/* * Copyright 2011 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "GrGLGpu.h" #include "GrGLBuffer.h" #include "GrGLGLSL.h" #include "GrGLStencilAttachment.h" #include "GrGLTextureRenderTarget.h" #include "GrGpuResourcePriv.h" #include "GrMesh.h" #include "GrPipeline.h" #include "GrPLSGeometryProcessor.h" #include "GrRenderTargetPriv.h" #include "GrSurfacePriv.h" #include "GrTexturePriv.h" #include "GrTypes.h" #include "builders/GrGLShaderStringBuilder.h" #include "glsl/GrGLSL.h" #include "glsl/GrGLSLCaps.h" #include "glsl/GrGLSLPLSPathRendering.h" #include "SkMipMap.h" #include "SkPixmap.h" #include "SkStrokeRec.h" #include "SkTemplates.h" #include "SkTypes.h" #define GL_CALL(X) GR_GL_CALL(this->glInterface(), X) #define GL_CALL_RET(RET, X) GR_GL_CALL_RET(this->glInterface(), RET, X) #define SKIP_CACHE_CHECK true #if GR_GL_CHECK_ALLOC_WITH_GET_ERROR #define CLEAR_ERROR_BEFORE_ALLOC(iface) GrGLClearErr(iface) #define GL_ALLOC_CALL(iface, call) GR_GL_CALL_NOERRCHECK(iface, call) #define CHECK_ALLOC_ERROR(iface) GR_GL_GET_ERROR(iface) #else #define CLEAR_ERROR_BEFORE_ALLOC(iface) #define GL_ALLOC_CALL(iface, call) GR_GL_CALL(iface, call) #define CHECK_ALLOC_ERROR(iface) GR_GL_NO_ERROR #endif /////////////////////////////////////////////////////////////////////////////// static const GrGLenum gXfermodeEquation2Blend[] = { // Basic OpenGL blend equations. GR_GL_FUNC_ADD, GR_GL_FUNC_SUBTRACT, GR_GL_FUNC_REVERSE_SUBTRACT, // GL_KHR_blend_equation_advanced. GR_GL_SCREEN, GR_GL_OVERLAY, GR_GL_DARKEN, GR_GL_LIGHTEN, GR_GL_COLORDODGE, GR_GL_COLORBURN, GR_GL_HARDLIGHT, GR_GL_SOFTLIGHT, GR_GL_DIFFERENCE, GR_GL_EXCLUSION, GR_GL_MULTIPLY, GR_GL_HSL_HUE, GR_GL_HSL_SATURATION, GR_GL_HSL_COLOR, GR_GL_HSL_LUMINOSITY }; GR_STATIC_ASSERT(0 == kAdd_GrBlendEquation); GR_STATIC_ASSERT(1 == kSubtract_GrBlendEquation); GR_STATIC_ASSERT(2 == kReverseSubtract_GrBlendEquation); GR_STATIC_ASSERT(3 == kScreen_GrBlendEquation); GR_STATIC_ASSERT(4 == kOverlay_GrBlendEquation); GR_STATIC_ASSERT(5 == kDarken_GrBlendEquation); GR_STATIC_ASSERT(6 == kLighten_GrBlendEquation); GR_STATIC_ASSERT(7 == kColorDodge_GrBlendEquation); GR_STATIC_ASSERT(8 == kColorBurn_GrBlendEquation); GR_STATIC_ASSERT(9 == kHardLight_GrBlendEquation); GR_STATIC_ASSERT(10 == kSoftLight_GrBlendEquation); GR_STATIC_ASSERT(11 == kDifference_GrBlendEquation); GR_STATIC_ASSERT(12 == kExclusion_GrBlendEquation); GR_STATIC_ASSERT(13 == kMultiply_GrBlendEquation); GR_STATIC_ASSERT(14 == kHSLHue_GrBlendEquation); GR_STATIC_ASSERT(15 == kHSLSaturation_GrBlendEquation); GR_STATIC_ASSERT(16 == kHSLColor_GrBlendEquation); GR_STATIC_ASSERT(17 == kHSLLuminosity_GrBlendEquation); GR_STATIC_ASSERT(SK_ARRAY_COUNT(gXfermodeEquation2Blend) == kGrBlendEquationCnt); static const GrGLenum gXfermodeCoeff2Blend[] = { GR_GL_ZERO, GR_GL_ONE, GR_GL_SRC_COLOR, GR_GL_ONE_MINUS_SRC_COLOR, GR_GL_DST_COLOR, GR_GL_ONE_MINUS_DST_COLOR, GR_GL_SRC_ALPHA, GR_GL_ONE_MINUS_SRC_ALPHA, GR_GL_DST_ALPHA, GR_GL_ONE_MINUS_DST_ALPHA, GR_GL_CONSTANT_COLOR, GR_GL_ONE_MINUS_CONSTANT_COLOR, GR_GL_CONSTANT_ALPHA, GR_GL_ONE_MINUS_CONSTANT_ALPHA, // extended blend coeffs GR_GL_SRC1_COLOR, GR_GL_ONE_MINUS_SRC1_COLOR, GR_GL_SRC1_ALPHA, GR_GL_ONE_MINUS_SRC1_ALPHA, }; bool GrGLGpu::BlendCoeffReferencesConstant(GrBlendCoeff coeff) { static const bool gCoeffReferencesBlendConst[] = { false, false, false, false, false, false, false, false, false, false, true, true, true, true, // extended blend coeffs false, false, false, false, }; return gCoeffReferencesBlendConst[coeff]; GR_STATIC_ASSERT(kGrBlendCoeffCnt == SK_ARRAY_COUNT(gCoeffReferencesBlendConst)); GR_STATIC_ASSERT(0 == kZero_GrBlendCoeff); GR_STATIC_ASSERT(1 == kOne_GrBlendCoeff); GR_STATIC_ASSERT(2 == kSC_GrBlendCoeff); GR_STATIC_ASSERT(3 == kISC_GrBlendCoeff); GR_STATIC_ASSERT(4 == kDC_GrBlendCoeff); GR_STATIC_ASSERT(5 == kIDC_GrBlendCoeff); GR_STATIC_ASSERT(6 == kSA_GrBlendCoeff); GR_STATIC_ASSERT(7 == kISA_GrBlendCoeff); GR_STATIC_ASSERT(8 == kDA_GrBlendCoeff); GR_STATIC_ASSERT(9 == kIDA_GrBlendCoeff); GR_STATIC_ASSERT(10 == kConstC_GrBlendCoeff); GR_STATIC_ASSERT(11 == kIConstC_GrBlendCoeff); GR_STATIC_ASSERT(12 == kConstA_GrBlendCoeff); GR_STATIC_ASSERT(13 == kIConstA_GrBlendCoeff); GR_STATIC_ASSERT(14 == kS2C_GrBlendCoeff); GR_STATIC_ASSERT(15 == kIS2C_GrBlendCoeff); GR_STATIC_ASSERT(16 == kS2A_GrBlendCoeff); GR_STATIC_ASSERT(17 == kIS2A_GrBlendCoeff); // assertion for gXfermodeCoeff2Blend have to be in GrGpu scope GR_STATIC_ASSERT(kGrBlendCoeffCnt == SK_ARRAY_COUNT(gXfermodeCoeff2Blend)); } /////////////////////////////////////////////////////////////////////////////// GrGpu* GrGLGpu::Create(GrBackendContext backendContext, const GrContextOptions& options, GrContext* context) { SkAutoTUnref glInterface( reinterpret_cast(backendContext)); if (!glInterface) { glInterface.reset(GrGLDefaultInterface()); } else { glInterface->ref(); } if (!glInterface) { return nullptr; } GrGLContext* glContext = GrGLContext::Create(glInterface, options); if (glContext) { return new GrGLGpu(glContext, context); } return nullptr; } static