/* * Copyright 2011 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "GrGLGpu.h" #include "GrGLGLSL.h" #include "GrGLStencilAttachment.h" #include "GrGLTextureRenderTarget.h" #include "GrGpuResourcePriv.h" #include "GrPipeline.h" #include "GrRenderTargetPriv.h" #include "GrSurfacePriv.h" #include "GrTexturePriv.h" #include "GrTypes.h" #include "GrVertices.h" #include "builders/GrGLShaderStringBuilder.h" #include "glsl/GrGLSLCaps.h" #include "SkStrokeRec.h" #include "SkTemplates.h" #define GL_CALL(X) GR_GL_CALL(this->glInterface(), X) #define GL_CALL_RET(RET, X) GR_GL_CALL_RET(this->glInterface(), RET, X) #define SKIP_CACHE_CHECK true #if GR_GL_CHECK_ALLOC_WITH_GET_ERROR #define CLEAR_ERROR_BEFORE_ALLOC(iface) GrGLClearErr(iface) #define GL_ALLOC_CALL(iface, call) GR_GL_CALL_NOERRCHECK(iface, call) #define CHECK_ALLOC_ERROR(iface) GR_GL_GET_ERROR(iface) #else #define CLEAR_ERROR_BEFORE_ALLOC(iface) #define GL_ALLOC_CALL(iface, call) GR_GL_CALL(iface, call) #define CHECK_ALLOC_ERROR(iface) GR_GL_NO_ERROR #endif /////////////////////////////////////////////////////////////////////////////// static const GrGLenum gXfermodeEquation2Blend[] = { // Basic OpenGL blend equations. GR_GL_FUNC_ADD, GR_GL_FUNC_SUBTRACT, GR_GL_FUNC_REVERSE_SUBTRACT, // GL_KHR_blend_equation_advanced. GR_GL_SCREEN, GR_GL_OVERLAY, GR_GL_DARKEN, GR_GL_LIGHTEN, GR_GL_COLORDODGE, GR_GL_COLORBURN, GR_GL_HARDLIGHT, GR_GL_SOFTLIGHT, GR_GL_DIFFERENCE, GR_GL_EXCLUSION, GR_GL_MULTIPLY, GR_GL_HSL_HUE, GR_GL_HSL_SATURATION, GR_GL_HSL_COLOR, GR_GL_HSL_LUMINOSITY }; GR_STATIC_ASSERT(0 == kAdd_GrBlendEquation); GR_STATIC_ASSERT(1 == kSubtract_GrBlendEquation); GR_STATIC_ASSERT(2 == kReverseSubtract_GrBlendEquation); GR_STATIC_ASSERT(3 == kScreen_GrBlendEquation); GR_STATIC_ASSERT(4 == kOverlay_GrBlendEquation); GR_STATIC_ASSERT(5 == kDarken_GrBlendEquation); GR_STATIC_ASSERT(6 == kLighten_GrBlendEquation); GR_STATIC_ASSERT(7 == kColorDodge_GrBlendEquation); GR_STATIC_ASSERT(8 == kColorBurn_GrBlendEquation); GR_STATIC_ASSERT(9 == kHardLight_GrBlendEquation); GR_STATIC_ASSERT(10 == kSoftLight_GrBlendEquation); GR_STATIC_ASSERT(11 == kDifference_GrBlendEquation); GR_STATIC_ASSERT(12 == kExclusion_GrBlendEquation); GR_STATIC_ASSERT(13 == kMultiply_GrBlendEquation); GR_STATIC_ASSERT(14 == kHSLHue_GrBlendEquation); GR_STATIC_ASSERT(15 == kHSLSaturation_GrBlendEquation); GR_STATIC_ASSERT(16 == kHSLColor_GrBlendEquation); GR_STATIC_ASSERT(17 == kHSLLuminosity_GrBlendEquation); GR_STATIC_ASSERT(SK_ARRAY_COUNT(gXfermodeEquation2Blend) == kGrBlendEquationCnt); static const GrGLenum gXfermodeCoeff2Blend[] = { GR_GL_ZERO, GR_GL_ONE, GR_GL_SRC_COLOR, GR_GL_ONE_MINUS_SRC_COLOR, GR_GL_DST_COLOR, GR_GL_ONE_MINUS_DST_COLOR, GR_GL_SRC_ALPHA, GR_GL_ONE_MINUS_SRC_ALPHA, GR_GL_DST_ALPHA, GR_GL_ONE_MINUS_DST_ALPHA, GR_GL_CONSTANT_COLOR, GR_GL_ONE_MINUS_CONSTANT_COLOR, GR_GL_CONSTANT_ALPHA, GR_GL_ONE_MINUS_CONSTANT_ALPHA, // extended blend coeffs GR_GL_SRC1_COLOR, GR_GL_ONE_MINUS_SRC1_COLOR, GR_GL_SRC1_ALPHA, GR_GL_ONE_MINUS_SRC1_ALPHA, }; bool GrGLGpu::BlendCoeffReferencesConstant(GrBlendCoeff coeff) { static const bool gCoeffReferencesBlendConst[] = { false, false, false, false, false, false, false, false, false, false, true, true, true, true, // extended blend coeffs false, false, false, false, }; return gCoeffReferencesBlendConst[coeff]; GR_STATIC_ASSERT(kGrBlendCoeffCnt == SK_ARRAY_COUNT(gCoeffReferencesBlendConst)); GR_STATIC_ASSERT(0 == kZero_GrBlendCoeff); GR_STATIC_ASSERT(1 == kOne_GrBlendCoeff); GR_STATIC_ASSERT(2 == kSC_GrBlendCoeff); GR_STATIC_ASSERT(3 == kISC_GrBlendCoeff); GR_STATIC_ASSERT(4 == kDC_GrBlendCoeff); GR_STATIC_ASSERT(5 == kIDC_GrBlendCoeff); GR_STATIC_ASSERT(6 == kSA_GrBlendCoeff); GR_STATIC_ASSERT(7 == kISA_GrBlendCoeff); GR_STATIC_ASSERT(8 == kDA_GrBlendCoeff); GR_STATIC_ASSERT(9 == kIDA_GrBlendCoeff); GR_STATIC_ASSERT(10 == kConstC_GrBlendCoeff); GR_STATIC_ASSERT(11 == kIConstC_GrBlendCoeff); GR_STATIC_ASSERT(12 == kConstA_GrBlendCoeff); GR_STATIC_ASSERT(13 == kIConstA_GrBlendCoeff); GR_STATIC_ASSERT(14 == kS2C_GrBlendCoeff); GR_STATIC_ASSERT(15 == kIS2C_GrBlendCoeff); GR_STATIC_ASSERT(16 == kS2A_GrBlendCoeff); GR_STATIC_ASSERT(17 == kIS2A_GrBlendCoeff); // assertion for gXfermodeCoeff2Blend have to be in GrGpu scope GR_STATIC_ASSERT(kGrBlendCoeffCnt == SK_ARRAY_COUNT(gXfermodeCoeff2Blend)); } /////////////////////////////////////////////////////////////////////////////// // Used in the map of pixel configs to stencil format indices. This value is used to // indicate that a stencil format has not yet been set for the given config. static const int kUnknownStencilIndex = -1; // This value is used as the stencil index when no stencil configs are supported with the // given pixel config. static const int kUnsupportedStencilIndex = -2; /////////////////////////////////////////////////////////////////////////////// GrGpu* GrGLGpu::Create(GrBackendContext backendContext, const GrContextOptions& options, GrContext* context) { SkAutoTUnref glInterface( reinterpret_cast(backendContext)); if (!glInterface) { glInterface.reset(GrGLDefaultInterface()); } else { glInterface->ref(); } if (!glInterface) { return nullptr; } GrGLContext* glContext = GrGLContext::Create(glInterface, options); if (glContext) { return new GrGLGpu(glContext, context); } return nullptr; } static bool gPrintStartupSpew; GrGLGpu::GrGLGpu(GrGLContext* ctx, GrContext* context) : GrGpu(context) , fGLContext(ctx) { SkASSERT(ctx); fCaps.reset(SkRef(ctx->caps())); fHWBoundTextureUniqueIDs.reset(this->glCaps().maxFragmentTextureUnits()); GrGLClearErr(this->glInterface()); if (gPrintStartupSpew) { const GrGLubyte* vendor; const GrGLubyte* renderer; const GrGLubyte* version; GL_CALL_RET(vendor, GetString(GR_GL_VENDOR)); GL_CALL_RET(renderer, GetString(GR_GL_RENDERER)); GL_CALL_RET(version, GetString(GR_GL_VERSION)); SkDebugf("------------------------- create GrGLGpu %p --------------\n", this); SkDebugf("------ VENDOR %s\n", vendor); SkDebugf("------ RENDERER %s\n", renderer); SkDebugf("------ VERSION %s\n", version); SkDebugf("------ EXTENSIONS\n"); this->glContext().extensions().print(); SkDebugf("\n"); SkDebugf("%s", this->glCaps().dump().c_str()); } fProgramCache = new ProgramCache(this); SkASSERT(this->glCaps().maxVertexAttributes() >= GrGeometryProcessor::kMaxVertexAttribs); for (int i = 0; i < kGrPixelConfigCnt; ++i) { fPixelConfigToStencilIndex[i] = kUnknownStencilIndex; } fHWProgramID = 0; fTempSrcFBOID = 0; fTempDstFBOID = 0; fStencilClearFBOID = 0; if (this->glCaps().shaderCaps()->pathRenderingSupport()) { fPathRendering.reset(new GrGLPathRendering(this)); } this->createCopyProgram(); } GrGLGpu::~GrGLGpu() { if (0 != fHWProgramID) { // detach the current program so there is no confusion on OpenGL's part // that we want it to be deleted GL_CALL(UseProgram(0)); } if (0 != fTempSrcFBOID) { GL_CALL(DeleteFramebuffers(1, &fTempSrcFBOID)); } if (0 != fTempDstFBOID) { GL_CALL(DeleteFramebuffers(1, &fTempDstFBOID)); } if (0 != fStencilClearFBOID) { GL_CALL(DeleteFramebuffers(1, &fStencilClearFBOID)); } if (0 != fCopyProgram.fArrayBuffer) { GL_CALL(DeleteBuffers(1, &fCopyProgram.fArrayBuffer)); } if (0 != fCopyProgram.fProgram) { GL_CALL(DeleteProgram(fCopyProgram.fProgram)); } delete fProgramCache; } void GrGLGpu::contextAbandoned() { INHERITED::contextAbandoned(); fProgramCache->abandon(); fHWProgramID = 0; fTempSrcFBOID = 0; fTempDstFBOID = 0; fStencilClearFBOID = 0; fCopyProgram.fArrayBuffer = 0; fCopyProgram.fProgram = 0; if (this->glCaps().shaderCaps()->pathRenderingSupport()) { this->glPathRendering()->abandonGpuResources(); } } /////////////////////////////////////////////////////////////////////////////// void GrGLGpu::onResetContext(uint32_t resetBits) { // we don't use the zb at all if (resetBits & kMisc_GrGLBackendState) { GL_CALL(Disable(GR_GL_DEPTH_TEST)); GL_CALL(DepthMask(GR_GL_FALSE)); fHWDrawFace = GrPipelineBuilder::kInvalid_DrawFace; fHWDitherEnabled = kUnknown_TriState; if (kGL_GrGLStandard == this->glStandard()) { // Desktop-only state that we never change if (!this->glCaps().isCoreProfile()) { GL_CALL(Disable(GR_GL_POINT_SMOOTH)); GL_CALL(Disable(GR_GL_LINE_SMOOTH)); GL_CALL(Disable(GR_GL_POLYGON_SMOOTH)); GL_CALL(Disable(GR_GL_POLYGON_STIPPLE)); GL_CALL(Disable(GR_GL_COLOR_LOGIC_OP)); GL_CALL(Disable(GR_GL_INDEX_LOGIC_OP)); } // The windows NVIDIA driver has GL_ARB_imaging in the extension string when using a // core profile. This seems like a bug since the core spec removes any mention of // GL_ARB_imaging. if (this->glCaps().imagingSupport() && !this->glCaps().isCoreProfile()) { GL_CALL(Disable(GR_GL_COLOR_TABLE)); } GL_CALL(Disable(GR_GL_POLYGON_OFFSET_FILL)); // Since ES doesn't support glPointSize at all we always use the VS to // set the point size GL_CALL(Enable(GR_GL_VERTEX_PROGRAM_POINT_SIZE)); // We should set glPolygonMode(FRONT_AND_BACK,FILL) here, too. It isn't // currently part of our gl interface. There are probably others as // well. } if (kGLES_GrGLStandard == this->glStandard() && this->hasExtension("GL_ARM_shader_framebuffer_fetch")) { // The arm extension requires specifically enabling MSAA fetching per sample. // On some devices this may have a perf hit. Also multiple render targets are disabled GL_CALL(Enable(GR_GL_FETCH_PER_SAMPLE_ARM)); } fHWWriteToColor = kUnknown_TriState; // we only ever use lines in hairline mode GL_CALL(LineWidth(1)); } if (resetBits & kMSAAEnable_GrGLBackendState) { fMSAAEnabled = kUnknown_TriState; // In mixed samples mode coverage modulation allows the coverage to be converted to // "opacity", which can then be blended into the color buffer to accomplish antialiasing. // Enable coverage modulation suitable for premultiplied alpha colors. // This state has no effect when not rendering to a mixed sampled target. if (this->glCaps().shaderCaps()->mixedSamplesSupport()) { GL_CALL(CoverageModulation(GR_GL_RGBA)); } } fHWActiveTextureUnitIdx = -1; // invalid if (resetBits & kTextureBinding_GrGLBackendState) { for (int s = 0; s < fHWBoundTextureUniqueIDs.count(); ++s) { fHWBoundTextureUniqueIDs[s] = SK_InvalidUniqueID; } } if (resetBits & kBlend_GrGLBackendState) { fHWBlendState.invalidate(); } if (resetBits & kView_GrGLBackendState) { fHWScissorSettings.invalidate(); fHWViewport.invalidate(); } if (resetBits & kStencil_GrGLBackendState) { fHWStencilSettings.invalidate(); fHWStencilTestEnabled = kUnknown_TriState; } // Vertex if (resetBits & kVertex_GrGLBackendState) { fHWGeometryState.invalidate(); } if (resetBits & kRenderTarget_GrGLBackendState) { fHWBoundRenderTargetUniqueID = SK_InvalidUniqueID; fHWSRGBFramebuffer = kUnknown_TriState; } if (resetBits & kPathRendering_GrGLBackendState) { if (this->caps()->shaderCaps()->pathRenderingSupport()) { this->glPathRendering()->resetContext(); } } // we assume these values if (resetBits & kPixelStore_GrGLBackendState) { if (this->glCaps().unpackRowLengthSupport()) { GL_CALL(PixelStorei(GR_GL_UNPACK_ROW_LENGTH, 0)); } if (this->glCaps().packRowLengthSupport()) { GL_CALL(PixelStorei(GR_GL_PACK_ROW_LENGTH, 0)); } if (this->glCaps().unpackFlipYSupport()) { GL_CALL(PixelStorei(GR_GL_UNPACK_FLIP_Y, GR_GL_FALSE)); } if (this->glCaps().packFlipYSupport()) { GL_CALL(PixelStorei(GR_GL_PACK_REVERSE_ROW_ORDER, GR_GL_FALSE)); } } if (resetBits & kProgram_GrGLBackendState) { fHWProgramID = 0; } } static GrSurfaceOrigin resolve_origin(GrSurfaceOrigin origin, bool renderTarget) { // By default, GrRenderTargets are GL's normal orientation so that they // can be drawn to by the outside world without the client having // to render upside down. if (kDefault_GrSurfaceOrigin == origin) { return renderTarget ? kBottomLeft_GrSurfaceOrigin : kTopLeft_GrSurfaceOrigin; } else { return origin; } } GrTexture* GrGLGpu::onWrapBackendTexture(const GrBackendTextureDesc& desc, GrWrapOwnership ownership) { if (!this->configToGLFormats(desc.fConfig, false, nullptr, nullptr, nullptr)) { return nullptr; } if (0 == desc.fTextureHandle) { return nullptr; } int maxSize = this->caps()->maxTextureSize(); if (desc.fWidth > maxSize || desc.fHeight > maxSize) { return nullptr; } GrGLTexture::IDDesc idDesc; GrSurfaceDesc surfDesc; idDesc.fTextureID = static_cast(desc.fTextureHandle); switch (ownership) { case kAdopt_GrWrapOwnership: idDesc.fLifeCycle = GrGpuResource::kAdopted_LifeCycle; break; case kBorrow_GrWrapOwnership: idDesc.fLifeCycle = GrGpuResource::kBorrowed_LifeCycle; break; } // next line relies on GrBackendTextureDesc's flags matching GrTexture's surfDesc.fFlags = (GrSurfaceFlags) desc.fFlags; surfDesc.fWidth = desc.fWidth; surfDesc.fHeight = desc.fHeight; surfDesc.fConfig = desc.fConfig; surfDesc.fSampleCnt = SkTMin(desc.fSampleCnt, this->caps()->maxSampleCount()); bool renderTarget = SkToBool(desc.fFlags & kRenderTarget_GrBackendTextureFlag); // FIXME: this should be calling resolve_origin(), but Chrome code is currently // assuming the old behaviour, which is that backend textures are always // BottomLeft, even for non-RT's. Once Chrome is fixed, change this to: // glTexDesc.fOrigin = resolve_origin(desc.fOrigin, renderTarget); if (kDefault_GrSurfaceOrigin == desc.fOrigin) { surfDesc.fOrigin = kBottomLeft_GrSurfaceOrigin; } else { surfDesc.fOrigin = desc.fOrigin; } GrGLTexture* texture = nullptr; if (renderTarget) { GrGLRenderTarget::IDDesc rtIDDesc; if (!this->createRenderTargetObjects(surfDesc, GrGpuResource::kUncached_LifeCycle, idDesc.fTextureID, &rtIDDesc)) { return nullptr; } texture = new GrGLTextureRenderTarget(this, surfDesc, idDesc, rtIDDesc); } else { texture = new GrGLTexture(this, surfDesc, idDesc); } if (nullptr == texture) { return nullptr; } return texture; } GrRenderTarget* GrGLGpu::onWrapBackendRenderTarget(const GrBackendRenderTargetDesc& wrapDesc, GrWrapOwnership ownership) { GrGLRenderTarget::IDDesc idDesc; idDesc.fRTFBOID = static_cast(wrapDesc.fRenderTargetHandle); idDesc.fMSColorRenderbufferID = 0; idDesc.fTexFBOID = GrGLRenderTarget::kUnresolvableFBOID; switch (ownership) { case kAdopt_GrWrapOwnership: idDesc.fLifeCycle = GrGpuResource::kAdopted_LifeCycle; break; case kBorrow_GrWrapOwnership: idDesc.fLifeCycle = GrGpuResource::kBorrowed_LifeCycle; break; } idDesc.fSampleConfig = GrRenderTarget::kUnified_SampleConfig; GrSurfaceDesc desc; desc.fConfig = wrapDesc.fConfig; desc.fFlags = kCheckAllocation_GrSurfaceFlag | kRenderTarget_GrSurfaceFlag; desc.fWidth = wrapDesc.fWidth; desc.fHeight = wrapDesc.fHeight; desc.fSampleCnt = SkTMin(wrapDesc.fSampleCnt, this->caps()->maxSampleCount()); desc.fOrigin = resolve_origin(wrapDesc.fOrigin, true); return GrGLRenderTarget::CreateWrapped(this, desc, idDesc, wrapDesc.fStencilBits); } //////////////////////////////////////////////////////////////////////////////// bool GrGLGpu::onGetWritePixelsInfo(GrSurface* dstSurface, int width, int height, size_t rowBytes, GrPixelConfig srcConfig, DrawPreference* drawPreference, WritePixelTempDrawInfo* tempDrawInfo) { if (kIndex_8_GrPixelConfig == srcConfig || GrPixelConfigIsCompressed(dstSurface->config())) { return false; } // This subclass only allows writes to textures. If the dst is not a texture we have to draw // into it. We could use glDrawPixels on GLs that have it, but we don't today. if (!dstSurface->asTexture()) { ElevateDrawPreference(drawPreference, kRequireDraw_DrawPreference); } if (GrPixelConfigIsSRGB(dstSurface->config()) != GrPixelConfigIsSRGB(srcConfig)) { ElevateDrawPreference(drawPreference, kRequireDraw_DrawPreference); } tempDrawInfo->fSwapRAndB = false; // These settings we will always want if a temp draw is performed. Initially set the config // to srcConfig, though that may be modified if we decide to do a R/G swap. tempDrawInfo->fTempSurfaceDesc.fFlags = kNone_GrSurfaceFlags; tempDrawInfo->fTempSurfaceDesc.fConfig = srcConfig; tempDrawInfo->fTempSurfaceDesc.fWidth = width; tempDrawInfo->fTempSurfaceDesc.fHeight = height; tempDrawInfo->fTempSurfaceDesc.fSampleCnt = 0; tempDrawInfo->fTempSurfaceDesc.fOrigin = kTopLeft_GrSurfaceOrigin; // no CPU y-flip for TL. bool configsAreRBSwaps = GrPixelConfigSwapRAndB(srcConfig) == dstSurface->config(); if (configsAreRBSwaps) { if (!this->caps()->isConfigTexturable(srcConfig)) { ElevateDrawPreference(drawPreference, kRequireDraw_DrawPreference); tempDrawInfo->fTempSurfaceDesc.fConfig = dstSurface->config(); tempDrawInfo->fSwapRAndB = true; } else if (this->glCaps().rgba8888PixelsOpsAreSlow() && kRGBA_8888_GrPixelConfig == srcConfig) { ElevateDrawPreference(drawPreference, kGpuPrefersDraw_DrawPreference); tempDrawInfo->fTempSurfaceDesc.fConfig = dstSurface->config(); tempDrawInfo->fSwapRAndB = true; } else if (kGLES_GrGLStandard == this->glStandard() && this->glCaps().bgraIsInternalFormat()) { // The internal format and external formats must match texture uploads so we can't // swizzle while uploading when BGRA is a distinct internal format. ElevateDrawPreference(drawPreference, kRequireDraw_DrawPreference); tempDrawInfo->fTempSurfaceDesc.fConfig = dstSurface->config(); tempDrawInfo->fSwapRAndB = true; } } if (!this->glCaps().unpackFlipYSupport() && kBottomLeft_GrSurfaceOrigin == dstSurface->origin()) { ElevateDrawPreference(drawPreference, kGpuPrefersDraw_DrawPreference); } return true; } bool GrGLGpu::onWritePixels(GrSurface* surface, int left, int top, int width, int height, GrPixelConfig config, const void* buffer, size_t rowBytes) { GrGLTexture* glTex = static_cast(surface->asTexture()); if (!glTex) { return false; } // OpenGL doesn't do sRGB <-> linear conversions when reading and writing pixels. if (GrPixelConfigIsSRGB(surface->config()) != GrPixelConfigIsSRGB(config)) { return false; } this->setScratchTextureUnit(); GL_CALL(BindTexture(GR_GL_TEXTURE_2D, glTex->textureID())); bool success = false; if (GrPixelConfigIsCompressed(glTex->desc().fConfig)) { // We check that config == desc.fConfig in GrGLGpu::canWriteTexturePixels() SkASSERT(config == glTex->desc().fConfig); success = this->uploadCompressedTexData(glTex->desc(), buffer, false, left, top, width, height); } else { success = this->uploadTexData(glTex->desc(), false, left, top, width, height, config, buffer, rowBytes); } if (success) { glTex->texturePriv().dirtyMipMaps(true); return true; } return false; } static inline GrGLenum check_alloc_error(const GrSurfaceDesc& desc, const GrGLInterface* interface) { if (SkToBool(desc.fFlags & kCheckAllocation_GrSurfaceFlag)) { return GR_GL_GET_ERROR(interface); } else { return CHECK_ALLOC_ERROR(interface); } } bool GrGLGpu::uploadTexData(const GrSurfaceDesc& desc, bool isNewTexture, int left, int top, int width, int height, GrPixelConfig dataConfig, const void* data, size_t rowBytes) { SkASSERT(data || isNewTexture); // If we're uploading compressed data then we should be using uploadCompressedTexData SkASSERT(!GrPixelConfigIsCompressed(dataConfig)); size_t bpp = GrBytesPerPixel(dataConfig); if (!GrSurfacePriv::AdjustWritePixelParams(desc.fWidth, desc.fHeight, bpp, &left, &top, &width, &height, &data, &rowBytes)) { return false; } size_t trimRowBytes = width * bpp; // in case we need a temporary, trimmed copy of the src pixels SkAutoSMalloc<128 * 128> tempStorage; // We currently lazily create MIPMAPs when the we see a draw with // GrTextureParams::kMipMap_FilterMode. Using texture storage requires that the // MIP levels are all created when the texture is created. So for now we don't use // texture storage. bool useTexStorage = false && isNewTexture && this->glCaps().texStorageSupport(); if (useTexStorage && kGL_GrGLStandard == this->glStandard()) { // 565 is not a sized internal format on desktop GL. So on desktop with // 565 we always use an unsized internal format to let the system pick // the best sized format to convert the 565 data to. Since TexStorage // only allows sized internal formats we will instead use TexImage2D. useTexStorage = desc.fConfig != kRGB_565_GrPixelConfig; } GrGLenum internalFormat = 0x0; // suppress warning GrGLenum externalFormat = 0x0; // suppress warning GrGLenum externalType = 0x0; // suppress warning // glTexStorage requires sized internal formats on both desktop and ES. ES2 requires an unsized // format for glTexImage, unlike ES3 and desktop. bool useSizedFormat = useTexStorage; if (kGL_GrGLStandard == this->glStandard() || (this->glVersion() >= GR_GL_VER(3, 0) && // ES3 only works with sized BGRA8 format if "GL_APPLE_texture_format_BGRA8888" enabled (kBGRA_8888_GrPixelConfig != dataConfig || !this->glCaps().bgraIsInternalFormat()))) { useSizedFormat = true; } if (!this->configToGLFormats(dataConfig, useSizedFormat, &internalFormat, &externalFormat, &externalType)) { return false; } /* * check whether to allocate a temporary buffer for flipping y or * because our srcData has extra bytes past each row. If so, we need * to trim those off here, since GL ES may not let us specify * GL_UNPACK_ROW_LENGTH. */ bool restoreGLRowLength = false; bool swFlipY = false; bool glFlipY = false; if (data) { if (kBottomLeft_GrSurfaceOrigin == desc.fOrigin) { if (this->glCaps().unpackFlipYSupport()) { glFlipY = true; } else { swFlipY = true; } } if (this->glCaps().unpackRowLengthSupport() && !swFlipY) { // can't use this for flipping, only non-neg values allowed. :( if (rowBytes != trimRowBytes) { GrGLint rowLength = static_cast(rowBytes / bpp); GL_CALL(PixelStorei(GR_GL_UNPACK_ROW_LENGTH, rowLength)); restoreGLRowLength = true; } } else { if (trimRowBytes != rowBytes || swFlipY) { // copy data into our new storage, skipping the trailing bytes size_t trimSize = height * trimRowBytes; const char* src = (const char*)data; if (swFlipY) { src += (height - 1) * rowBytes; } char* dst = (char*)tempStorage.reset(trimSize); for (int y = 0; y < height; y++) { memcpy(dst, src, trimRowBytes); if (swFlipY) { src -= rowBytes; } else { src += rowBytes; } dst += trimRowBytes; } // now point data to our copied version data = tempStorage.get(); } } if (glFlipY) { GL_CALL(PixelStorei(GR_GL_UNPACK_FLIP_Y, GR_GL_TRUE)); } GL_CALL(PixelStorei(GR_GL_UNPACK_ALIGNMENT, static_cast(GrUnpackAlignment(dataConfig)))); } bool succeeded = true; if (isNewTexture && 0 == left && 0 == top && desc.fWidth == width && desc.fHeight == height) { CLEAR_ERROR_BEFORE_ALLOC(this->glInterface()); if (useTexStorage) { // We never resize or change formats of textures. GL_ALLOC_CALL(this->glInterface(), TexStorage2D(GR_GL_TEXTURE_2D, 1, // levels internalFormat, desc.fWidth, desc.fHeight)); } else { GL_ALLOC_CALL(this->glInterface(), TexImage2D(GR_GL_TEXTURE_2D, 0, // level internalFormat, desc.fWidth, desc.fHeight, 0, // border externalFormat, externalType, data)); } GrGLenum error = check_alloc_error(desc, this->glInterface()); if (error != GR_GL_NO_ERROR) { succeeded = false; } else { // if we have data and we used TexStorage to create the texture, we // now upload with TexSubImage. if (data && useTexStorage) { GL_CALL(TexSubImage2D(GR_GL_TEXTURE_2D, 0, // level left, top, width, height, externalFormat, externalType, data)); } } } else { if (swFlipY || glFlipY) { top = desc.fHeight - (top + height); } GL_CALL(TexSubImage2D(GR_GL_TEXTURE_2D, 0, // level left, top, width, height, externalFormat, externalType, data)); } if (restoreGLRowLength) { SkASSERT(this->glCaps().unpackRowLengthSupport()); GL_CALL(PixelStorei(GR_GL_UNPACK_ROW_LENGTH, 0)); } if (glFlipY) { GL_CALL(PixelStorei(GR_GL_UNPACK_FLIP_Y, GR_GL_FALSE)); } return succeeded; } // TODO: This function is using a lot of wonky semantics like, if width == -1 // then set width = desc.fWdith ... blah. A better way to do it might be to // create a CompressedTexData struct that takes a desc/ptr and figures out // the proper upload semantics. Then users can construct this function how they // see fit if they want to go against the "standard" way to do it. bool GrGLGpu::uploadCompressedTexData(const GrSurfaceDesc& desc, const void* data, bool isNewTexture, int left, int top, int width, int height) { SkASSERT(data || isNewTexture); // No support for software flip y, yet... SkASSERT(kBottomLeft_GrSurfaceOrigin != desc.fOrigin); if (-1 == width) { width = desc.fWidth; } #ifdef SK_DEBUG else { SkASSERT(width <= desc.fWidth); } #endif if (-1 == height) { height = desc.fHeight; } #ifdef SK_DEBUG else { SkASSERT(height <= desc.fHeight); } #endif // Make sure that the width and height that we pass to OpenGL // is a multiple of the block size. size_t dataSize = GrCompressedFormatDataSize(desc.fConfig, width, height); // We