect(); GrGLEffect* glEffect = effect->getFactory().createGLInstance(*effect); // setup texture samplers for GL effect int numTextures = effect->numTextures(); SkSTArray<8, GrGLShaderBuilder::TextureSampler> textureSamplers; textureSamplers.push_back_n(numTextures); for (int i = 0; i < numTextures; ++i) { textureSamplers[i].init(builder, &effect->textureAccess(i)); uniforms->fSamplerUniforms.push_back(textureSamplers[i].fSamplerUniform); } // Enclose custom code in a block to avoid namespace conflicts builder->fVSCode.appendf("\t{ // %s\n", glEffect->name()); builder->fFSCode.appendf("\t{ // %s \n", glEffect->name()); glEffect->emitCode(builder, stage, key, vsInCoord, fsOutColor, fsInColor, textureSamplers); builder->fVSCode.appendf("\t}\n"); builder->fFSCode.appendf("\t}\n"); return glEffect; } void GrGLProgram::setData(const GrDrawState& drawState) { int rtHeight = drawState.getRenderTarget()->height(); if (GrGLUniformManager::kInvalidUniformHandle != fUniforms.fRTHeight && fRTHeight != rtHeight) { fUniformManager.set1f(fUniforms.fRTHeight, SkIntToScalar(rtHeight)); fRTHeight = rtHeight; } for (int s = 0; s < GrDrawState::kNumStages; ++s) { if (NULL != fEffects[s]) { const GrEffectStage& stage = drawState.getStage(s); GrAssert(NULL != stage.getEffect()); fEffects[s]->setData(fUniformManager, stage); } } }