bool gPrintStartupSpew; GrGLGpu::GrGLGpu(GrGLContext* ctx, GrContext* context) : GrGpu(context) , fGLContext(ctx) , fProgramCache(new ProgramCache(this)) , fHWProgramID(0) , fTempSrcFBOID(0) , fTempDstFBOID(0) , fStencilClearFBOID(0) , fHWMaxUsedBufferTextureUnit(-1) , fHWPLSEnabled(false) , fPLSHasBeenUsed(false) , fHWMinSampleShading(0.0) { for (size_t i = 0; i < SK_ARRAY_COUNT(fCopyPrograms); ++i) { fCopyPrograms[i].fProgram = 0; } fWireRectProgram.fProgram = 0; fPLSSetupProgram.fProgram = 0; SkASSERT(ctx); fCaps.reset(SkRef(ctx->caps())); fHWBoundTextureUniqueIDs.reset(this->glCaps().glslCaps()->maxCombinedSamplers()); fHWBufferState[kVertex_GrBufferType].fGLTarget = GR_GL_ARRAY_BUFFER; fHWBufferState[kIndex_GrBufferType].fGLTarget = GR_GL_ELEMENT_ARRAY_BUFFER; fHWBufferState[kTexel_GrBufferType].fGLTarget = GR_GL_TEXTURE_BUFFER; fHWBufferState[kDrawIndirect_GrBufferType].fGLTarget = GR_GL_DRAW_INDIRECT_BUFFER; if (GrGLCaps::kChromium_TransferBufferType == this->glCaps().transferBufferType()) { fHWBufferState[kXferCpuToGpu_GrBufferType].fGLTarget = GR_GL_PIXEL_UNPACK_TRANSFER_BUFFER_CHROMIUM; fHWBufferState[kXferGpuToCpu_GrBufferType].fGLTarget = GR_GL_PIXEL_PACK_TRANSFER_BUFFER_CHROMIUM; } else { fHWBufferState[kXferCpuToGpu_GrBufferType].fGLTarget = GR_GL_PIXEL_UNPACK_BUFFER; fHWBufferState[kXferGpuToCpu_GrBufferType].fGLTarget = GR_GL_PIXEL_PACK_BUFFER; } GR_STATIC_ASSERT(6 == SK_ARRAY_COUNT(fHWBufferState)); if (this->caps()->shaderCaps()->texelBufferSupport()) { fHWBufferTextures.reset(this->glCaps().glslCaps()->maxCombinedSamplers()); } if (this->glCaps().shaderCaps()->pathRenderingSupport()) { fPathRendering.reset(new GrGLPathRendering(this)); } GrGLClearErr(this->glInterface()); if (gPrintStartupSpew) { const GrGLubyte* vendor; const GrGLubyte* renderer; const GrGLubyte* version; GL_CALL_RET(vendor, GetString(GR_GL_VENDOR)); GL_CALL_RET(renderer, GetString(GR_GL_RENDERER)); GL_CALL_RET(version, GetString(GR_GL_VERSION)); SkDebugf("------------------------- create GrGLGpu %p --------------\n", this); SkDebugf("------ VENDOR %s\n", vendor); SkDebugf("------ RENDERER %s\n", renderer); SkDebugf("------ VERSION %s\n", version); SkDebugf("------ EXTENSIONS\n"); this->glContext().extensions().print(); SkDebugf("\n"); SkDebugf("%s", this->glCaps().dump().c_str()); } } GrGLGpu::~GrGLGpu() { // Ensure any GrGpuResource objects get deleted first, since they may require a working GrGLGpu // to release the resources held by the objects themselves. fPathRendering.reset(); fCopyProgramArrayBuffer.reset(); fWireRectArrayBuffer.reset(); fPLSSetupProgram.fArrayBuffer.reset(); if (0 != fHWProgramID) { // detach the current program so there is no confusion on OpenGL's part // that we want it to be deleted GL_CALL(UseProgram(0)); } if (0 != fTempSrcFBOID) { GL_CALL(DeleteFramebuffers(1, &fTempSrcFBOID)); } if (0 != fTempDstFBOID) { GL_CALL(DeleteFramebuffers(1, &fTempDstFBOID)); } if (0 != fStencilClearFBOID) { GL_CALL(DeleteFramebuffers(1, &fStencilClearFBOID)); } for (size_t i = 0; i < SK_ARRAY_COUNT(fCopyPrograms); ++i) { if (0 != fCopyPrograms[i].fProgram) { GL_CALL(DeleteProgram(fCopyPrograms[i].fProgram)); } } if (0 != fWireRectProgram.fProgram) { GL_CALL(DeleteProgram(fWireRectProgram.fProgram)); } if (0 != fPLSSetupProgram.fProgram) { GL_CALL(DeleteProgram(fPLSSetupProgram.fProgram)); } delete fProgramCache; } bool GrGLGpu::createPLSSetupProgram() { if (!fPLSSetupProgram.fArrayBuffer) { static const GrGLfloat vdata[] = { 0, 0, 0, 1, 1, 0, 1, 1 }; fPLSSetupProgram.fArrayBuffer.reset(GrGLBuffer::Create(this, sizeof(vdata), kVertex_GrBufferType, kStatic_GrAccessPattern, vdata)); if (!fPLSSetupProgram.fArrayBuffer) { return false; } } SkASSERT(!fPLSSetupProgram.fProgram); GL_CALL_RET(fPLSSetupProgram.fProgram, CreateProgram()); if (!fPLSSetupProgram.fProgram) { return false; } const GrGLSLCaps* glslCaps = this->glCaps().glslCaps(); const char* version = glslCaps->versionDeclString(); GrGLSLShaderVar aVertex("a_vertex", kVec2f_GrSLType, GrShaderVar::kAttribute_TypeModifier); GrGLSLShaderVar uTexCoordXform("u_texCoordXform", kVec4f_GrSLType, GrShaderVar::kUniform_TypeModifier); GrGLSLShaderVar uPosXform("u_posXform", kVec4f_GrSLType, GrShaderVar::kUniform_TypeModifier); GrGLSLShaderVar uTexture("u_texture", kSampler2D_GrSLType, GrShaderVar::kUniform_TypeModifier); GrGLSLShaderVar vTexCoord("v_texCoord", kVec2f_GrSLType, GrShaderVar::kVaryingOut_TypeModifier); SkString vshaderTxt(version); if (glslCaps->noperspectiveInterpolationSupport()) { if (const char* extension = glslCaps->noperspectiveInterpolationExtensionString()) { vshaderTxt.appendf("#extension %s : require\n", extension); } vTexCoord.addModifier("noperspective"); } aVertex.appendDecl(glslCaps, &vshaderTxt); vshaderTxt.append(";"); uTexCoordXform.appendDecl(glslCaps, &vshaderTxt); vshaderTxt.append(";"); uPosXform.appendDecl(glslCaps, &vshaderTxt); vshaderTxt.append(";"); vTexCoord.appendDecl(glslCaps, &vshaderTxt); vshaderTxt.append(";"); vshaderTxt.append( "// PLS Setup Program VS\n" "void