only need the internal format for compressed 2D textures. GrGLenum internalFormat = 0; if (!this->configToGLFormats(desc.fConfig, false, &internalFormat, nullptr, nullptr)) { return false; } if (isNewTexture) { CLEAR_ERROR_BEFORE_ALLOC(this->glInterface()); GL_ALLOC_CALL(this->glInterface(), CompressedTexImage2D(GR_GL_TEXTURE_2D, 0, // level internalFormat, width, height, 0, // border SkToInt(dataSize), data)); GrGLenum error = check_alloc_error(desc, this->glInterface()); if (error != GR_GL_NO_ERROR) { return false; } } else { // Paletted textures can't be updated. if (GR_GL_PALETTE8_RGBA8 == internalFormat) { return false; } GL_CALL(CompressedTexSubImage2D(GR_GL_TEXTURE_2D, 0, // level left, top, width, height, internalFormat, SkToInt(dataSize), data)); } return true; } static bool renderbuffer_storage_msaa(const GrGLContext& ctx, int sampleCount, GrGLenum format, int width, int height) { CLEAR_ERROR_BEFORE_ALLOC(ctx.interface()); SkASSERT(GrGLCaps::kNone_MSFBOType != ctx.caps()->msFBOType()); switch (ctx.caps()->msFBOType()) { case GrGLCaps::kDesktop_ARB_MSFBOType: case GrGLCaps::kDesktop_EXT_MSFBOType: case GrGLCaps::kMixedSamples_MSFBOType: case GrGLCaps::kES_3_0_MSFBOType: GL_ALLOC_CALL(ctx.interface(), RenderbufferStorageMultisample(GR_GL_RENDERBUFFER, sampleCount, format, width, height)); break; case GrGLCaps::kES_Apple_MSFBOType: GL_ALLOC_CALL(ctx.interface(), RenderbufferStorageMultisampleES2APPLE(GR_GL_RENDERBUFFER, sampleCount, format, width, height)); break; case GrGLCaps::kES_EXT_MsToTexture_MSFBOType: case GrGLCaps::kES_IMG_MsToTexture_MSFBOType: GL_ALLOC_CALL(ctx.interface(), RenderbufferStorageMultisampleES2EXT(GR_GL_RENDERBUFFER, sampleCount, format, width, height)); break; case GrGLCaps::kNone_MSFBOType: SkFAIL("Shouldn't be here if we don't support multisampled renderbuffers."); break; } return (GR_GL_NO_ERROR == CHECK_ALLOC_ERROR(ctx.interface())); } bool GrGLGpu::createRenderTargetObjects(const GrSurfaceDesc& desc, GrGpuResource::LifeCycle lifeCycle, GrGLuint texID, GrGLRenderTarget::IDDesc* idDesc) { idDesc->fMSColorRenderbufferID = 0; idDesc->fRTFBOID = 0; idDesc->fTexFBOID = 0; idDesc->fLifeCycle = lifeCycle; idDesc->fSampleConfig = (GrGLCaps::kMixedSamples_MSFBOType == this->glCaps().msFBOType() && desc.fSampleCnt > 0) ? GrRenderTarget::kStencil_SampleConfig : GrRenderTarget::kUnified_SampleConfig; GrGLenum status; GrGLenum msColorFormat = 0; // suppress warning if (desc.fSampleCnt > 0 && GrGLCaps::kNone_MSFBOType == this->glCaps().msFBOType()) { goto FAILED; } GL_CALL(GenFramebuffers(1, &idDesc->fTexFBOID)); if (!idDesc->fTexFBOID) { goto FAILED; } // If we are using multisampling we will create two FBOS. We render to one and then resolve to // the texture bound to the other. The exception is the IMG multisample extension. With this // extension the texture is multisampled when rendered to and then auto-resolves it when it is // rendered from. if (desc.fSampleCnt > 0 && this->glCaps().usesMSAARenderBuffers()) { GL_CALL(GenFramebuffers(1, &idDesc->fRTFBOID)); GL_CALL(GenRenderbuffers(1, &idDesc->fMSColorRenderbufferID)); if (!idDesc->fRTFBOID || !idDesc->fMSColorRenderbufferID || !this->configToGLFormats(desc.fConfig, // ES2 and ES3 require sized internal formats for rb storage. kGLES_GrGLStandard == this->glStandard(), &msColorFormat, nullptr, nullptr)) { goto FAILED; } } else { idDesc->fRTFBOID = idDesc->fTexFBOID; } // below here we may bind the FBO fHWBoundRenderTargetUniqueID = SK_InvalidUniqueID; if (idDesc->fRTFBOID != idDesc->fTexFBOID) { SkASSERT(desc.fSampleCnt > 0); GL_CALL(BindRenderbuffer(GR_GL_RENDERBUFFER, idDesc->fMSColorRenderbufferID)); if (!renderbuffer_storage_msaa(*fGLContext, desc.fSampleCnt, msColorFormat, desc.fWidth, desc.fHeight)) { goto FAILED; } fStats.incRenderTargetBinds(); GL_CALL(BindFramebuffer(GR_GL_FRAMEBUFFER, idDesc->fRTFBOID)); GL_CALL(FramebufferRenderbuffer(GR_GL_FRAMEBUFFER, GR_GL_COLOR_ATTACHMENT0, GR_GL_RENDERBUFFER, idDesc->fMSColorRenderbufferID)); if ((desc.fFlags & kCheckAllocation_GrSurfaceFlag) || !this->glCaps().isConfigVerifiedColorAttachment(desc.fConfig)) { GL_CALL_RET(status, CheckFramebufferStatus(GR_GL_FRAMEBUFFER)); if (status != GR_GL_FRAMEBUFFER_COMPLETE) { goto FAILED; } fGLContext->caps()->markConfigAsValidColorAttachment(desc.fConfig); } } fStats.incRenderTargetBinds(); GL_CALL(BindFramebuffer(GR_GL_FRAMEBUFFER, idDesc->fTexFBOID)); if (this->glCaps().usesImplicitMSAAResolve() && desc.fSampleCnt > 0) { GL_CALL(FramebufferTexture2DMultisample(GR_GL_FRAMEBUFFER, GR_GL_COLOR_ATTACHMENT0, GR_GL_TEXTURE_2D, texID, 0, desc.fSampleCnt)); } else { GL_CALL(FramebufferTexture2D(GR_GL_FRAMEBUFFER, GR_GL_COLOR_ATTACHMENT0, GR_GL_TEXTURE_2D, texID, 0)); } if ((desc.fFlags & kCheckAllocation_GrSurfaceFlag) || !this->glCaps().isConfigVerifiedColorAttachment(desc.fConfig)) { GL_CALL_RET(status, CheckFramebufferStatus(GR_GL_FRAMEBUFFER)); if (status != GR_GL_FRAMEBUFFER_COMPLETE) { goto FAILED; } fGLContext->caps()->markConfigAsValidColorAttachment(desc.fConfig); } return true; FAILED: if (idDesc->fMSColorRenderbufferID) { GL_CALL(DeleteRenderbuffers(1, &idDesc->fMSColorRenderbufferID)); } if (idDesc->fRTFBOID != idDesc->fTexFBOID) { GL_CALL(DeleteFramebuffers(1, &idDesc->fRTFBOID)); } if (idDesc->fTexFBOID) { GL_CALL(DeleteFramebuffers(1, &idDesc->fTexFBOID)); } return false; } // good to set a break-point here to know when createTexture fails static GrTexture* return_null_texture() { // SkDEBUGFAIL("null texture"); return nullptr; } #if 0 && defined(SK_DEBUG) static size_t as_size_t(int x) { return x; } #endif GrTexture* GrGLGpu::onCreateTexture(const GrSurfaceDesc& desc, GrGpuResource::LifeCycle lifeCycle, const void* srcData, size_t rowBytes) { // We fail if the MSAA was requested and is not available. if (GrGLCaps::kNone_MSFBOType == this->glCaps().msFBOType() && desc.fSampleCnt) { //SkDebugf("MSAA RT requested but not supported on this platform."); return return_null_texture(); } bool renderTarget = SkToBool(desc.fFlags & kRenderTarget_GrSurfaceFlag); GrGLTexture::IDDesc idDesc; GL_CALL(GenTextures(1, &idDesc.fTextureID)); idDesc.fLifeCycle = lifeCycle; if (!idDesc.fTextureID) { return return_null_texture(); } this->setScratchTextureUnit(); GL_CALL(BindTexture(GR_GL_TEXTURE_2D, idDesc.fTextureID)); if (renderTarget && this->glCaps().textureUsageSupport()) { // provides a hint about how this texture will be used GL_CALL(TexParameteri(GR_GL_TEXTURE_2D, GR_GL_TEXTURE_USAGE, GR_GL_FRAMEBUFFER_ATTACHMENT)); } // Some drivers like to know filter/wrap before seeing glTexImage2D. Some // drivers have a bug where an FBO won't be complete if it includes a // texture that is not mipmap complete (considering the filter in use). GrGLTexture::TexParams initialTexParams; // we only set a subset here so invalidate first initialTexParams.invalidate(); initialTexParams.fMinFilter = GR_GL_NEAREST; initialTexParams.fMagFilter = GR_GL_NEAREST; initialTexParams.fWrapS = GR_GL_CLAMP_TO_EDGE; initialTexParams.fWrapT = GR_GL_CLAMP_TO_EDGE; GL_CALL(TexParameteri(GR_GL_TEXTURE_2D, GR_GL_TEXTURE_MAG_FILTER, initialTexParams.fMagFilter)); GL_CALL(TexParameteri(GR_GL_TEXTURE_2D, GR_GL_TEXTURE_MIN_FILTER, initialTexParams.fMinFilter)); GL_CALL(TexParameteri(GR_GL_TEXTURE_2D, GR_GL_TEXTURE_WRAP_S, initialTexParams.fWrapS)); GL_CALL(TexParameteri(GR_GL_TEXTURE_2D, GR_GL_TEXTURE_WRAP_T, initialTexParams.fWrapT)); if (!this->uploadTexData(desc, true, 0, 0, desc.fWidth, desc.fHeight, desc.fConfig, srcData, rowBytes)) { GL_CALL(DeleteTextures(1, &idDesc.fTextureID)); return return_null_texture(); } GrGLTexture* tex; if (renderTarget) { // unbind the texture from the texture unit before binding it to the frame buffer GL_CALL(BindTexture(GR_GL_TEXTURE_2D, 0)); GrGLRenderTarget::IDDesc rtIDDesc; if (!this->createRenderTargetObjects(desc, lifeCycle, idDesc.fTextureID, &rtIDDesc)) { GL_CALL(DeleteTextures(1, &idDesc.fTextureID)); return return_null_texture(); } tex = new GrGLTextureRenderTarget(this, desc, idDesc, rtIDDesc); } else { tex = new GrGLTexture(this, desc, idDesc); } tex->setCachedTexParams(initialTexParams, this->getResetTimestamp()); #ifdef TRACE_TEXTURE_CREATION SkDebugf("--- new texture [%d] size=(%d %d) config=%d\n", glTexDesc.fTextureID, desc.fWidth, desc.fHeight, desc.fConfig); #endif return tex; } GrTexture* GrGLGpu::onCreateCompressedTexture(const GrSurfaceDesc& desc, GrGpuResource::LifeCycle lifeCycle, const void* srcData) { // Make sure that we're not flipping Y. if (kBottomLeft_GrSurfaceOrigin == desc.fOrigin) { return return_null_texture(); } GrGLTexture::IDDesc idDesc; GL_CALL(GenTextures(1, &idDesc.fTextureID)); idDesc.fLifeCycle = lifeCycle; if (!idDesc.fTextureID) { return return_null_texture(); } this->setScratchTextureUnit(); GL_CALL(BindTexture(GR_GL_TEXTURE_2D, idDesc.fTextureID)); // Some drivers like to know filter/wrap before seeing glTexImage2D. Some // drivers have a bug where an FBO won't be complete if it includes a // texture that is not mipmap complete (considering the filter in use). GrGLTexture::TexParams initialTexParams; // we only set a subset here so invalidate first initialTexParams.invalidate(); initialTexParams.fMinFilter = GR_GL_NEAREST; initialTexParams.fMagFilter = GR_GL_NEAREST; initialTexParams.fWrapS = GR_GL_CLAMP_TO_EDGE; initialTexParams.fWrapT = GR_GL_CLAMP_TO_EDGE; GL_CALL(TexParameteri(GR_GL_TEXTURE_2D, GR_GL_TEXTURE_MAG_FILTER, initialTexParams.fMagFilter)); GL_CALL(TexParameteri(GR_GL_TEXTURE_2D, GR_GL_TEXTURE_MIN_FILTER, initialTexParams.fMinFilter)); GL_CALL(TexParameteri(GR_GL_TEXTURE_2D, GR_GL_TEXTURE_WRAP_S, initialTexParams.fWrapS)); GL_CALL(TexParameteri(GR_GL_TEXTURE_2D, GR_GL_TEXTURE_WRAP_T, initialTexParams.fWrapT)); if (!this->uploadCompressedTexData(desc, srcData)) { GL_CALL(DeleteTextures(1, &idDesc.fTextureID)); return return_null_texture(); } GrGLTexture* tex; tex = new GrGLTexture(this, desc, idDesc); tex->setCachedTexParams(initialTexParams, this->getResetTimestamp()); #ifdef TRACE_TEXTURE_CREATION SkDebugf("--- new compressed texture [%d] size=(%d %d) config=%d\n", glTexDesc.fTextureID, desc.fWidth, desc.fHeight, desc.fConfig); #endif return tex; } namespace { const GrGLuint kUnknownBitCount = GrGLStencilAttachment::kUnknownBitCount; void inline get_stencil_rb_sizes(const GrGLInterface* gl, GrGLStencilAttachment::Format* format) { // we shouldn't ever know one size and not the other SkASSERT((kUnknownBitCount == format->fStencilBits) == (kUnknownBitCount == format->fTotalBits)); if (kUnknownBitCount == format->fStencilBits) { GR_GL_GetRenderbufferParameteriv(gl, GR_GL_RENDERBUFFER, GR_GL_RENDERBUFFER_STENCIL_SIZE, (GrGLint*)&format->fStencilBits); if (format->fPacked) { GR_GL_GetRenderbufferParameteriv(gl, GR_GL_RENDERBUFFER, GR_GL_RENDERBUFFER_DEPTH_SIZE, (GrGLint*)&format->fTotalBits); format->fTotalBits += format->fStencilBits; } else { format->fTotalBits = format->fStencilBits; } } } } int GrGLGpu::getCompatibleStencilIndex(GrPixelConfig config) { int size = this->caps()->minTextureSize(); if (kUnknownStencilIndex == fPixelConfigToStencilIndex[config]) { // Default to unsupported fPixelConfigToStencilIndex[config] = kUnsupportedStencilIndex; // Create color texture GrGLuint colorID; GL_CALL(GenTextures(1, &colorID)); this->setScratchTextureUnit(); GL_CALL(BindTexture(GR_GL_TEXTURE_2D, colorID)); GL_CALL(TexParameteri(GR_GL_TEXTURE_2D, GR_GL_TEXTURE_MAG_FILTER, GR_GL_NEAREST)); GL_CALL(TexParameteri(GR_GL_TEXTURE_2D, GR_GL_TEXTURE_MIN_FILTER, GR_GL_NEAREST)); GL_CALL(TexParameteri(GR_GL_TEXTURE_2D, GR_GL_TEXTURE_WRAP_S, GR_GL_CLAMP_TO_EDGE)); GL_CALL(TexParameteri(GR_GL_TEXTURE_2D, GR_GL_TEXTURE_WRAP_T, GR_GL_CLAMP_TO_EDGE)); GrGLenum internalFormat = 0x0; // suppress warning GrGLenum externalFormat = 0x0; // suppress warning GrGLenum externalType = 0x0; // suppress warning bool useSizedFormat = false; if (kGL_GrGLStandard == this->glStandard() || (this->glVersion() >= GR_GL_VER(3, 0) && // ES3 only works with sized BGRA8 format if "GL_APPLE_texture_format_BGRA8888" enabled (kBGRA_8888_GrPixelConfig != config || !this->glCaps().bgraIsInternalFormat()))) { useSizedFormat = true; } if (!this->configToGLFormats(config, useSizedFormat, &internalFormat, &externalFormat, &externalType)) { GL_CALL(DeleteTextures(1, &colorID)); fPixelConfigToStencilIndex[config] = kUnsupportedStencilIndex; return kUnsupportedStencilIndex; } CLEAR_ERROR_BEFORE_ALLOC(this->glInterface()); GL_ALLOC_CALL(this->glInterface(), TexImage2D(GR_GL_TEXTURE_2D, 0, internalFormat, size, size, 0, externalFormat, externalType, NULL)); if (GR_GL_NO_ERROR != GR_GL_GET_ERROR(this->glInterface())) { GL_CALL(DeleteTextures(1, &colorID)); fPixelConfigToStencilIndex[config] = kUnsupportedStencilIndex; return kUnsupportedStencilIndex; } // unbind the texture from the texture unit before binding it to the frame buffer GL_CALL(BindTexture(GR_GL_TEXTURE_2D, 0)); // Create Framebuffer GrGLuint fb; GL_CALL(GenFramebuffers(1, &fb)); GL_CALL(BindFramebuffer(GR_GL_FRAMEBUFFER, fb)); fHWBoundRenderTargetUniqueID = SK_InvalidUniqueID; GL_CALL(FramebufferTexture2D(GR_GL_FRAMEBUFFER, GR_GL_COLOR_ATTACHMENT0, GR_GL_TEXTURE_2D, colorID, 0)); // look over formats till I find a compatible one int stencilFmtCnt = this->glCaps().stencilFormats().count(); GrGLuint sbRBID = 0; for (int i = 0; i < stencilFmtCnt; ++i) { const GrGLCaps::StencilFormat& sFmt = this->glCaps().stencilFormats()[i]; GL_CALL(GenRenderbuffers(1, &sbRBID)); if (!sbRBID) { break; } GL_CALL(BindRenderbuffer(GR_GL_RENDERBUFFER, sbRBID)); CLEAR_ERROR_BEFORE_ALLOC(this->glInterface()); GL_ALLOC_CALL(this->glInterface(), RenderbufferStorage(GR_GL_RENDERBUFFER, sFmt.fInternalFormat, size, size)); if (GR_GL_NO_ERROR == GR_GL_GET_ERROR(this->glInterface())) { GL_CALL(FramebufferRenderbuffer(GR_GL_FRAMEBUFFER, GR_GL_STENCIL_ATTACHMENT, GR_GL_RENDERBUFFER, sbRBID)); if (sFmt.fPacked) { GL_CALL(FramebufferRenderbuffer(GR_GL_FRAMEBUFFER, GR_GL_DEPTH_ATTACHMENT, GR_GL_RENDERBUFFER, sbRBID)); } else { GL_CALL(FramebufferRenderbuffer(GR_GL_FRAMEBUFFER, GR_GL_DEPTH_ATTACHMENT, GR_GL_RENDERBUFFER, 0)); } GrGLenum status; GL_CALL_RET(status, CheckFramebufferStatus(GR_GL_FRAMEBUFFER)); if (status != GR_GL_FRAMEBUFFER_COMPLETE) { GL_CALL(FramebufferRenderbuffer(GR_GL_FRAMEBUFFER, GR_GL_STENCIL_ATTACHMENT, GR_GL_RENDERBUFFER, 0)); if (sFmt.fPacked) { GL_CALL(FramebufferRenderbuffer(GR_GL_FRAMEBUFFER, GR_GL_DEPTH_ATTACHMENT, GR_GL_RENDERBUFFER, 0)); } } else { fPixelConfigToStencilIndex[config] = i; break; } } sbRBID = 0; } GL_CALL(DeleteTextures(1, &colorID)); GL_CALL(DeleteRenderbuffers(1, &sbRBID)); GL_CALL(BindFramebuffer(GR_GL_FRAMEBUFFER, 0)); GL_CALL(DeleteFramebuffers(1, &fb)); } SkASSERT(kUnknownStencilIndex != fPixelConfigToStencilIndex[config]); return fPixelConfigToStencilIndex[config]; } GrStencilAttachment* GrGLGpu::createStencilAttachmentForRenderTarget(const GrRenderTarget* rt, int width, int height) { // All internally created RTs are also textures. We don't create // SBs for a client's standalone RT (that is a RT that isn't also a texture). SkASSERT(rt->asTexture()); SkASSERT(width >= rt->width()); SkASSERT(height >= rt->height()); int samples = rt->numStencilSamples(); GrGLStencilAttachment::IDDesc sbDesc; int sIdx = this->getCompatibleStencilIndex(rt->config()); if (sIdx == kUnsupportedStencilIndex) { return nullptr; } if (!sbDesc.fRenderbufferID) { GL_CALL(GenRenderbuffers(1, &sbDesc.fRenderbufferID)); } if (!sbDesc.fRenderbufferID) { return nullptr; } GL_CALL(BindRenderbuffer(GR_GL_RENDERBUFFER, sbDesc.fRenderbufferID)); const GrGLCaps::StencilFormat& sFmt = this->glCaps().stencilFormats()[sIdx]; CLEAR_ERROR_BEFORE_ALLOC(this->glInterface()); // we do this "if" so that we don't call the multisample // version on a GL that doesn't have an MSAA extension. if (samples > 0) { SkAssertResult(renderbuffer_storage_msaa(*fGLContext, samples, sFmt.fInternalFormat, width, height)); } else { GL_ALLOC_CALL(this->glInterface(), RenderbufferStorage(GR_GL_RENDERBUFFER, sFmt.fInternalFormat, width, height)); SkASSERT(GR_GL_NO_ERROR == check_alloc_error(rt->desc(), this->glInterface())); } fStats.incStencilAttachmentCreates(); // After sized formats we attempt an unsized format and take // whatever sizes GL gives us. In that case we query for the size. GrGLStencilAttachment::Format format = sFmt; get_stencil_rb_sizes(this->glInterface(), &format); GrGLStencilAttachment* stencil = new GrGLStencilAttachment(this, sbDesc, width, height, samples, format); return stencil; } //////////////////////////////////////////////////////////////////////////////// GrVertexBuffer* GrGLGpu::onCreateVertexBuffer(size_t size, bool dynamic) { GrGLVertexBuffer::Desc desc; desc.fDynamic = dynamic; desc.fSizeInBytes = size; if (this->glCaps().useNonVBOVertexAndIndexDynamicData() && desc.fDynamic) { desc.fID = 0; GrGLVertexBuffer* vertexBuffer = new GrGLVertexBuffer(this, desc); return vertexBuffer; } else { GL_CALL(GenBuffers(1, &desc.fID)); if (desc.fID) { fHWGeometryState.setVertexBufferID(this, desc.fID); CLEAR_ERROR_BEFORE_ALLOC(this->glInterface()); // make sure driver can allocate memory for this buffer GL_ALLOC_CALL(this->glInterface(), BufferData(GR_GL_ARRAY_BUFFER, (GrGLsizeiptr) desc.fSizeInBytes, nullptr, // data ptr desc.fDynamic ? GR_GL_DYNAMIC_DRAW : GR_GL_STATIC_DRAW)); if (CHECK_ALLOC_ERROR(this->glInterface()) != GR_GL_NO_ERROR) { GL_CALL(DeleteBuffers(1, &desc.fID)); this->notifyVertexBufferDelete(desc.fID); return nullptr; } GrGLVertexBuffer* vertexBuffer = new GrGLVertexBuffer(this, desc); return vertexBuffer; } return nullptr; } } GrIndexBuffer* GrGLGpu::onCreateIndexBuffer(size_t size, bool dynamic) { GrGLIndexBuffer::Desc desc; desc.fDynamic = dynamic; desc.fSizeInBytes = size; if (this->glCaps().useNonVBOVertexAndIndexDynamicData() && desc.fDynamic) { desc.fID = 0; GrIndexBuffer* indexBuffer = new GrGLIndexBuffer(this, desc); return indexBuffer; } else { GL_CALL(GenBuffers(1, &desc.fID)); if (desc.fID) { fHWGeometryState.setIndexBufferIDOnDefaultVertexArray(this, desc.fID); CLEAR_ERROR_BEFORE_ALLOC(this->glInterface()); // make sure driver can allocate memory for this buffer GL_ALLOC_CALL(this->glInterface(), BufferData(GR_GL_ELEMENT_ARRAY_BUFFER, (GrGLsizeiptr) desc.fSizeInBytes, nullptr, // data ptr desc.fDynamic ? GR_GL_DYNAMIC_DRAW : GR_GL_STATIC_DRAW)); if (CHECK_ALLOC_ERROR(this->glInterface()) != GR_GL_NO_ERROR) { GL_CALL(DeleteBuffers(1, &desc.fID)); this->notifyIndexBufferDelete(desc.fID); return nullptr; } GrIndexBuffer* indexBuffer = new GrGLIndexBuffer(this, desc); return indexBuffer; } return nullptr; } } void GrGLGpu::flushScissor(const GrScissorState& scissorState, const GrGLIRect& rtViewport, GrSurfaceOrigin rtOrigin) { if (scissorState.enabled()) { GrGLIRect scissor; scissor.setRelativeTo(rtViewport, scissorState.rect().fLeft, scissorState.rect().fTop, scissorState.rect().width(), scissorState.rect().height(), rtOrigin); // if the scissor fully contains the viewport then we fall through and // disable the scissor test. if (!scissor.contains(rtViewport)) { if (fHWScissorSettings.fRect != scissor) { scissor.pushToGLScissor(this->glInterface()); fHWScissorSettings.fRect = scissor; } if (kYes_TriState != fHWScissorSettings.fEnabled) { GL_CALL(Enable(GR_GL_SCISSOR_TEST)); fHWScissorSettings.fEnabled = kYes_TriState; } return; } } // See fall through note above this->disableScissor(); } bool GrGLGpu::flushGLState(const DrawArgs& args) { GrXferProcessor::BlendInfo blendInfo; const GrPipeline& pipeline = *args.fPipeline; args.fPipeline->getXferProcessor()->getBlendInfo(&blendInfo); this->flushDither(pipeline.isDitherState()); this->flushColorWrite(blendInfo.fWriteColor); this->flushDrawFace(pipeline.getDrawFace()); SkAutoTUnref program(fProgramCache->refProgram(args)); if (!program) { GrCapsDebugf(this->caps(), "Failed to create program!\n"); return false; } GrGLuint programID = program->programID(); if (fHWProgramID != programID) { GL_CALL(UseProgram(programID)); fHWProgramID = programID; } if (blendInfo.fWriteColor) { this->flushBlend(blendInfo); } SkSTArray<8, const GrTextureAccess*> textureAccesses; program->setData(*args.fPrimitiveProcessor, pipeline, &textureAccesses); int numTextureAccesses = textureAccesses.count(); for (int i = 0; i < numTextureAccesses; i++) { this->bindTexture(i, textureAccesses[i]->getParams(), static_cast(textureAccesses[i]->getTexture())); } GrGLRenderTarget* glRT = static_cast(pipeline.getRenderTarget()); this->flushStencil(pipeline.getStencil()); this->flushScissor(pipeline.getScissorState(), glRT->getViewport(), glRT->origin()); this->flushHWAAState(glRT, pipeline.isHWAntialiasState()); // This must come after textures are flushed because a texture may need // to be msaa-resolved (which will modify bound FBO state). this->flushRenderTarget(glRT, nullptr); return true; } void GrGLGpu::setupGeometry(const GrPrimitiveProcessor& primProc, const GrNonInstancedVertices& vertices, size_t* indexOffsetInBytes) { GrGLVertexBuffer* vbuf; vbuf = (GrGLVertexBuffer*) vertices.vertexBuffer(); SkASSERT(vbuf); SkASSERT(!vbuf->isMapped()); GrGLIndexBuffer* ibuf = nullptr; if (vertices.isIndexed()) { SkASSERT(indexOffsetInBytes); *indexOffsetInBytes = 0; ibuf = (GrGLIndexBuffer*)vertices.indexBuffer(); SkASSERT(ibuf); SkASSERT(!ibuf->isMapped()); *indexOffsetInBytes += ibuf->baseOffset(); } GrGLAttribArrayState* attribState = fHWGeometryState.bindArrayAndBuffersToDraw(this, vbuf, ibuf); int vaCount = primProc.numAttribs(); if (vaCount > 0) { GrGLsizei stride = static_cast(primProc.getVertexStride()); size_t vertexOffsetInBytes = stride * vertices.startVertex(); vertexOffsetInBytes += vbuf->baseOffset(); uint32_t usedAttribArraysMask = 0; size_t offset = 0; for (int attribIndex = 0; attribIndex < vaCount; attribIndex++) { const GrGeometryProcessor::Attribute& attrib = primProc.getAttrib(attribIndex); usedAttribArraysMask |= (1 << attribIndex); GrVertexAttribType attribType = attrib.fType; attribState->set(this, attribIndex, vbuf->bufferID(), GrGLAttribTypeToLayout(attribType).fCount, GrGLAttribTypeToLayout(attribType).fType, GrGLAttribTypeToLayout(attribType).fNormalized, stride, reinterpret_cast(vertexOffsetInBytes + offset)); offset += attrib.fOffset; } attribState->disableUnusedArrays(this, usedAttribArraysMask); } } void GrGLGpu::buildProgramDesc(GrProgramDesc* desc, const GrPrimitiveProcessor& primProc, const GrPipeline& pipeline) const { if (!GrGLProgramDescBuilder::Build(desc, primProc, pipeline, this)) { SkDEBUGFAIL("Failed to generate GL program descriptor"); } } void GrGLGpu::disableScissor() { if (kNo_TriState != fHWScissorSettings.fEnabled) { GL_CALL(Disable(GR_GL_SCISSOR_TEST)); fHWScissorSettings.fEnabled = kNo_TriState; return; } } void GrGLGpu::onClear(GrRenderTarget* target, const SkIRect& rect, GrColor color) { // parent class should never let us get here with no RT SkASSERT(target); GrGLRenderTarget* glRT = static_cast(target); this->flushRenderTarget(glRT, &rect); GrScissorState scissorState; scissorState.set(rect); this->flushScissor(scissorState, glRT->getViewport(), glRT->origin()); GrGLfloat r, g, b, a; static const GrGLfloat scale255 = 1.f / 255.f; a = GrColorUnpackA(color) * scale255; GrGLfloat scaleRGB = scale255; r = GrColorUnpackR(color) * scaleRGB; g = GrColorUnpackG(color) * scaleRGB; b = GrColorUnpackB(color) * scaleRGB; GL_CALL(ColorMask(GR_GL_TRUE, GR_GL_TRUE, GR_GL_TRUE, GR_GL_TRUE)); fHWWriteToColor = kYes_TriState; GL_CALL(ClearColor(r, g, b, a)); GL_CALL(Clear(GR_GL_COLOR_BUFFER_BIT)); } void GrGLGpu::discard(GrRenderTarget* renderTarget) { SkASSERT(renderTarget); if (!this->caps()->discardRenderTargetSupport()) { return; } GrGLRenderTarget* glRT = static_cast(renderTarget); if (renderTarget->getUniqueID() != fHWBoundRenderTargetUniqueID) { fHWBoundRenderTargetUniqueID = SK_InvalidUniqueID; fStats.incRenderTargetBinds(); GL_CALL(BindFramebuffer(GR_GL_FRAMEBUFFER, glRT->renderFBOID())); } switch (this->glCaps().invalidateFBType()) { case GrGLCaps::kNone_InvalidateFBType: SkFAIL("Should never get here."); break; case GrGLCaps::kInvalidate_InvalidateFBType: if (0 == glRT->renderFBOID()) { // When rendering to the default framebuffer the legal values for attachments // are GL_COLOR, GL_DEPTH, GL_STENCIL, ... rather than the various FBO attachment // types. static const GrGLenum attachments[] = { GR_GL_COLOR }; GL_CALL(InvalidateFramebuffer(GR_GL_FRAMEBUFFER, SK_ARRAY_COUNT(attachments), attachments)); } else { static const GrGLenum attachments[] = { GR_GL_COLOR_ATTACHMENT0 }; GL_CALL(InvalidateFramebuffer(GR_GL_FRAMEBUFFER, SK_ARRAY_COUNT(attachments), attachments)); } break; case GrGLCaps::kDiscard_InvalidateFBType: { if (0 == glRT->renderFBOID()) { // When rendering to the default framebuffer the legal values for attachments // are GL_COLOR, GL_DEPTH, GL_STENCIL, ... rather than the various FBO attachment // types. See glDiscardFramebuffer() spec. static const GrGLenum attachments[] = { GR_GL_COLOR }; GL_CALL(DiscardFramebuffer(GR_GL_FRAMEBUFFER, SK_ARRAY_COUNT(attachments), attachments)); } else { static const GrGLenum attachments[] = { GR_GL_COLOR_ATTACHMENT0 }; GL_CALL(DiscardFramebuffer(GR_GL_FRAMEBUFFER, SK_ARRAY_COUNT(attachments), attachments)); } break; } } renderTarget->flagAsResolved(); } void GrGLGpu::clearStencil(GrRenderTarget* target) { if (nullptr == target) { return; } GrGLRenderTarget* glRT = static_cast(target); this->flushRenderTarget(glRT, &SkIRect::EmptyIRect()); this->disableScissor(); GL_CALL(StencilMask(0xffffffff)); GL_CALL(ClearStencil(0)); GL_CALL(Clear(GR_GL_STENCIL_BUFFER_BIT)); fHWStencilSettings.invalidate(); } void GrGLGpu::onClearStencilClip(GrRenderTarget* target, const SkIRect& rect, bool insideClip) { SkASSERT(target); GrStencilAttachment* sb = target->renderTargetPriv().getStencilAttachment(); // this should only be called internally when we know we have a // stencil buffer. SkASSERT(sb); GrGLint stencilBitCount = sb->bits(); #if 0 SkASSERT(stencilBitCount > 0); GrGLint clipStencilMask = (1 << (stencilBitCount - 1)); #else // we could just clear the clip bit but when we go through // ANGLE a partial stencil mask will cause clears to be // turned into draws. Our contract on GrDrawTarget says that // changing the clip between stencil passes may or may not // zero the client's clip bits. So we just clear the whole thing. static const GrGLint clipStencilMask = ~0; #endif GrGLint value; if (insideClip) { value = (1 << (stencilBitCount - 1)); } else { value = 0; } GrGLRenderTarget* glRT = static_cast(target); this->flushRenderTarget(glRT, &SkIRect::EmptyIRect()); GrScissorState scissorState; scissorState.set(rect); this->flushScissor(scissorState, glRT->getViewport(), glRT->origin()); GL_CALL(StencilMask((uint32_t) clipStencilMask)); GL_CALL(ClearStencil(value)); GL_CALL(Clear(GR_GL_STENCIL_BUFFER_BIT)); fHWStencilSettings.invalidate(); } static bool read_pixels_pays_for_y_flip(GrRenderTarget* renderTarget, const GrGLCaps& caps, int width, int height, GrPixelConfig config, size_t rowBytes) { // If this render target is already TopLeft, we don't need to flip. if (kTopLeft_GrSurfaceOrigin == renderTarget->origin()) { return false; } // If the read is really small or smaller than the min texture size, don't force a draw. int minSize = SkTMax(32, caps.minTextureSize()); if (width < minSize || height < minSize) { return false; } // if GL can do the flip then we'll never pay for it. if (caps.packFlipYSupport()) { return false; } // If we have to do memcpy to handle non-trim rowBytes then we // get the flip for free. Otherwise it costs. // Note that we're assuming that 0 rowBytes has already been handled and that the width has been // clipped. return caps.packRowLengthSupport() || GrBytesPerPixel(config) * width == rowBytes; } bool GrGLGpu::onGetReadPixelsInfo(GrSurface* srcSurface, int width, int height, size_t rowBytes, GrPixelConfig readConfig, DrawPreference* drawPreference, ReadPixelTempDrawInfo* tempDrawInfo) { // This subclass can only read pixels from a render target. We could use glTexSubImage2D on // GL versions that support it but we don't today. if (!srcSurface->asRenderTarget()) { ElevateDrawPreference(drawPreference, kRequireDraw_DrawPreference); } if (GrPixelConfigIsSRGB(srcSurface->config()) != GrPixelConfigIsSRGB(readConfig)) { ElevateDrawPreference(drawPreference, kRequireDraw_DrawPreference); } tempDrawInfo->fSwapRAndB = false; // These settings we will always want if a temp draw is performed. The config is set below // depending on whether we want to do a R/B swap or not. tempDrawInfo->fTempSurfaceDesc.fFlags = kRenderTarget_GrSurfaceFlag; tempDrawInfo->fTempSurfaceDesc.fWidth = width; tempDrawInfo->fTempSurfaceDesc.fHeight = height; tempDrawInfo->fTempSurfaceDesc.fSampleCnt = 0; tempDrawInfo->fTempSurfaceDesc.fOrigin = kTopLeft_GrSurfaceOrigin; // no CPU y-flip for TL. tempDrawInfo->fUseExactScratch = this->glCaps().partialFBOReadIsSlow() && width >= this->caps()->minTextureSize() && height >= this->caps()->minTextureSize(); // Start off assuming that any temp draw should be to the readConfig, then check if that will // be inefficient. GrPixelConfig srcConfig = srcSurface->config(); tempDrawInfo->fTempSurfaceDesc.fConfig = readConfig; if (this->glCaps().rgba8888PixelsOpsAreSlow() && kRGBA_8888_GrPixelConfig == readConfig) { tempDrawInfo->fTempSurfaceDesc.fConfig = kBGRA_8888_GrPixelConfig; tempDrawInfo->fSwapRAndB = true; ElevateDrawPreference(drawPreference, kGpuPrefersDraw_DrawPreference); } else if (kMesa_GrGLDriver == this->glContext().driver() && GrBytesPerPixel(readConfig) == 4 && GrPixelConfigSwapRAndB(readConfig) == srcConfig) { // Mesa 3D takes a slow path on when reading back BGRA from an RGBA surface and vice-versa. // Better to do a draw with a R/B swap and then read as the original config. tempDrawInfo->fTempSurfaceDesc.fConfig = srcConfig; tempDrawInfo->fSwapRAndB = true; ElevateDrawPreference(drawPreference, kGpuPrefersDraw_DrawPreference); } else if (readConfig == kBGRA_8888_GrPixelConfig && !this->glCaps().readPixelsSupported(this->glInterface(), GR_GL_BGRA, GR_GL_UNSIGNED_BYTE, srcConfig)) { tempDrawInfo->fTempSurfaceDesc.fConfig = kRGBA_8888_GrPixelConfig; tempDrawInfo->fSwapRAndB = true; ElevateDrawPreference(drawPreference, kRequireDraw_DrawPreference); } GrRenderTarget* srcAsRT = srcSurface->asRenderTarget(); if (!srcAsRT) { ElevateDrawPreference(drawPreference, kRequireDraw_DrawPreference); } else if (read_pixels_pays_for_y_flip(srcAsRT, this->glCaps(), width, height, readConfig, rowBytes)) { ElevateDrawPreference(drawPreference, kGpuPrefersDraw_DrawPreference); } return true; } bool GrGLGpu::onReadPixels(GrSurface* surface, int left, int top, int width, int height, GrPixelConfig config, void* buffer, size_t rowBytes) { SkASSERT(surface); GrGLRenderTarget* tgt = static_cast(surface->asRenderTarget()); if (!tgt) { return false; } // OpenGL doesn't do sRGB <-> linear conversions when reading and writing pixels. if (GrPixelConfigIsSRGB(surface->config()) != GrPixelConfigIsSRGB(config)) { return false; } GrGLenum format = 0; GrGLenum type = 0; bool flipY = kBottomLeft_GrSurfaceOrigin == surface->origin(); if (!this->configToGLFormats(config, false, nullptr, &format, &type)) { return false; } // glReadPixels does not allow GL_SRGB_ALPHA. Instead use GL_RGBA. This will not trigger a // conversion when the src is srgb. if (GR_GL_SRGB_ALPHA == format) { format = GR_GL_RGBA; } // resolve the render target if necessary switch (tgt->getResolveType()) { case GrGLRenderTarget::kCantResolve_ResolveType: return false; case GrGLRenderTarget::kAutoResolves_ResolveType: this->flushRenderTarget(tgt, &SkIRect::EmptyIRect()); break; case GrGLRenderTarget::kCanResolve_ResolveType: this->onResolveRenderTarget(tgt); // we don't track the state of the READ FBO ID. fStats.incRenderTargetBinds(); GL_CALL(BindFramebuffer(GR_GL_READ_FRAMEBUFFER, tgt->textureFBOID())); break; default: SkFAIL("Unknown resolve type"); } const GrGLIRect& glvp = tgt->getViewport(); // the read rect is viewport-relative GrGLIRect readRect; readRect.setRelativeTo(glvp, left, top, width, height, tgt->origin()); size_t tightRowBytes = GrBytesPerPixel(config) * width; size_t readDstRowBytes = tightRowBytes; void* readDst = buffer; // determine if GL can read using the passed rowBytes or if we need // a scratch buffer. SkAutoSMalloc<32 * sizeof(GrColor)> scratch; if (rowBytes != tightRowBytes) { if (this->glCaps().packRowLengthSupport()) { SkASSERT(!(rowBytes % sizeof(GrColor))); GL_CALL(PixelStorei(GR_GL_PACK_ROW_LENGTH, static_cast(rowBytes / sizeof(GrColor)))); readDstRowBytes = rowBytes; } else { scratch.reset(tightRowBytes * height); readDst = scratch.get(); } } if (flipY && this->glCaps().packFlipYSupport()) { GL_CALL(PixelStorei(GR_GL_PACK_REVERSE_ROW_ORDER, 1)); } GL_CALL(ReadPixels(readRect.fLeft, readRect.fBottom, readRect.fWidth, readRect.fHeight, format, type, readDst)); if (readDstRowBytes != tightRowBytes) { SkASSERT(this->glCaps().packRowLengthSupport()); GL_CALL(PixelStorei(GR_GL_PACK_ROW_LENGTH, 0)); } if (flipY && this->glCaps().packFlipYSupport()) { GL_CALL(PixelStorei(GR_GL_PACK_REVERSE_ROW_ORDER, 0)); flipY = false; } // now reverse the order of the rows, since GL's are bottom-to-top, but our // API presents top-to-bottom. We must preserve the padding contents. Note // that the above readPixels did not overwrite the padding. if (readDst == buffer) { SkASSERT(rowBytes == readDstRowBytes); if (flipY) { scratch.reset(tightRowBytes); void* tmpRow = scratch.get(); // flip y in-place by rows const int halfY = height >> 1; char* top = reinterpret_cast(buffer); char* bottom = top + (height - 1) * rowBytes; for (int y = 0; y < halfY; y++) { memcpy(tmpRow, top, tightRowBytes); memcpy(top, bottom, tightRowBytes); memcpy(bottom, tmpRow, tightRowBytes); top += rowBytes; bottom -= rowBytes; } } } else { SkASSERT(readDst != buffer); SkASSERT(rowBytes != tightRowBytes); // copy from readDst to buffer while flipping y // const int halfY = height >> 1; const char* src = reinterpret_cast(readDst); char* dst = reinterpret_cast(buffer); if (flipY) { dst += (height-1) * rowBytes; } for (int y = 0; y < height; y++) { memcpy(dst, src, tightRowBytes); src += readDstRowBytes; if (!flipY) { dst += rowBytes; } else { dst -= rowBytes; } } } return true; } void GrGLGpu::flushRenderTarget(GrGLRenderTarget* target, const SkIRect* bound) { SkASSERT(target); uint32_t rtID = target->getUniqueID(); if (fHWBoundRenderTargetUniqueID != rtID) { fStats.incRenderTargetBinds(); GL_CALL(BindFramebuffer(GR_GL_FRAMEBUFFER, target->renderFBOID())); #ifdef SK_DEBUG // don't do this check in Chromium -- this is causing // lots of repeated command buffer flushes when the compositor is // rendering with Ganesh, which is really slow; even too slow for // Debug mode. if (kChromium_GrGLDriver != this->glContext().driver()) { GrGLenum status; GL_CALL_RET(status, CheckFramebufferStatus(GR_GL_FRAMEBUFFER)); if (status != GR_GL_FRAMEBUFFER_COMPLETE) { SkDebugf("GrGLGpu::flushRenderTarget glCheckFramebufferStatus %x\n", status); } } #endif fHWBoundRenderTargetUniqueID = rtID; const GrGLIRect& vp = target->getViewport(); if (fHWViewport != vp) { vp.pushToGLViewport(this->glInterface()); fHWViewport = vp; } if (this->glCaps().srgbWriteControl()) { bool enableSRGBWrite = GrPixelConfigIsSRGB(target->config()); if (enableSRGBWrite && kYes_TriState != fHWSRGBFramebuffer) { GL_CALL(Enable(GR_GL_FRAMEBUFFER_SRGB)); fHWSRGBFramebuffer = kYes_TriState; } else if (!enableSRGBWrite && kNo_TriState != fHWSRGBFramebuffer) { GL_CALL(Disable(GR_GL_FRAMEBUFFER_SRGB)); fHWSRGBFramebuffer = kNo_TriState; } } } if (nullptr == bound || !bound->isEmpty()) { target->flagAsNeedingResolve(bound); } GrTexture *texture = target->asTexture(); if (texture) { texture->texturePriv().dirtyMipMaps(true); } } GrGLenum gPrimitiveType2GLMode[] = { GR_GL_TRIANGLES, GR_GL_TRIANGLE_STRIP, GR_GL_TRIANGLE_FAN, GR_GL_POINTS, GR_GL_LINES, GR_GL_LINE_STRIP }; #define SWAP_PER_DRAW 0 #if SWAP_PER_DRAW #if defined(SK_BUILD_FOR_MAC) #include #elif defined(SK_BUILD_FOR_WIN32) #include void SwapBuf() { DWORD procID = GetCurrentProcessId(); HWND hwnd = GetTopWindow(GetDesktopWindow()); while(hwnd) { DWORD wndProcID = 0; GetWindowThreadProcessId(hwnd, &wndProcID); if(wndProcID == procID) { SwapBuffers(GetDC(hwnd)); } hwnd = GetNextWindow(hwnd, GW_HWNDNEXT); } } #endif #endif void GrGLGpu::onDraw(const DrawArgs& args, const GrNonInstancedVertices& vertices) { if (!this->flushGLState(args)) { return; } size_t indexOffsetInBytes = 0; this->setupGeometry(*args.fPrimitiveProcessor, vertices, &indexOffsetInBytes); SkASSERT((size_t)vertices.primitiveType() < SK_ARRAY_COUNT(gPrimitiveType2GLMode)); if (vertices.isIndexed()) { GrGLvoid* indices = reinterpret_cast(indexOffsetInBytes + sizeof(uint16_t) * vertices.startIndex()); // info.startVertex() was accounted for by setupGeometry. GL_CALL(DrawElements(gPrimitiveType2GLMode[vertices.primitiveType()], vertices.indexCount(), GR_GL_UNSIGNED_SHORT, indices)); } else { // Pass 0 for parameter first. We have to adjust glVertexAttribPointer() to account for // startVertex in the DrawElements case. So we always rely on setupGeometry to have // accounted for startVertex. GL_CALL(DrawArrays(gPrimitiveType2GLMode[vertices.primitiveType()], 0, vertices.vertexCount())); } #if SWAP_PER_DRAW glFlush(); #if defined(SK_BUILD_FOR_MAC) aglSwapBuffers(aglGetCurrentContext()); int set_a_break_pt_here = 9; aglSwapBuffers(aglGetCurrentContext()); #elif defined(SK_BUILD_FOR_WIN32) SwapBuf(); int set_a_break_pt_here = 9; SwapBuf(); #endif #endif } void GrGLGpu::onResolveRenderTarget(GrRenderTarget* target) { GrGLRenderTarget* rt = static_cast(target); if (rt->needsResolve()) { // Some extensions automatically resolves the texture when it is read. if (this->glCaps().usesMSAARenderBuffers()) { SkASSERT(rt->textureFBOID() != rt->renderFBOID()); fStats.incRenderTargetBinds(); fStats.incRenderTargetBinds(); GL_CALL(BindFramebuffer(GR_GL_READ_FRAMEBUFFER, rt->renderFBOID())); GL_CALL(BindFramebuffer(GR_GL_DRAW_FRAMEBUFFER, rt->textureFBOID())); // make sure we go through flushRenderTarget() since we've modified // the bound DRAW FBO ID. fHWBoundRenderTargetUniqueID = SK_InvalidUniqueID; const GrGLIRect& vp = rt->getViewport(); const SkIRect dirtyRect = rt->getResolveRect(); if (GrGLCaps::kES_Apple_MSFBOType == this->glCaps().msFBOType()) { // Apple's extension uses the scissor as the blit bounds. GrScissorState scissorState; scissorState.set(dirtyRect); this->flushScissor(scissorState, vp, rt->origin()); GL_CALL(ResolveMultisampleFramebuffer()); } else { GrGLIRect r; r.setRelativeTo(vp, dirtyRect.fLeft, dirtyRect.fTop, dirtyRect.width(), dirtyRect.height(), target->origin()); int right = r.fLeft + r.fWidth; int top = r.fBottom + r.fHeight; // BlitFrameBuffer respects the scissor, so disable it. this->disableScissor(); GL_CALL(BlitFramebuffer(r.fLeft, r.fBottom, right, top, r.fLeft, r.fBottom, right, top, GR_GL_COLOR_BUFFER_BIT, GR_GL_NEAREST)); } } rt->flagAsResolved(); } } namespace { GrGLenum gr_to_gl_stencil_op(GrStencilOp op) { static const GrGLenum gTable[] = { GR_GL_KEEP, // kKeep_StencilOp GR_GL_REPLACE, // kReplace_StencilOp GR_GL_INCR_WRAP, // kIncWrap_StencilOp GR_GL_INCR, // kIncClamp_StencilOp GR_GL_DECR_WRAP, // kDecWrap_StencilOp GR_GL_DECR, // kDecClamp_StencilOp GR_GL_ZERO, // kZero_StencilOp GR_GL_INVERT, // kInvert_StencilOp }; GR_STATIC_ASSERT(SK_ARRAY_COUNT(gTable) == kStencilOpCount); GR_STATIC_ASSERT(0 == kKeep_StencilOp); GR_STATIC_ASSERT(1 == kReplace_StencilOp); GR_STATIC_ASSERT(2 == kIncWrap_StencilOp); GR_STATIC_ASSERT(3 == kIncClamp_StencilOp); GR_STATIC_ASSERT(4 == kDecWrap_StencilOp); GR_STATIC_ASSERT(5 == kDecClamp_StencilOp); GR_STATIC_ASSERT(6 == kZero_StencilOp); GR_STATIC_ASSERT(7 == kInvert_StencilOp); SkASSERT((unsigned) op < kStencilOpCount); return gTable[op]; } void set_gl_stencil(const GrGLInterface* gl, const GrStencilSettings& settings, GrGLenum glFace, GrStencilSettings::Face grFace) { GrGLenum glFunc = GrToGLStencilFunc(settings.func(grFace)); GrGLenum glFailOp = gr_to_gl_stencil_op(settings.failOp(grFace)); GrGLenum glPassOp = gr_to_gl_stencil_op(settings.passOp(grFace)); GrGLint ref = settings.funcRef(grFace); GrGLint mask = settings.funcMask(grFace); GrGLint writeMask = settings.writeMask(grFace); if (GR_GL_FRONT_AND_BACK == glFace) { // we call the combined func just in case separate stencil is not // supported. GR_GL_CALL(gl, StencilFunc(glFunc, ref, mask)); GR_GL_CALL(gl, StencilMask(writeMask)); GR_GL_CALL(gl, StencilOp(glFailOp, GR_GL_KEEP, glPassOp)); } else { GR_GL_CALL(gl, StencilFuncSeparate(glFace, glFunc, ref, mask)); GR_GL_CALL(gl, StencilMaskSeparate(glFace, writeMask)); GR_GL_CALL(gl, StencilOpSeparate(glFace, glFailOp, GR_GL_KEEP, glPassOp)); } } } void GrGLGpu::flushStencil(const GrStencilSettings& stencilSettings) { if (fHWStencilSettings != stencilSettings) { if (stencilSettings.isDisabled()) { if (kNo_TriState != fHWStencilTestEnabled) { GL_CALL(Disable(GR_GL_STENCIL_TEST)); fHWStencilTestEnabled = kNo_TriState; } } else { if (kYes_TriState != fHWStencilTestEnabled) { GL_CALL(Enable(GR_GL_STENCIL_TEST)); fHWStencilTestEnabled = kYes_TriState; } } if (!stencilSettings.isDisabled()) { if (this->caps()->twoSidedStencilSupport()) { set_gl_stencil(this->glInterface(), stencilSettings, GR_GL_FRONT, GrStencilSettings::kFront_Face); set_gl_stencil(this->glInterface(), stencilSettings, GR_GL_BACK, GrStencilSettings::kBack_Face); } else { set_gl_stencil(this->glInterface(), stencilSettings, GR_GL_FRONT_AND_BACK, GrStencilSettings::kFront_Face); } } fHWStencilSettings = stencilSettings; } } void GrGLGpu::flushHWAAState(GrRenderTarget* rt, bool useHWAA) { SkASSERT(!useHWAA || rt->isStencilBufferMultisampled()); if (this->glCaps().multisampleDisableSupport()) { if (useHWAA) { if (kYes_TriState != fMSAAEnabled) { GL_CALL(Enable(GR_GL_MULTISAMPLE)); fMSAAEnabled = kYes_TriState; } } else { if (kNo_TriState != fMSAAEnabled) { GL_CALL(Disable(GR_GL_MULTISAMPLE)); fMSAAEnabled = kNo_TriState; } } } } void GrGLGpu::flushBlend(const GrXferProcessor::BlendInfo& blendInfo) { // Any optimization to disable blending should have already been applied and // tweaked the equation to "add" or "subtract", and the coeffs to (1, 0). GrBlendEquation equation = blendInfo.fEquation; GrBlendCoeff srcCoeff = blendInfo.fSrcBlend; GrBlendCoeff dstCoeff = blendInfo.fDstBlend; bool blendOff = (kAdd_GrBlendEquation == equation || kSubtract_GrBlendEquation == equation) && kOne_GrBlendCoeff == srcCoeff && kZero_GrBlendCoeff == dstCoeff; if (blendOff) { if (kNo_TriState != fHWBlendState.fEnabled) { GL_CALL(Disable(GR_GL_BLEND)); // Workaround for the ARM KHR_blend_equation_advanced blacklist issue // https://code.google.com/p/skia/issues/detail?id=3943 if (kARM_GrGLVendor == this->ctxInfo().vendor() && GrBlendEquationIsAdvanced(fHWBlendState.fEquation)) { SkASSERT(this->caps()->advancedBlendEquationSupport()); // Set to any basic blending equation. GrBlendEquation blend_equation = kAdd_GrBlendEquation; GL_CALL(BlendEquation(gXfermodeEquation2Blend[blend_equation])); fHWBlendState.fEquation = blend_equation; } fHWBlendState.fEnabled = kNo_TriState; } return; } if (kYes_TriState != fHWBlendState.fEnabled) { GL_CALL(Enable(GR_GL_BLEND)); fHWBlendState.fEnabled = kYes_TriState; } if (fHWBlendState.fEquation != equation) { GL_CALL(BlendEquation(gXfermodeEquation2Blend[equation])); fHWBlendState.fEquation = equation; } if (GrBlendEquationIsAdvanced(equation)) { SkASSERT(this->caps()->advancedBlendEquationSupport()); // Advanced equations have no other blend state. return; } if (fHWBlendState.fSrcCoeff != srcCoeff || fHWBlendState.fDstCoeff != dstCoeff) { GL_CALL(BlendFunc(gXfermodeCoeff2Blend[srcCoeff], gXfermodeCoeff2Blend[dstCoeff])); fHWBlendState.fSrcCoeff = srcCoeff; fHWBlendState.fDstCoeff = dstCoeff; } GrColor blendConst = blendInfo.fBlendConstant; if ((BlendCoeffReferencesConstant(srcCoeff) || BlendCoeffReferencesConstant(dstCoeff)) && (!fHWBlendState.fConstColorValid || fHWBlendState.fConstColor != blendConst)) { GrGLfloat c[4]; GrColorToRGBAFloat(blendConst, c); GL_CALL(BlendColor(c[0], c[1], c[2], c[3])); fHWBlendState.fConstColor = blendConst; fHWBlendState.fConstColorValid = true; } } static inline GrGLenum tile_to_gl_wrap(SkShader::TileMode tm) { static const GrGLenum gWrapModes[] = { GR_GL_CLAMP_TO_EDGE, GR_GL_REPEAT, GR_GL_MIRRORED_REPEAT }; GR_STATIC_ASSERT(SkShader::kTileModeCount == SK_ARRAY_COUNT(gWrapModes)); GR_STATIC_ASSERT(0 == SkShader::kClamp_TileMode); GR_STATIC_ASSERT(1 == SkShader::kRepeat_TileMode); GR_STATIC_ASSERT(2 == SkShader::kMirror_TileMode); return gWrapModes[tm]; } void GrGLGpu::bindTexture(int unitIdx, const GrTextureParams& params, GrGLTexture* texture) { SkASSERT(texture); // If we created a rt/tex and rendered to it without using a texture and now we're texturing // from the rt it will still be the last bound texture, but it needs resolving. So keep this // out of the "last != next" check. GrGLRenderTarget* texRT = static_cast(texture->asRenderTarget()); if (texRT) { this->onResolveRenderTarget(texRT); } uint32_t textureID = texture->getUniqueID(); if (fHWBoundTextureUniqueIDs[unitIdx] != textureID) { this->setTextureUnit(unitIdx); GL_CALL(BindTexture(GR_GL_TEXTURE_2D, texture->textureID())); fHWBoundTextureUniqueIDs[unitIdx] = textureID; } ResetTimestamp timestamp; const GrGLTexture::TexParams& oldTexParams = texture->getCachedTexParams(×tamp); bool setAll = timestamp < this->getResetTimestamp(); GrGLTexture::TexParams newTexParams; static GrGLenum glMinFilterModes[] = { GR_GL_NEAREST, GR_GL_LINEAR, GR_GL_LINEAR_MIPMAP_LINEAR }; static GrGLenum glMagFilterModes[] = { GR_GL_NEAREST, GR_GL_LINEAR, GR_GL_LINEAR }; GrTextureParams::FilterMode filterMode = params.filterMode(); if (GrTextureParams::kMipMap_FilterMode == filterMode) { if (!this->caps()->mipMapSupport() || GrPixelConfigIsCompressed(texture->config())) { filterMode = GrTextureParams::kBilerp_FilterMode; } } newTexParams.fMinFilter = glMinFilterModes[filterMode]; newTexParams.fMagFilter = glMagFilterModes[filterMode]; if (GrTextureParams::kMipMap_FilterMode == filterMode && texture->texturePriv().mipMapsAreDirty()) { GL_CALL(GenerateMipmap(GR_GL_TEXTURE_2D)); texture->texturePriv().dirtyMipMaps(false); } newTexParams.fWrapS = tile_to_gl_wrap(params.getTileModeX()); newTexParams.fWrapT = tile_to_gl_wrap(params.getTileModeY()); memcpy(newTexParams.fSwizzleRGBA, GrGLShaderBuilder::GetTexParamSwizzle(texture->config(), this->glCaps()), sizeof(newTexParams.fSwizzleRGBA)); if (setAll || newTexParams.fMagFilter != oldTexParams.fMagFilter) { this->setTextureUnit(unitIdx); GL_CALL(TexParameteri(GR_GL_TEXTURE_2D, GR_GL_TEXTURE_MAG_FILTER, newTexParams.fMagFilter)); } if (setAll || newTexParams.fMinFilter != oldTexParams.fMinFilter) { this->setTextureUnit(unitIdx); GL_CALL(TexParameteri(GR_GL_TEXTURE_2D, GR_GL_TEXTURE_MIN_FILTER, newTexParams.fMinFilter)); } if (setAll || newTexParams.fWrapS != oldTexParams.fWrapS) { this->setTextureUnit(unitIdx); GL_CALL(TexParameteri(GR_GL_TEXTURE_2D, GR_GL_TEXTURE_WRAP_S, newTexParams.fWrapS)); } if (setAll || newTexParams.fWrapT != oldTexParams.fWrapT) { this->setTextureUnit(unitIdx); GL_CALL(TexParameteri(GR_GL_TEXTURE_2D, GR_GL_TEXTURE_WRAP_T, newTexParams.fWrapT)); } if (this->glCaps().textureSwizzleSupport() && (setAll || memcmp(newTexParams.fSwizzleRGBA, oldTexParams.fSwizzleRGBA, sizeof(newTexParams.fSwizzleRGBA)))) { this->setTextureUnit(unitIdx); if (this->glStandard() == kGLES_GrGLStandard) { // ES3 added swizzle support but not GL_TEXTURE_SWIZZLE_RGBA. const GrGLenum* swizzle = newTexParams.fSwizzleRGBA; GL_CALL(TexParameteri(GR_GL_TEXTURE_2D, GR_GL_TEXTURE_SWIZZLE_R, swizzle[0])); GL_CALL(TexParameteri(GR_GL_TEXTURE_2D, GR_GL_TEXTURE_SWIZZLE_G, swizzle[1])); GL_CALL(TexParameteri(GR_GL_TEXTURE_2D, GR_GL_TEXTURE_SWIZZLE_B, swizzle[2])); GL_CALL(TexParameteri(GR_GL_TEXTURE_2D, GR_GL_TEXTURE_SWIZZLE_A, swizzle[3])); } else { GR_STATIC_ASSERT(sizeof(newTexParams.fSwizzleRGBA[0]) == sizeof(GrGLint)); const GrGLint* swizzle = reinterpret_cast(newTexParams.fSwizzleRGBA); GL_CALL(TexParameteriv(GR_GL_TEXTURE_2D, GR_GL_TEXTURE_SWIZZLE_RGBA, swizzle)); } } texture->setCachedTexParams(newTexParams, this->getResetTimestamp()); } void GrGLGpu::flushDither(bool dither) { if (dither) { if (kYes_TriState != fHWDitherEnabled) { GL_CALL(Enable(GR_GL_DITHER)); fHWDitherEnabled = kYes_TriState; } } else { if (kNo_TriState != fHWDitherEnabled) { GL_CALL(Disable(GR_GL_DITHER)); fHWDitherEnabled = kNo_TriState; } } } void GrGLGpu::flushColorWrite(bool writeColor) { if (!writeColor) { if (kNo_TriState != fHWWriteToColor) { GL_CALL(ColorMask(GR_GL_FALSE, GR_GL_FALSE, GR_GL_FALSE, GR_GL_FALSE)); fHWWriteToColor = kNo_TriState; } } else { if (kYes_TriState != fHWWriteToColor) { GL_CALL(ColorMask(GR_GL_TRUE, GR_GL_TRUE, GR_GL_TRUE, GR_GL_TRUE)); fHWWriteToColor = kYes_TriState; } } } void GrGLGpu::flushDrawFace(GrPipelineBuilder::DrawFace face) { if (fHWDrawFace != face) { switch (face) { case GrPipelineBuilder::kCCW_DrawFace: GL_CALL(Enable(GR_GL_CULL_FACE)); GL_CALL(CullFace(GR_GL_BACK)); break; case GrPipelineBuilder::kCW_DrawFace: GL_CALL(Enable(GR_GL_CULL_FACE)); GL_CALL(CullFace(GR_GL_FRONT)); break; case GrPipelineBuilder::kBoth_DrawFace: GL_CALL(Disable(GR_GL_CULL_FACE)); break; default: SkFAIL("Unknown draw face."); } fHWDrawFace = face; } } bool GrGLGpu::configToGLFormats(GrPixelConfig config, bool getSizedInternalFormat, GrGLenum* internalFormat, GrGLenum* externalFormat, GrGLenum* externalType) const { GrGLenum dontCare; if (nullptr == internalFormat) { internalFormat = &dontCare; } if (nullptr == externalFormat) { externalFormat = &dontCare; } if (nullptr == externalType) { externalType = &dontCare; } if(!this->glCaps().isConfigTexturable(config)) { return false; } switch (config) { case kRGBA_8888_GrPixelConfig: *internalFormat = GR_GL_RGBA; *externalFormat = GR_GL_RGBA; if (getSizedInternalFormat) { *internalFormat = GR_GL_RGBA8; } else { *internalFormat = GR_GL_RGBA; } *externalType = GR_GL_UNSIGNED_BYTE; break; case kBGRA_8888_GrPixelConfig: if (this->glCaps().bgraIsInternalFormat()) { if (getSizedInternalFormat) { *internalFormat = GR_GL_BGRA8; } else { *internalFormat = GR_GL_BGRA; } } else { if (getSizedInternalFormat) { *internalFormat = GR_GL_RGBA8; } else { *internalFormat = GR_GL_RGBA; } } *externalFormat = GR_GL_BGRA; *externalType = GR_GL_UNSIGNED_BYTE; break; case kSRGBA_8888_GrPixelConfig: if (getSizedInternalFormat) { *internalFormat = GR_GL_SRGB8_ALPHA8; } else { *internalFormat = GR_GL_SRGB_ALPHA; } // OpenGL ES 2.0 + GL_EXT_sRGB allows GL_SRGB_ALPHA to be specified as the // param to Tex(Sub)Image2D. ES 2.0 requires the internalFormat and format to match. // Thus, on ES 2.0 we will use GL_SRGB_ALPHA as the externalFormat. However, // onReadPixels needs code to override that because GL_SRGB_ALPHA is not allowed as a // glReadPixels format. // On OpenGL and ES 3.0 GL_SRGB_ALPHA does not work for the param to // glReadPixels nor does it work with Tex(Sub)Image2D So we always set the externalFormat // return to GL_RGBA. if (this->glStandard() == kGLES_GrGLStandard && this->glVersion() == GR_GL_VER(2,0)) { *externalFormat = GR_GL_SRGB_ALPHA; } else { *externalFormat = GR_GL_RGBA; } *externalType = GR_GL_UNSIGNED_BYTE; break; case kRGB_565_GrPixelConfig: *internalFormat = GR_GL_RGB; *externalFormat = GR_GL_RGB; if (getSizedInternalFormat) { if (!this->glCaps().ES2CompatibilitySupport()) { *internalFormat = GR_GL_RGB5; } else { *internalFormat = GR_GL_RGB565; } } else { *internalFormat = GR_GL_RGB; } *externalType = GR_GL_UNSIGNED_SHORT_5_6_5; break; case kRGBA_4444_GrPixelConfig: *internalFormat = GR_GL_RGBA; *externalFormat = GR_GL_RGBA; if (getSizedInternalFormat) { *internalFormat = GR_GL_RGBA4; } else { *internalFormat = GR_GL_RGBA; } *externalType = GR_GL_UNSIGNED_SHORT_4_4_4_4; break; case kIndex_8_GrPixelConfig: // no sized/unsized internal format distinction here *internalFormat = GR_GL_PALETTE8_RGBA8; break; case kAlpha_8_GrPixelConfig: if (this->glCaps().textureRedSupport()) { *internalFormat = GR_GL_RED; *externalFormat = GR_GL_RED; if (getSizedInternalFormat) { *internalFormat = GR_GL_R8; } else { *internalFormat = GR_GL_RED; } *externalType = GR_GL_UNSIGNED_BYTE; } else { *internalFormat = GR_GL_ALPHA; *externalFormat = GR_GL_ALPHA; if (getSizedInternalFormat) { *internalFormat = GR_GL_ALPHA8; } else { *internalFormat = GR_GL_ALPHA; } *externalType = GR_GL_UNSIGNED_BYTE; } break; case kETC1_GrPixelConfig: *internalFormat = GR_GL_COMPRESSED_ETC1_RGB8; break; case kLATC_GrPixelConfig: switch(this->glCaps().latcAlias()) { case GrGLCaps::kLATC_LATCAlias: *internalFormat = GR_GL_COMPRESSED_LUMINANCE_LATC1; break; case GrGLCaps::kRGTC_LATCAlias: *internalFormat = GR_GL_COMPRESSED_RED_RGTC1; break; case GrGLCaps::k3DC_LATCAlias: *internalFormat = GR_GL_COMPRESSED_3DC_X; break; } break; case kR11_EAC_GrPixelConfig: *internalFormat = GR_GL_COMPRESSED_R11_EAC; break; case kASTC_12x12_GrPixelConfig: *internalFormat = GR_GL_COMPRESSED_RGBA_ASTC_12x12_KHR; break; case kRGBA_float_GrPixelConfig: *internalFormat = GR_GL_RGBA32F; *externalFormat = GR_GL_RGBA; *externalType = GR_GL_FLOAT; break; case kAlpha_half_GrPixelConfig: if (this->glCaps().textureRedSupport()) { if (getSizedInternalFormat) { *internalFormat = GR_GL_R16F; } else { *internalFormat = GR_GL_RED; } *externalFormat = GR_GL_RED; } else { if (getSizedInternalFormat) { *internalFormat = GR_GL_ALPHA16F; } else { *internalFormat = GR_GL_ALPHA; } *externalFormat = GR_GL_ALPHA; } if (kGL_GrGLStandard == this->glStandard() || this->glVersion() >= GR_GL_VER(3, 0)) { *externalType = GR_GL_HALF_FLOAT; } else { *externalType = GR_GL_HALF_FLOAT_OES; } break; case kRGBA_half_GrPixelConfig: *internalFormat = GR_GL_RGBA16F; *externalFormat = GR_GL_RGBA; if (kGL_GrGLStandard == this->glStandard() || this->glVersion() >= GR_GL_VER(3, 0)) { *externalType = GR_GL_HALF_FLOAT; } else { *externalType = GR_GL_HALF_FLOAT_OES; } break; default: return false; } return true; } void GrGLGpu::setTextureUnit(int unit) { SkASSERT(unit >= 0 && unit < fHWBoundTextureUniqueIDs.count()); if (unit != fHWActiveTextureUnitIdx) { GL_CALL(ActiveTexture(GR_GL_TEXTURE0 + unit)); fHWActiveTextureUnitIdx = unit; } } void GrGLGpu::setScratchTextureUnit() { // Bind the last texture unit since it is the least likely to be used by GrGLProgram. int lastUnitIdx = fHWBoundTextureUniqueIDs.count() - 1; if (lastUnitIdx != fHWActiveTextureUnitIdx) { GL_CALL(ActiveTexture(GR_GL_TEXTURE0 + lastUnitIdx)); fHWActiveTextureUnitIdx = lastUnitIdx; } // clear out the this field so that if a program does use this unit it will rebind the correct // texture. fHWBoundTextureUniqueIDs[lastUnitIdx] = SK_InvalidUniqueID; } namespace { // Determines whether glBlitFramebuffer could be used between src and dst. inline bool can_blit_framebuffer(const GrSurface* dst, const GrSurface* src, const GrGLGpu* gpu) { if (gpu->glCaps().isConfigRenderable(dst->config(), dst->desc().fSampleCnt > 0) && gpu->glCaps().isConfigRenderable(src->config(), src->desc().fSampleCnt > 0) && gpu->glCaps().usesMSAARenderBuffers()) { // ES3 doesn't allow framebuffer blits when the src has MSAA and the configs don't match // or the rects are not the same (not just the same size but have the same edges). if (GrGLCaps::kES_3_0_MSFBOType == gpu->glCaps().msFBOType() && (src->desc().fSampleCnt > 0 || src->config() != dst->config())) { return false; } return true; } else { return false; } } inline bool can_copy_texsubimage(const GrSurface* dst, const GrSurface* src, const GrGLGpu* gpu) { // Table 3.9 of the ES2 spec indicates the supported formats with CopyTexSubImage // and BGRA isn't in the spec. There doesn't appear to be any extension that adds it. Perhaps // many drivers would allow it to work, but ANGLE does not. if (kGLES_GrGLStandard == gpu->glStandard() && gpu->glCaps().bgraIsInternalFormat() && (kBGRA_8888_GrPixelConfig == dst->config() || kBGRA_8888_GrPixelConfig == src->config())) { return false; } const GrGLRenderTarget* dstRT = static_cast(dst->asRenderTarget()); // If dst is multisampled (and uses an extension where there is a separate MSAA renderbuffer) // then we don't want to copy to the texture but to the MSAA buffer. if (dstRT && dstRT->renderFBOID() != dstRT->textureFBOID()) { return false; } const GrGLRenderTarget* srcRT = static_cast(src->asRenderTarget()); // If the src is multisampled (and uses an extension where there is a separate MSAA // renderbuffer) then it is an invalid operation to call CopyTexSubImage if (srcRT && srcRT->renderFBOID() != srcRT->textureFBOID()) { return false; } if (gpu->glCaps().isConfigRenderable(src->config(), src->desc().fSampleCnt > 0) && dst->asTexture() && dst->origin() == src->origin() && !GrPixelConfigIsCompressed(src->config())) { return true; } else { return false; } } } // If a temporary FBO was created, its non-zero ID is returned. The viewport that the copy rect is // relative to is output. GrGLuint GrGLGpu::bindSurfaceAsFBO(GrSurface* surface, GrGLenum fboTarget, GrGLIRect* viewport, TempFBOTarget tempFBOTarget) { GrGLRenderTarget* rt = static_cast(surface->asRenderTarget()); if (nullptr == rt) { SkASSERT(surface->asTexture()); GrGLuint texID = static_cast(surface->asTexture())->textureID(); GrGLuint* tempFBOID; tempFBOID = kSrc_TempFBOTarget == tempFBOTarget ? &fTempSrcFBOID : &fTempDstFBOID; if (0 == *tempFBOID) { GR_GL_CALL(this->glInterface(), GenFramebuffers(1, tempFBOID)); } fStats.incRenderTargetBinds(); GR_GL_CALL(this->glInterface(), BindFramebuffer(fboTarget, *tempFBOID)); GR_GL_CALL(this->glInterface(), FramebufferTexture2D(fboTarget, GR_GL_COLOR_ATTACHMENT0, GR_GL_TEXTURE_2D, texID, 0)); viewport->fLeft = 0; viewport->fBottom = 0; viewport->fWidth = surface->width(); viewport->fHeight = surface->height(); return *tempFBOID; } else { GrGLuint tempFBOID = 0; fStats.incRenderTargetBinds(); GR_GL_CALL(this->glInterface(), BindFramebuffer(fboTarget, rt->renderFBOID())); *viewport = rt->getViewport(); return tempFBOID; } } void GrGLGpu::unbindTextureFromFBO(GrGLenum fboTarget) { GR_GL_CALL(this->glInterface(), FramebufferTexture2D(fboTarget, GR_GL_COLOR_ATTACHMENT0, GR_GL_TEXTURE_2D, 0, 0)); } bool GrGLGpu::initCopySurfaceDstDesc(const GrSurface* src, GrSurfaceDesc* desc) const { // If the src is a texture, we can implement the blit as a draw assuming the config is // renderable. if (src->asTexture() && this->caps()->isConfigRenderable(src->config(), false)) { desc->fOrigin = kDefault_GrSurfaceOrigin; desc->fFlags = kRenderTarget_GrSurfaceFlag; desc->fConfig = src->config(); return true; } // We look for opportunities to use CopyTexSubImage, or fbo blit. If neither are // possible and we return false to fallback to creating a render target dst for render-to- // texture. This code prefers CopyTexSubImage to fbo blit and avoids triggering temporary fbo // creation. It isn't clear that avoiding temporary fbo creation is actually optimal. // Check for format issues with glCopyTexSubImage2D if (kGLES_GrGLStandard == this->glStandard() && this->glCaps().bgraIsInternalFormat() && kBGRA_8888_GrPixelConfig == src->config()) { // glCopyTexSubImage2D doesn't work with this config. If the bgra can be used with fbo blit // then we set up for that, otherwise fail. if (this->caps()->isConfigRenderable(kBGRA_8888_GrPixelConfig, false)) { desc->fOrigin = kDefault_GrSurfaceOrigin; desc->fFlags = kRenderTarget_GrSurfaceFlag; desc->fConfig = kBGRA_8888_GrPixelConfig; return true; } return false; } else if (nullptr == src->asRenderTarget()) { // CopyTexSubImage2D or fbo blit would require creating a temp fbo for the src. return false; } const GrGLRenderTarget* srcRT = static_cast(src->asRenderTarget()); if (srcRT && srcRT->renderFBOID() != srcRT->textureFBOID()) { // It's illegal to call CopyTexSubImage2D on a MSAA renderbuffer. Set up for FBO blit or // fail. if (this->caps()->isConfigRenderable(src->config(), false)) { desc->fOrigin = kDefault_GrSurfaceOrigin; desc->fFlags = kRenderTarget_GrSurfaceFlag; desc->fConfig = src->config(); return true; } return false; } // We'll do a CopyTexSubImage. Make the dst a plain old texture. desc->fConfig = src->config(); desc->fOrigin = src->origin(); desc->fFlags = kNone_GrSurfaceFlags; return true; } bool GrGLGpu::onCopySurface(GrSurface* dst, GrSurface* src, const SkIRect& srcRect, const SkIPoint& dstPoint) { if (src->asTexture() && dst->asRenderTarget()) { this->copySurfaceAsDraw(dst, src, srcRect, dstPoint); return true; } if (can_copy_texsubimage(dst, src, this)) { this->copySurfaceAsCopyTexSubImage(dst, src, srcRect, dstPoint); return true; } if (can_blit_framebuffer(dst, src, this)) { return this->copySurfaceAsBlitFramebuffer(dst, src, srcRect, dstPoint); } return