main() {" " gl_Position.xy = a_vertex * u_posXform.xy + u_posXform.zw;" " gl_Position.zw = vec2(0, 1);" "}" ); SkString fshaderTxt(version); if (glslCaps->noperspectiveInterpolationSupport()) { if (const char* extension = glslCaps->noperspectiveInterpolationExtensionString()) { fshaderTxt.appendf("#extension %s : require\n", extension); } } fshaderTxt.append("#extension "); fshaderTxt.append(glslCaps->fbFetchExtensionString()); fshaderTxt.append(" : require\n"); fshaderTxt.append("#extension GL_EXT_shader_pixel_local_storage : require\n"); GrGLSLAppendDefaultFloatPrecisionDeclaration(kDefault_GrSLPrecision, *glslCaps, &fshaderTxt); vTexCoord.setTypeModifier(GrShaderVar::kVaryingIn_TypeModifier); vTexCoord.appendDecl(glslCaps, &fshaderTxt); fshaderTxt.append(";"); uTexture.appendDecl(glslCaps, &fshaderTxt); fshaderTxt.append(";"); fshaderTxt.appendf( "// PLS Setup Program FS\n" GR_GL_PLS_PATH_DATA_DECL "void main() {\n" " " GR_GL_PLS_DSTCOLOR_NAME " = gl_LastFragColorARM;\n" " pls.windings = ivec4(0, 0, 0, 0);\n" "}" ); const char* str; GrGLint length; str = vshaderTxt.c_str(); length = SkToInt(vshaderTxt.size()); GrGLuint vshader = GrGLCompileAndAttachShader(*fGLContext, fPLSSetupProgram.fProgram, GR_GL_VERTEX_SHADER, &str, &length, 1, &fStats); str = fshaderTxt.c_str(); length = SkToInt(fshaderTxt.size()); GrGLuint fshader = GrGLCompileAndAttachShader(*fGLContext, fPLSSetupProgram.fProgram, GR_GL_FRAGMENT_SHADER, &str, &length, 1, &fStats); GL_CALL(LinkProgram(fPLSSetupProgram.fProgram)); GL_CALL_RET(fPLSSetupProgram.fPosXformUniform, GetUniformLocation(fPLSSetupProgram.fProgram, "u_posXform")); GL_CALL(BindAttribLocation(fPLSSetupProgram.fProgram, 0, "a_vertex")); GL_CALL(DeleteShader(vshader)); GL_CALL(DeleteShader(fshader)); return true; } void GrGLGpu::disconnect(DisconnectType type) { INHERITED::disconnect(type); if (DisconnectType::kCleanup == type) { if (fHWProgramID) { GL_CALL(UseProgram(0)); } if (fTempSrcFBOID) { GL_CALL(DeleteFramebuffers(1, &fTempSrcFBOID)); } if (fTempDstFBOID) { GL_CALL(DeleteFramebuffers(1, &fTempDstFBOID)); } if (fStencilClearFBOID) { GL_CALL(DeleteFramebuffers(1, &fStencilClearFBOID)); } for (size_t i = 0; i < SK_ARRAY_COUNT(fCopyPrograms); ++i) { if (fCopyPrograms[i].fProgram) { GL_CALL(DeleteProgram(fCopyPrograms[i].fProgram)); } } if (fWireRectProgram.fProgram) { GL_CALL(DeleteProgram(fWireRectProgram.fProgram)); } if (fPLSSetupProgram.fProgram) { GL_CALL(DeleteProgram(fPLSSetupProgram.fProgram)); } } else { if (fProgramCache) { fProgramCache->abandon(); } } delete fProgramCache; fProgramCache = nullptr; fHWProgramID = 0; fTempSrcFBOID = 0; fTempDstFBOID = 0; fStencilClearFBOID = 0; fCopyProgramArrayBuffer.reset(); for (size_t i = 0; i < SK_ARRAY_COUNT(fCopyPrograms); ++i) { fCopyPrograms[i].fProgram = 0; } fWireRectProgram.fProgram = 0; fWireRectArrayBuffer.reset(); fPLSSetupProgram.fProgram = 0; fPLSSetupProgram.fArrayBuffer.reset(); if (this->glCaps().shaderCaps()->pathRenderingSupport()) { this->glPathRendering()->disconnect(type); } } /////////////////////////////////////////////////////////////////////////////// void GrGLGpu::onResetContext(uint32_t resetBits) { // we don't use the zb at all if (resetBits & kMisc_GrGLBackendState) { GL_CALL(Disable(GR_GL_DEPTH_TEST)); GL_CALL(DepthMask(GR_GL_FALSE)); fHWBufferState[kTexel_GrBufferType].invalidate(); fHWBufferState[kDrawIndirect_GrBufferType].invalidate(); fHWBufferState[kXferCpuToGpu_GrBufferType].invalidate(); fHWBufferState[kXferGpuToCpu_GrBufferType].invalidate(); fHWDrawFace = GrPipelineBuilder::kInvalid_DrawFace; if (kGL_GrGLStandard == this->glStandard()) { // Desktop-only state that we never change if (!this->glCaps().isCoreProfile()) { GL_CALL(Disable(GR_GL_POINT_SMOOTH)); GL_CALL(Disable(GR_GL_LINE_SMOOTH)); GL_CALL(Disable(GR_GL_POLYGON_SMOOTH)); GL_CALL(Disable(GR_GL_POLYGON_STIPPLE)); GL_CALL(Disable(GR_GL_COLOR_LOGIC_OP)); GL_CALL(Disable(GR_GL_INDEX_LOGIC_OP)); } // The windows NVIDIA driver has GL_ARB_imaging in the extension string when using a // core profile. This seems like a bug since the core spec removes any mention of // GL_ARB_imaging. if (this->glCaps().imagingSupport() && !this->glCaps().isCoreProfile()) { GL_CALL(Disable(GR_GL_COLOR_TABLE)); } GL_CALL(Disable(GR_GL_POLYGON_OFFSET_FILL)); // Since ES doesn't support glPointSize at all we always use the VS to // set the point size GL_CALL(Enable(GR_GL_VERTEX_PROGRAM_POINT_SIZE)); // We should set glPolygonMode(FRONT_AND_BACK,FILL) here, too. It isn't // currently part of our gl interface. There are probably others as // well. } if (kGLES_GrGLStandard == this->glStandard() && this->hasExtension("GL_ARM_shader_framebuffer_fetch")) { // The arm extension requires specifically enabling MSAA fetching per sample. // On some devices this may have a perf hit. Also multiple render targets are disabled GL_CALL(Enable(GR_GL_FETCH_PER_SAMPLE_ARM)); } fHWWriteToColor = kUnknown_TriState; // we only ever use lines in hairline mode GL_CALL(LineWidth(1)); GL_CALL(Disable(GR_GL_DITHER)); } if (resetBits & kMSAAEnable_GrGLBackendState) { fMSAAEnabled = kUnknown_TriState; if (this->caps()->usesMixedSamples()) { if (0 != this->caps()->maxRasterSamples()) { fHWRasterMultisampleEnabled = kUnknown_TriState; fHWNumRasterSamples = 0; } // The skia blend modes all use premultiplied alpha and therefore expect RGBA coverage // modulation. This state has no effect when not rendering to a mixed sampled target. GL_CALL(CoverageModulation(GR_GL_RGBA)); } } fHWActiveTextureUnitIdx = -1; // invalid if (resetBits & kTextureBinding_GrGLBackendState) { for (int s = 0; s < fHWBoundTextureUniqueIDs.count(); ++s) { fHWBoundTextureUniqueIDs[s] = SK_InvalidUniqueID; } for (int b = 0; b < fHWBufferTextures.count(); ++b) { SkASSERT(this->caps()->shaderCaps()->texelBufferSupport()); fHWBufferTextures[b].fKnownBound = false; } } if (resetBits & kBlend_GrGLBackendState) { fHWBlendState.invalidate(); } if (resetBits & kView_GrGLBackendState) { fHWScissorSettings.invalidate(); fHWViewport.invalidate(); } if (resetBits & kStencil_GrGLBackendState) { fHWStencilSettings.invalidate(); fHWStencilTestEnabled = kUnknown_TriState; } // Vertex if (resetBits & kVertex_GrGLBackendState) { fHWVertexArrayState.invalidate(); fHWBufferState[kVertex_GrBufferType].invalidate(); fHWBufferState[kIndex_GrBufferType].invalidate(); } if (resetBits & kRenderTarget_GrGLBackendState) { fHWBoundRenderTargetUniqueID = SK_InvalidUniqueID; fHWSRGBFramebuffer = kUnknown_TriState; } if (resetBits & kPathRendering_GrGLBackendState) { if (this->caps()->shaderCaps()->pathRenderingSupport()) { this->glPathRendering()->resetContext(); } } // we assume these values if (resetBits & kPixelStore_GrGLBackendState) { if (this->glCaps().unpackRowLengthSupport()) { GL_CALL(PixelStorei(GR_GL_UNPACK_ROW_LENGTH, 0)); } if (this->glCaps().packRowLengthSupport()) { GL_CALL(PixelStorei(GR_GL_PACK_ROW_LENGTH, 0)); } if (this->glCaps().unpackFlipYSupport()) { GL_CALL(PixelStorei(GR_GL_UNPACK_FLIP_Y, GR_GL_FALSE)); } if (this->glCaps().packFlipYSupport()) { GL_CALL(PixelStorei(GR_GL_PACK_REVERSE_ROW_ORDER, GR_GL_FALSE)); } } if (resetBits & kProgram_GrGLBackendState) { fHWProgramID = 0; } } static GrSurfaceOrigin resolve_origin(GrSurfaceOrigin origin, bool renderTarget) { // By default, GrRenderTargets are GL's normal orientation so that they // can be drawn to by the outside world without the client having // to render upside down. if (kDefault_GrSurfaceOrigin == origin) { return renderTarget ? kBottomLeft_GrSurfaceOrigin : kTopLeft_GrSurfaceOrigin; } else { return origin; } } GrTexture* GrGLGpu::onWrapBackendTexture(const GrBackendTextureDesc& desc, GrWrapOwnership ownership) { #ifdef SK_IGNORE_GL_TEXTURE_TARGET if (!desc.fTextureHandle) { return nullptr; } #else const GrGLTextureInfo* info = reinterpret_cast(desc.fTextureHandle); if (!info || !info->fID) { return nullptr; } #endif // next line relies on GrBackendTextureDesc's flags matching GrTexture's bool renderTarget = SkToBool(desc.fFlags & kRenderTarget_GrBackendTextureFlag); GrGLTexture::IDDesc idDesc; GrSurfaceDesc surfDesc; #ifdef SK_IGNORE_GL_TEXTURE_TARGET idDesc.fInfo.fID = static_cast(desc.fTextureHandle); // When we create the texture, we only // create GL_TEXTURE_2D at the moment. // External clients can do something different. idDesc.fInfo.fTarget = GR_GL_TEXTURE_2D; #else idDesc.fInfo = *info; #endif if (GR_GL_TEXTURE_EXTERNAL == idDesc.fInfo.fTarget) { if (renderTarget) { // This combination is not supported. return nullptr; } if (!this->glCaps().glslCaps()->externalTextureSupport()) { return nullptr; } } else if (GR_GL_TEXTURE_RECTANGLE == idDesc.fInfo.fTarget) { if (!this->glCaps().rectangleTextureSupport()) { return nullptr; } } else if (GR_GL_TEXTURE_2D != idDesc.fInfo.fTarget) { return nullptr; } // Sample count is interpreted to mean the number of samples that Gr code should allocate // for a render buffer that resolves to the texture. We don't support MSAA textures. if (desc.fSampleCnt && !renderTarget) { return nullptr; } switch (ownership) { case kAdopt_GrWrapOwnership: idDesc.fLifeCycle = GrGpuResource::kAdopted_LifeCycle; break; case kBorrow_GrWrapOwnership: idDesc.fLifeCycle = GrGpuResource::kBorrowed_LifeCycle; break; } surfDesc.fFlags = (GrSurfaceFlags) desc.fFlags; surfDesc.fWidth = desc.fWidth; surfDesc.fHeight = desc.fHeight; surfDesc.fConfig = desc.fConfig; surfDesc.fSampleCnt = SkTMin(desc.fSampleCnt, this->caps()->maxSampleCount()); // FIXME: this should be calling resolve_origin(), but Chrome code is currently // assuming the old behaviour, which is that backend textures are always // BottomLeft, even for non-RT's. Once Chrome is fixed, change this to: // glTexDesc.fOrigin = resolve_origin(desc.fOrigin, renderTarget); if (kDefault_GrSurfaceOrigin == desc.fOrigin) { surfDesc.fOrigin = kBottomLeft_GrSurfaceOrigin; } else { surfDesc.fOrigin = desc.fOrigin; } GrGLTexture* texture = nullptr; if (renderTarget) { GrGLRenderTarget::IDDesc rtIDDesc; if (!this->createRenderTargetObjects(surfDesc, GrGpuResource::kUncached_LifeCycle, idDesc.fInfo, &rtIDDesc)) { return