false; } void GrGLGpu::createCopyProgram() { const char* version = GrGLGetGLSLVersionDecl(this->ctxInfo()); GrGLShaderVar aVertex("a_vertex", kVec2f_GrSLType, GrShaderVar::kAttribute_TypeModifier); GrGLShaderVar uTexCoordXform("u_texCoordXform", kVec4f_GrSLType, GrShaderVar::kUniform_TypeModifier); GrGLShaderVar uPosXform("u_posXform", kVec4f_GrSLType, GrShaderVar::kUniform_TypeModifier); GrGLShaderVar uTexture("u_texture", kSampler2D_GrSLType, GrShaderVar::kUniform_TypeModifier); GrGLShaderVar vTexCoord("v_texCoord", kVec2f_GrSLType, GrShaderVar::kVaryingOut_TypeModifier); GrGLShaderVar oFragColor("o_FragColor", kVec4f_GrSLType, GrShaderVar::kOut_TypeModifier); SkString vshaderTxt(version); aVertex.appendDecl(this->ctxInfo(), &vshaderTxt); vshaderTxt.append(";"); uTexCoordXform.appendDecl(this->ctxInfo(), &vshaderTxt); vshaderTxt.append(";"); uPosXform.appendDecl(this->ctxInfo(), &vshaderTxt); vshaderTxt.append(";"); vTexCoord.appendDecl(this->ctxInfo(), &vshaderTxt); vshaderTxt.append(";"); vshaderTxt.append( "// Copy Program VS\n" "void main() {" " v_texCoord = a_vertex.xy * u_texCoordXform.xy + u_texCoordXform.zw;" " gl_Position.xy = a_vertex * u_posXform.xy + u_posXform.zw;" " gl_Position.zw = vec2(0, 1);" "}" ); SkString fshaderTxt(version); GrGLAppendGLSLDefaultFloatPrecisionDeclaration(kDefault_GrSLPrecision, this->glStandard(), &fshaderTxt); vTexCoord.setTypeModifier(GrShaderVar::kVaryingIn_TypeModifier); vTexCoord.appendDecl(this->ctxInfo(), &fshaderTxt); fshaderTxt.append(";"); uTexture.appendDecl(this->ctxInfo(), &fshaderTxt); fshaderTxt.append(";"); const char* fsOutName; if (this->glCaps().glslCaps()->mustDeclareFragmentShaderOutput()) { oFragColor.appendDecl(this->ctxInfo(), &fshaderTxt); fshaderTxt.append(";"); fsOutName = oFragColor.c_str(); } else { fsOutName = "gl_FragColor"; } fshaderTxt.appendf( "// Copy Program FS\n" "void main() {" " %s = %s(u_texture, v_texCoord);" "}", fsOutName, GrGLSLTexture2DFunctionName(kVec2f_GrSLType, this->glslGeneration()) ); GL_CALL_RET(fCopyProgram.fProgram, CreateProgram()); const char* str; GrGLint length; str = vshaderTxt.c_str(); length = SkToInt(vshaderTxt.size()); GrGLuint vshader = GrGLCompileAndAttachShader(*fGLContext, fCopyProgram.fProgram, GR_GL_VERTEX_SHADER, &str, &length, 1, &fStats); str = fshaderTxt.c_str(); length = SkToInt(fshaderTxt.size()); GrGLuint fshader = GrGLCompileAndAttachShader(*fGLContext, fCopyProgram.fProgram, GR_GL_FRAGMENT_SHADER, &str, &length, 1, &fStats); GL_CALL(LinkProgram(fCopyProgram.fProgram)); GL_CALL_RET(fCopyProgram.fTextureUniform, GetUniformLocation(fCopyProgram.fProgram, "u_texture")); GL_CALL_RET(fCopyProgram.fPosXformUniform, GetUniformLocation(fCopyProgram.fProgram, "u_posXform")); GL_CALL_RET(fCopyProgram.fTexCoordXformUniform, GetUniformLocation(fCopyProgram.fProgram, "u_texCoordXform")); GL_CALL(BindAttribLocation(fCopyProgram.fProgram, 0, "a_vertex")); GL_CALL(DeleteShader(vshader)); GL_CALL(DeleteShader(fshader)); GL_CALL(GenBuffers(1, &fCopyProgram.fArrayBuffer)); fHWGeometryState.setVertexBufferID(this, fCopyProgram.fArrayBuffer); static const GrGLfloat vdata[] = { 0, 0, 0, 1, 1, 0, 1, 1 }; GL_ALLOC_CALL(this->glInterface(), BufferData(GR_GL_ARRAY_BUFFER, (GrGLsizeiptr) sizeof(vdata), vdata, // data ptr GR_GL_STATIC_DRAW)); } void GrGLGpu::copySurfaceAsDraw(GrSurface* dst, GrSurface* src, const SkIRect& srcRect, const SkIPoint& dstPoint) { int w = srcRect.width(); int h = srcRect.height(); GrGLTexture* srcTex = static_cast(src->asTexture()); GrTextureParams params(SkShader::kClamp_TileMode, GrTextureParams::kNone_FilterMode); this->bindTexture(0, params, srcTex); GrGLRenderTarget* dstRT = static_cast(dst->asRenderTarget()); SkIRect dstRect = SkIRect::MakeXYWH(dstPoint.fX, dstPoint.fY, w, h); this->flushRenderTarget(dstRT, &dstRect); GL_CALL(UseProgram(fCopyProgram.fProgram)); fHWProgramID = fCopyProgram.fProgram; fHWGeometryState.setVertexArrayID(this, 0); GrGLAttribArrayState* attribs = fHWGeometryState.bindArrayAndBufferToDraw(this, fCopyProgram.fArrayBuffer); attribs->set(this, 0, fCopyProgram.fArrayBuffer, 2, GR_GL_FLOAT, false, 2 * sizeof(GrGLfloat), 0); attribs->disableUnusedArrays(this, 0x1); // dst rect edges in NDC (-1 to 1) int dw = dst->width(); int dh = dst->height(); GrGLfloat dx0 = 2.f * dstPoint.fX / dw - 1.f; GrGLfloat dx1 = 2.f * (dstPoint.fX + w) / dw - 1.f; GrGLfloat dy0 = 2.f * dstPoint.fY / dh - 1.f; GrGLfloat dy1 = 2.f * (dstPoint.fY + h) / dh - 1.f; if (kBottomLeft_GrSurfaceOrigin == dst->origin()) { dy0 = -dy0; dy1 = -dy1; } // src rect edges in normalized texture space (0 to 1) int sw = src->width(); int sh = src->height(); GrGLfloat sx0 = (GrGLfloat)srcRect.fLeft / sw; GrGLfloat sx1 = (GrGLfloat)(srcRect.fLeft + w) / sw; GrGLfloat sy0 = (GrGLfloat)srcRect.fTop / sh; GrGLfloat sy1 = (GrGLfloat)(srcRect.fTop + h) / sh; if (kBottomLeft_GrSurfaceOrigin == src->origin()) { sy0 = 1.f - sy0; sy1 = 1.f - sy1; } GL_CALL(Uniform4f(fCopyProgram.fPosXformUniform, dx1 - dx0, dy1 - dy0, dx0, dy0)); GL_CALL(Uniform4f(fCopyProgram.fTexCoordXformUniform, sx1 - sx0, sy1 - sy0, sx0, sy0)); GL_CALL(Uniform1i(fCopyProgram.fTextureUniform, 0)); GrXferProcessor::BlendInfo blendInfo; blendInfo.reset(); this->flushBlend(blendInfo); this->flushColorWrite(true); this->flushDither(false); this->flushDrawFace(GrPipelineBuilder::kBoth_DrawFace); this->flushHWAAState(dstRT, false); this->disableScissor(); GrStencilSettings stencil; stencil.setDisabled(); this->flushStencil(stencil); GL_CALL(DrawArrays(GR_GL_TRIANGLE_STRIP, 0, 4)); } void GrGLGpu::copySurfaceAsCopyTexSubImage(GrSurface* dst, GrSurface* src, const SkIRect& srcRect, const SkIPoint& dstPoint) { SkASSERT(can_copy_texsubimage(dst, src, this)); GrGLuint srcFBO; GrGLIRect srcVP; srcFBO = this->bindSurfaceAsFBO(src, GR_GL_FRAMEBUFFER, &srcVP, kSrc_TempFBOTarget); GrGLTexture* dstTex = static_cast(dst->asTexture()); SkASSERT(dstTex); // We modified the bound FBO fHWBoundRenderTargetUniqueID = SK_InvalidUniqueID; GrGLIRect srcGLRect; srcGLRect.setRelativeTo(srcVP, srcRect.fLeft, srcRect.fTop, srcRect.width(), srcRect.height(), src->origin()); this->setScratchTextureUnit(); GL_CALL(BindTexture(GR_GL_TEXTURE_2D, dstTex->textureID())); GrGLint dstY; if (kBottomLeft_GrSurfaceOrigin == dst->origin()) { dstY = dst->height() - (dstPoint.fY + srcGLRect.fHeight); } else { dstY = dstPoint.fY; } GL_CALL(CopyTexSubImage2D(GR_GL_TEXTURE_2D, 0, dstPoint.fX, dstY, srcGLRect.fLeft, srcGLRect.fBottom, srcGLRect.fWidth, srcGLRect.fHeight)); if (srcFBO) { this->unbindTextureFromFBO(GR_GL_FRAMEBUFFER); } } bool GrGLGpu::copySurfaceAsBlitFramebuffer(GrSurface* dst, GrSurface* src, const SkIRect& srcRect, const SkIPoint& dstPoint) { SkASSERT(can_blit_framebuffer(dst, src, this)); SkIRect dstRect = SkIRect::MakeXYWH(dstPoint.fX, dstPoint.fY, srcRect.width(), srcRect.height()); if (dst == src) { if (SkIRect::IntersectsNoEmptyCheck(dstRect, srcRect)) { return false; } } GrGLuint dstFBO; GrGLuint srcFBO; GrGLIRect dstVP; GrGLIRect srcVP; dstFBO = this->bindSurfaceAsFBO(dst, GR_GL_DRAW_FRAMEBUFFER, &dstVP, kDst_TempFBOTarget); srcFBO = this->bindSurfaceAsFBO(src, GR_GL_READ_FRAMEBUFFER, &srcVP, kSrc_TempFBOTarget); // We modified the bound FBO fHWBoundRenderTargetUniqueID = SK_InvalidUniqueID; GrGLIRect srcGLRect; GrGLIRect dstGLRect; srcGLRect.setRelativeTo(srcVP, srcRect.fLeft, srcRect.fTop, srcRect.width(), srcRect.height(), src->origin()); dstGLRect.setRelativeTo(dstVP, dstRect.fLeft, dstRect.fTop, dstRect.width(), dstRect.height(), dst->origin()); // BlitFrameBuffer respects the scissor, so disable it. this->disableScissor(); GrGLint srcY0; GrGLint srcY1; // Does the blit need to y-mirror or not? if (src->origin() == dst->origin()) { srcY0 = srcGLRect.fBottom; srcY1 = srcGLRect.fBottom + srcGLRect.fHeight; } else { srcY0 = srcGLRect.fBottom + srcGLRect.fHeight; srcY1 = srcGLRect.fBottom; } GL_CALL(BlitFramebuffer(srcGLRect.fLeft, srcY0, srcGLRect.fLeft + srcGLRect.fWidth, srcY1, dstGLRect.fLeft, dstGLRect.fBottom, dstGLRect.fLeft + dstGLRect.fWidth, dstGLRect.fBottom + dstGLRect.fHeight, GR_GL_COLOR_BUFFER_BIT, GR_GL_NEAREST)); if (dstFBO) { this->unbindTextureFromFBO(GR_GL_DRAW_FRAMEBUFFER); } if (srcFBO) { this->unbindTextureFromFBO(GR_GL_READ_FRAMEBUFFER); } return true; } void GrGLGpu::xferBarrier(GrRenderTarget* rt, GrXferBarrierType type) { SkASSERT(type); switch (type) { case kTexture_GrXferBarrierType: { GrGLRenderTarget* glrt = static_cast(rt); if (glrt->textureFBOID() != glrt->renderFBOID()) { // The render target uses separate storage so no need for glTextureBarrier. // FIXME: The render target will resolve automatically when its texture is bound, // but we could resolve only the bounds that will be read if we do it here instead. return; } SkASSERT(this->caps()->textureBarrierSupport()); GL_CALL(TextureBarrier()); return; } case kBlend_GrXferBarrierType: SkASSERT(GrCaps::kAdvanced_BlendEquationSupport == this->caps()->blendEquationSupport()); GL_CALL(BlendBarrier()); return; default: break; // placate compiler warnings that kNone not handled } } GrBackendObject GrGLGpu::createTestingOnlyBackendTexture(void* pixels, int w, int h, GrPixelConfig config) const { GrGLuint texID; GL_CALL(GenTextures(1, &texID)); GL_CALL(ActiveTexture(GR_GL_TEXTURE0)); GL_CALL(PixelStorei(GR_GL_UNPACK_ALIGNMENT, 1)); GL_CALL(BindTexture(GR_GL_TEXTURE_2D, texID)); GL_CALL(TexParameteri(GR_GL_TEXTURE_2D, GR_GL_TEXTURE_MAG_FILTER, GR_GL_NEAREST)); GL_CALL(TexParameteri(GR_GL_TEXTURE_2D, GR_GL_TEXTURE_MIN_FILTER, GR_GL_NEAREST)); GL_CALL(TexParameteri(GR_GL_TEXTURE_2D, GR_GL_TEXTURE_WRAP_S, GR_GL_CLAMP_TO_EDGE)); GL_CALL(TexParameteri(GR_GL_TEXTURE_2D, GR_GL_TEXTURE_WRAP_T, GR_GL_CLAMP_TO_EDGE)); GrGLenum internalFormat = 0x0; // suppress warning GrGLenum externalFormat = 0x0; // suppress warning GrGLenum externalType = 0x0; // suppress warning this->configToGLFormats(config, false, &internalFormat, &externalFormat, &externalType); GL_CALL(TexImage2D(GR_GL_TEXTURE_2D, 0, internalFormat, w, h, 0, externalFormat, externalType, pixels)); return texID; } bool GrGLGpu::isTestingOnlyBackendTexture(GrBackendObject id) const { GrGLuint texID = (GrGLuint)id; GrGLboolean result; GL_CALL_RET(result, IsTexture(texID)); return (GR_GL_TRUE == result); } void GrGLGpu::deleteTestingOnlyBackendTexture(GrBackendObject id) const { GrGLuint texID = (GrGLuint)id; GL_CALL(DeleteTextures(1, &texID)); } /////////////////////////////////////////////////////////////////////////////// GrGLAttribArrayState* GrGLGpu::HWGeometryState::bindArrayAndBuffersToDraw( GrGLGpu* gpu, const GrGLVertexBuffer* vbuffer, const GrGLIndexBuffer* ibuffer) { SkASSERT(vbuffer); GrGLuint vbufferID = vbuffer->bufferID(); GrGLuint* ibufferIDPtr = nullptr; GrGLuint ibufferID; if (ibuffer) { ibufferID = ibuffer->bufferID(); ibufferIDPtr = &ibufferID; } return this->internalBind(gpu, vbufferID, ibufferIDPtr); } GrGLAttribArrayState* GrGLGpu::HWGeometryState::bindArrayAndBufferToDraw(GrGLGpu* gpu, GrGLuint vbufferID) { return this->internalBind(gpu, vbufferID, nullptr); } GrGLAttribArrayState* GrGLGpu::HWGeometryState::bindArrayAndBuffersToDraw(GrGLGpu* gpu, GrGLuint vbufferID, GrGLuint ibufferID) { return this->internalBind(gpu, vbufferID, &ibufferID); } GrGLAttribArrayState* GrGLGpu::HWGeometryState::internalBind(GrGLGpu* gpu, GrGLuint vbufferID, GrGLuint* ibufferID) { GrGLAttribArrayState* attribState; if (gpu->glCaps().isCoreProfile() && 0 != vbufferID) { if (!fVBOVertexArray) { GrGLuint arrayID; GR_GL_CALL(gpu->glInterface(), GenVertexArrays(1, &arrayID)); int attrCount = gpu->glCaps().maxVertexAttributes(); fVBOVertexArray = new GrGLVertexArray(arrayID, attrCount); } if (ibufferID) { attribState = fVBOVertexArray->bindWithIndexBuffer(gpu, *ibufferID); } else { attribState = fVBOVertexArray->bind(gpu); } } else { if (ibufferID) { this->setIndexBufferIDOnDefaultVertexArray(gpu, *ibufferID); } else { this->setVertexArrayID(gpu, 0); } int attrCount = gpu->glCaps().maxVertexAttributes(); if (fDefaultVertexArrayAttribState.count() != attrCount) { fDefaultVertexArrayAttribState.resize(attrCount); } attribState = &fDefaultVertexArrayAttribState; } return attribState; }