nullptr; } texture = new GrGLTextureRenderTarget(this, surfDesc, idDesc, rtIDDesc); } else { texture = new GrGLTexture(this, surfDesc, idDesc); } if (nullptr == texture) { return nullptr; } return texture; } GrRenderTarget* GrGLGpu::onWrapBackendRenderTarget(const GrBackendRenderTargetDesc& wrapDesc, GrWrapOwnership ownership) { GrGLRenderTarget::IDDesc idDesc; idDesc.fRTFBOID = static_cast(wrapDesc.fRenderTargetHandle); idDesc.fMSColorRenderbufferID = 0; idDesc.fTexFBOID = GrGLRenderTarget::kUnresolvableFBOID; switch (ownership) { case kAdopt_GrWrapOwnership: idDesc.fLifeCycle = GrGpuResource::kAdopted_LifeCycle; break; case kBorrow_GrWrapOwnership: idDesc.fLifeCycle = GrGpuResource::kBorrowed_LifeCycle; break; } idDesc.fSampleConfig = GrRenderTarget::kUnified_SampleConfig; GrSurfaceDesc desc; desc.fConfig = wrapDesc.fConfig; desc.fFlags = kCheckAllocation_GrSurfaceFlag | kRenderTarget_GrSurfaceFlag; desc.fWidth = wrapDesc.fWidth; desc.fHeight = wrapDesc.fHeight; desc.fSampleCnt = SkTMin(wrapDesc.fSampleCnt, this->caps()->maxSampleCount()); desc.fOrigin = resolve_origin(wrapDesc.fOrigin, true); return GrGLRenderTarget::CreateWrapped(this, desc, idDesc, wrapDesc.fStencilBits); } GrRenderTarget* GrGLGpu::onWrapBackendTextureAsRenderTarget(const GrBackendTextureDesc& desc) { #ifdef SK_IGNORE_GL_TEXTURE_TARGET if (!desc.fTextureHandle) { return nullptr; } #else const GrGLTextureInfo* info = reinterpret_cast(desc.fTextureHandle); if (!info || !info->fID) { return nullptr; } #endif GrGLTextureInfo texInfo; GrSurfaceDesc surfDesc; #ifdef SK_IGNORE_GL_TEXTURE_TARGET texInfo.fID = static_cast(desc.fTextureHandle); // We only support GL_TEXTURE_2D at the moment. texInfo.fTarget = GR_GL_TEXTURE_2D; #else texInfo = *info; #endif if (GR_GL_TEXTURE_RECTANGLE != texInfo.fTarget && GR_GL_TEXTURE_2D != texInfo.fTarget) { // Only texture rectangle and texture 2d are supported. We do not check whether texture // rectangle is supported by Skia - if the caller provided us with a texture rectangle, // we assume the necessary support exists. return nullptr; } surfDesc.fFlags = (GrSurfaceFlags) desc.fFlags; surfDesc.fWidth = desc.fWidth; surfDesc.fHeight = desc.fHeight; surfDesc.fConfig = desc.fConfig; surfDesc.fSampleCnt = SkTMin(desc.fSampleCnt, this->caps()->maxSampleCount()); // FIXME: this should be calling resolve_origin(), but Chrome code is currently // assuming the old behaviour, which is that backend textures are always // BottomLeft, even for non-RT's. Once Chrome is fixed, change this to: // glTexDesc.fOrigin = resolve_origin(desc.fOrigin, renderTarget); if (kDefault_GrSurfaceOrigin == desc.fOrigin) { surfDesc.fOrigin = kBottomLeft_GrSurfaceOrigin; } else { surfDesc.fOrigin = desc.fOrigin; } GrGLRenderTarget::IDDesc rtIDDesc; if (!this->createRenderTargetObjects(surfDesc, GrGpuResource::kUncached_LifeCycle, texInfo, &rtIDDesc)) { return nullptr; } return GrGLRenderTarget::CreateWrapped(this, surfDesc, rtIDDesc, 0); } //////////////////////////////////////////////////////////////////////////////// bool GrGLGpu::onGetWritePixelsInfo(GrSurface* dstSurface, int width, int height, GrPixelConfig srcConfig, DrawPreference* drawPreference, WritePixelTempDrawInfo* tempDrawInfo) { if (kIndex_8_GrPixelConfig == srcConfig || GrPixelConfigIsCompressed(dstSurface->config())) { return false; } // This subclass only allows writes to textures. If the dst is not a texture we have to draw // into it. We could use glDrawPixels on GLs that have it, but we don't today. if (!dstSurface->asTexture()) { ElevateDrawPreference(drawPreference, kRequireDraw_DrawPreference); } else { GrGLTexture* texture = static_cast(dstSurface->asTexture()); if (GR_GL_TEXTURE_EXTERNAL == texture->target()) { // We don't currently support writing pixels to EXTERNAL textures. return false; } } if (GrPixelConfigIsSRGB(dstSurface->config()) != GrPixelConfigIsSRGB(srcConfig)) { ElevateDrawPreference(drawPreference, kRequireDraw_DrawPreference); } // Start off assuming no swizzling tempDrawInfo->fSwizzle = GrSwizzle::RGBA(); tempDrawInfo->fWriteConfig = srcConfig; // These settings we will always want if a temp draw is performed. Initially set the config // to srcConfig, though that may be modified if we decide to do a R/G swap. tempDrawInfo->fTempSurfaceDesc.fFlags = kNone_GrSurfaceFlags; tempDrawInfo->fTempSurfaceDesc.fConfig = srcConfig; tempDrawInfo->fTempSurfaceDesc.fWidth = width; tempDrawInfo->fTempSurfaceDesc.fHeight = height; tempDrawInfo->fTempSurfaceDesc.fSampleCnt = 0; tempDrawInfo->fTempSurfaceDesc.fOrigin = kTopLeft_GrSurfaceOrigin; // no CPU y-flip for TL. bool configsAreRBSwaps = GrPixelConfigSwapRAndB(srcConfig) == dstSurface->config(); if (configsAreRBSwaps) { if (!this->caps()->isConfigTexturable(srcConfig)) { ElevateDrawPreference(drawPreference, kRequireDraw_DrawPreference); tempDrawInfo->fTempSurfaceDesc.fConfig = dstSurface->config(); tempDrawInfo->fSwizzle = GrSwizzle::BGRA(); tempDrawInfo->fWriteConfig = dstSurface->config(); } else if (this->glCaps().rgba8888PixelsOpsAreSlow() && kRGBA_8888_GrPixelConfig == srcConfig) { ElevateDrawPreference(drawPreference, kGpuPrefersDraw_DrawPreference); tempDrawInfo->fTempSurfaceDesc.fConfig = dstSurface->config(); tempDrawInfo->fSwizzle = GrSwizzle::BGRA(); tempDrawInfo->fWriteConfig = dstSurface->config(); } else if (kGLES_GrGLStandard == this->glStandard() && this->glCaps().bgraIsInternalFormat()) { // The internal format and external formats must match texture uploads so we can't // swizzle while uploading when BGRA is a distinct internal format. ElevateDrawPreference(drawPreference, kRequireDraw_DrawPreference); tempDrawInfo->fTempSurfaceDesc.fConfig = dstSurface->config(); tempDrawInfo->fSwizzle = GrSwizzle::BGRA(); tempDrawInfo->fWriteConfig = dstSurface->config(); } } if (!this->glCaps().unpackFlipYSupport() && kBottomLeft_GrSurfaceOrigin == dstSurface->origin()) { ElevateDrawPreference(drawPreference, kGpuPrefersDraw_DrawPreference); } return true; } static bool check_write_and_transfer_input(GrGLTexture* glTex, GrSurface* surface, GrPixelConfig config) { if (!glTex) { return false; } // OpenGL doesn't do sRGB <-> linear conversions when reading and writing pixels. if (GrPixelConfigIsSRGB(surface->config()) != GrPixelConfigIsSRGB(config)) { return false; } // Write or transfer of pixels is not implemented for TEXTURE_EXTERNAL textures if (GR_GL_TEXTURE_EXTERNAL == glTex->target()) { return false; } return true; } bool GrGLGpu::onWritePixels(GrSurface* surface, int left, int top, int width, int height, GrPixelConfig config, const SkTArray& texels) { GrGLTexture* glTex = static_cast(surface->asTexture()); if (!check_write_and_transfer_input(glTex, surface, config)) { return false; } this->setScratchTextureUnit(); GL_CALL(BindTexture(glTex->target(), glTex->textureID())); bool success = false; if (GrPixelConfigIsCompressed(glTex->desc().fConfig)) { // We check that config == desc.fConfig in GrGLGpu::canWriteTexturePixels() SkASSERT(config == glTex->desc().fConfig); success = this->uploadCompressedTexData(glTex->desc(), glTex->target(), texels, kWrite_UploadType, left, top, width, height); } else { success = this->uploadTexData(glTex->desc(), glTex->target(), kWrite_UploadType, left, top, width, height, config, texels); } if (success) { SkIRect rect = SkIRect::MakeXYWH(left, top, width, height); this->didWriteToSurface(surface, &rect); } return success; } bool GrGLGpu::onTransferPixels(GrSurface* surface, int left, int top, int width, int height, GrPixelConfig config, GrBuffer* transferBuffer, size_t offset, size_t rowBytes) { GrGLTexture* glTex = static_cast(surface->asTexture()); if (!check_write_and_transfer_input(glTex, surface, config)) { return false; } // For the moment, can't transfer compressed data if (GrPixelConfigIsCompressed(glTex->desc().fConfig)) { return false; } this->setScratchTextureUnit(); GL_CALL(BindTexture(glTex->target(), glTex->textureID())); SkASSERT(!transferBuffer->isMapped()); SkASSERT(!transferBuffer->isCPUBacked()); const GrGLBuffer* glBuffer = static_cast(transferBuffer); this->bindBuffer(kXferCpuToGpu_GrBufferType, glBuffer); bool success = false; GrMipLevel mipLevel; mipLevel.fPixels = transferBuffer; mipLevel.fRowBytes = rowBytes; SkSTArray<1, GrMipLevel> texels; texels.push_back(mipLevel); success = this->uploadTexData(glTex->desc(), glTex->target(), kTransfer_UploadType, left, top, width, height, config, texels); if (success) { SkIRect rect = SkIRect::MakeXYWH(left, top, width, height); this->didWriteToSurface(surface, &rect); return true; } return false; } // For GL_[UN]PACK_ALIGNMENT. static inline GrGLint config_alignment(GrPixelConfig config) { SkASSERT(!GrPixelConfigIsCompressed(config)); switch (config) { case kAlpha_8_GrPixelConfig: return 1; case kRGB_565_GrPixelConfig: case kRGBA_4444_GrPixelConfig: case kAlpha_half_GrPixelConfig: case kRGBA_half_GrPixelConfig: return 2; case kRGBA_8888_GrPixelConfig: case kBGRA_8888_GrPixelConfig: case kSRGBA_8888_GrPixelConfig: case kSBGRA_8888_GrPixelConfig: case kRGBA_float_GrPixelConfig: return 4; default: return 0; } } static inline GrGLenum check_alloc_error(const GrSurfaceDesc& desc, const GrGLInterface* interface) { if (SkToBool(desc.fFlags & kCheckAllocation_GrSurfaceFlag)) { return GR_GL_GET_ERROR(interface); } else { return CHECK_ALLOC_ERROR(interface); } } /** * Creates storage space for the texture and fills it with texels. * * @param desc The surface descriptor for the texture being created. * @param interface The GL interface in use. * @param caps The capabilities of the GL device. * @param internalFormat The data format used for the internal storage of the texture. * @param externalFormat The data format used for the external storage of the texture. * @param externalType The type of the data used for the external storage of the texture. * @param texels The texel data of the texture being created. * @param baseWidth The width of the texture's base mipmap level * @param baseHeight The height of the texture's base mipmap level * @param succeeded Set to true if allocating and populating the texture completed * without error. */ static bool allocate_and_populate_uncompressed_texture(const GrSurfaceDesc& desc, const GrGLInterface& interface, const GrGLCaps& caps, GrGLenum target, GrGLenum internalFormat, GrGLenum externalFormat, GrGLenum externalType, const SkTArray& texels, int baseWidth, int baseHeight) { CLEAR_ERROR_BEFORE_ALLOC(&interface); bool useTexStorage = caps.isConfigTexSupportEnabled(desc.fConfig); // We can only use TexStorage if we know we will not later change the storage requirements. // This means if we may later want to add mipmaps, we cannot use TexStorage. // Right now, we cannot know if we will later add mipmaps or not. // The only time we can use TexStorage is when we already have the // mipmaps. useTexStorage &= texels.count() > 1; if (useTexStorage) { // We never resize or change formats of textures. GL_ALLOC_CALL(&interface, TexStorage2D(target, texels.count(), internalFormat, desc.fWidth, desc.fHeight)); GrGLenum error = check_alloc_error(desc, &interface); if (error != GR_GL_NO_ERROR) { return false; } else { for (int currentMipLevel = 0; currentMipLevel < texels.count(); currentMipLevel++) { const void* currentMipData = texels[currentMipLevel].fPixels; if (currentMipData == nullptr) { continue; } int twoToTheMipLevel = 1 << currentMipLevel; int currentWidth = SkTMax(1, desc.fWidth / twoToTheMipLevel); int currentHeight = SkTMax(1, desc.fHeight / twoToTheMipLevel); GR_GL_CALL(&interface, TexSubImage2D(target, currentMipLevel, 0, // left 0, // top currentWidth, currentHeight, externalFormat, externalType, currentMipData)); } return true; } } else { if (texels.empty()) { GL_ALLOC_CALL(&interface, TexImage2D(target, 0, internalFormat, baseWidth, baseHeight, 0, // border externalFormat, externalType, nullptr)); GrGLenum error = check_alloc_error(desc, &interface); if (error != GR_GL_NO_ERROR) { return false; } } else { for (int currentMipLevel = 0; currentMipLevel < texels.count(); currentMipLevel++) { int twoToTheMipLevel = 1 << currentMipLevel; int currentWidth = SkTMax(1, baseWidth / twoToTheMipLevel); int currentHeight = SkTMax(1, baseHeight / twoToTheMipLevel); const void* currentMipData = texels[currentMipLevel].fPixels; // Even if curremtMipData is nullptr, continue to call TexImage2D. // This will allocate texture memory which we can later populate. GL_ALLOC_CALL(&interface, TexImage2D(target, currentMipLevel, internalFormat, currentWidth, currentHeight, 0, // border externalFormat, externalType, currentMipData)); GrGLenum error = check_alloc_error(desc, &interface); if (error != GR_GL_NO_ERROR) { return false; } } } } return true; } /** * Creates storage space for the texture and fills it with texels. * * @param desc The surface descriptor for the texture being created. * @param interface The GL interface in use. * @param caps The capabilities of the GL device. * @param internalFormat The data format used for the internal storage of the texture. * @param texels The texel data of the texture being created. */ static bool allocate_and_populate_compressed_texture(const GrSurfaceDesc& desc, const GrGLInterface& interface, const GrGLCaps& caps, GrGLenum target, GrGLenum internalFormat, const SkTArray& texels, int baseWidth, int baseHeight) { CLEAR_ERROR_BEFORE_ALLOC(&interface); bool useTexStorage = caps.isConfigTexSupportEnabled(desc.fConfig); // We can only use TexStorage if we know we will not later change the storage requirements. // This means if we may later want to add mipmaps, we cannot use TexStorage. // Right now, we cannot know if we will later add mipmaps or not. // The only time we can use TexStorage is when we already have the // mipmaps. useTexStorage &= texels.count() > 1; if (useTexStorage) { // We never resize or change formats of textures. GL_ALLOC_CALL(&interface, TexStorage2D(target, texels.count(), internalFormat, baseWidth, baseHeight)); GrGLenum error = check_alloc_error(desc, &interface); if (error != GR_GL_NO_ERROR) { return false; } else { for (int currentMipLevel = 0; currentMipLevel < texels.count(); currentMipLevel++) { const void* currentMipData = texels[currentMipLevel].fPixels; if (currentMipData == nullptr) { continue; } int twoToTheMipLevel = 1 << currentMipLevel; int currentWidth = SkTMax(1, baseWidth / twoToTheMipLevel); int currentHeight = SkTMax(1, baseHeight / twoToTheMipLevel); // Make sure that the width and height that we pass to OpenGL // is a multiple of the block size. size_t dataSize = GrCompressedFormatDataSize(desc.fConfig, currentWidth, currentHeight); GR_GL_CALL(&interface, CompressedTexSubImage2D(target, currentMipLevel, 0, // left 0, // top currentWidth, currentHeight, internalFormat, SkToInt(dataSize), currentMipData)); } } } else { for (int currentMipLevel = 0; currentMipLevel < texels.count(); currentMipLevel++) { int twoToTheMipLevel = 1 << currentMipLevel; int currentWidth = SkTMax(1, baseWidth / twoToTheMipLevel); int currentHeight = SkTMax(1, baseHeight / twoToTheMipLevel); // Make sure that the width and height that we pass to OpenGL // is a multiple of the block size. size_t dataSize = GrCompressedFormatDataSize(desc.fConfig, baseWidth, baseHeight); GL_ALLOC_CALL(&interface, CompressedTexImage2D(target, currentMipLevel, internalFormat, currentWidth, currentHeight, 0, // border SkToInt(dataSize), texels[currentMipLevel].fPixels)); GrGLenum error = check_alloc_error(desc, &interface); if (error != GR_GL_NO_ERROR) { return false; } } } return true; } /** * After a texture is created, any state which was altered during its creation * needs to be restored. * * @param interface The GL interface to use. * @param caps The capabilities of the GL device. * @param restoreGLRowLength Should the row length unpacking be restored? * @param glFlipY Did GL flip the texture vertically? */ static void restore_pixelstore_state(const GrGLInterface& interface, const GrGLCaps& caps, bool restoreGLRowLength, bool glFlipY) { if (restoreGLRowLength) { SkASSERT(caps.unpackRowLengthSupport()); GR_GL_CALL(&interface, PixelStorei(GR_GL_UNPACK_ROW_LENGTH, 0)); } if (glFlipY) { GR_GL_CALL(&interface, PixelStorei(GR_GL_UNPACK_FLIP_Y, GR_GL_FALSE)); } } bool GrGLGpu::uploadTexData(const GrSurfaceDesc& desc, GrGLenum target, UploadType uploadType, int left, int top, int width, int height, GrPixelConfig dataConfig, const SkTArray& texels) { // If we're uploading compressed data then we should be using uploadCompressedTexData SkASSERT(!GrPixelConfigIsCompressed(dataConfig)); SkASSERT(this->caps()->isConfigTexturable(desc.fConfig)); // texels is const. // But we may need to flip the texture vertically to prepare it. // Rather than flip in place and alter the incoming data, // we allocate a new buffer to flip into. // This means we need to make a non-const shallow copy of texels. SkTArray texelsShallowCopy(texels); for (int currentMipLevel = texelsShallowCopy.count() - 1; currentMipLevel >= 0; currentMipLevel--) { SkASSERT(texelsShallowCopy[currentMipLevel].fPixels || kTransfer_UploadType == uploadType); } const GrGLInterface* interface = this->glInterface(); const GrGLCaps& caps = this->glCaps(); size_t bpp = GrBytesPerPixel(dataConfig); if (width == 0 || height == 0) { return false; } for (int currentMipLevel = 0; currentMipLevel < texelsShallowCopy.count(); currentMipLevel++) { int twoToTheMipLevel = 1 << currentMipLevel; int currentWidth = SkTMax(1, width / twoToTheMipLevel); int currentHeight = SkTMax(1, height / twoToTheMipLevel); if (currentHeight > SK_MaxS32 || currentWidth > SK_MaxS32) { return false; } if (!GrSurfacePriv::AdjustWritePixelParams(desc.fWidth, desc.fHeight, bpp, &left, &top, ¤tWidth, ¤tHeight, &texelsShallowCopy[currentMipLevel].fPixels, &texelsShallowCopy[currentMipLevel].fRowBytes)) { return false; } if (currentWidth < 0 || currentHeight < 0) { return false; } } // Internal format comes from the texture desc. GrGLenum internalFormat; // External format and type come from the upload data. GrGLenum externalFormat; GrGLenum externalType; if (!this->glCaps().getTexImageFormats(desc.fConfig, dataConfig, &internalFormat, &externalFormat, &externalType)) { return false; } /* * Check whether to allocate a temporary buffer for flipping y or * because our srcData has extra bytes past each row. If so, we need * to trim those off here, since GL ES may not let us specify * GL_UNPACK_ROW_LENGTH. */ bool restoreGLRowLength = false; bool swFlipY = false; bool glFlipY = false; if (kBottomLeft_GrSurfaceOrigin == desc.fOrigin && !texelsShallowCopy.empty()) { if (caps.unpackFlipYSupport()) { glFlipY = true; } else { swFlipY = true; } } // in case we need a temporary, trimmed copy of the src pixels SkAutoSMalloc<128 * 128> tempStorage; // find the combined size of all the mip levels and the relative offset of // each into the collective buffer size_t combined_buffer_size = 0; SkTArray individual_mip_offsets(texelsShallowCopy.count()); for (int currentMipLevel = 0; currentMipLevel < texelsShallowCopy.count(); currentMipLevel++) { int twoToTheMipLevel = 1 << currentMipLevel; int currentWidth = SkTMax(1, width / twoToTheMipLevel); int currentHeight = SkTMax(1, height / twoToTheMipLevel); const size_t trimmedSize = currentWidth * bpp * currentHeight; individual_mip_offsets.push_back(combined_buffer_size); combined_buffer_size += trimmedSize; } char* buffer = (char*)tempStorage.reset(combined_buffer_size); for (int currentMipLevel = 0; currentMipLevel < texelsShallowCopy.count(); currentMipLevel++) { int twoToTheMipLevel = 1 << currentMipLevel; int currentWidth = SkTMax(1, width / twoToTheMipLevel); int currentHeight = SkTMax(1, height / twoToTheMipLevel); const size_t trimRowBytes = currentWidth * bpp; /* * check whether to allocate a temporary buffer for flipping y or * because our srcData has extra bytes past each row. If so, we need * to trim those off here, since GL ES may not let us specify * GL_UNPACK_ROW_LENGTH. */ restoreGLRowLength = false; const size_t rowBytes = texelsShallowCopy[currentMipLevel].fRowBytes; if (caps.unpackRowLengthSupport() && !swFlipY) { // can't use this for flipping, only non-neg values allowed. :( if (rowBytes != trimRowBytes) { GrGLint rowLength = static_cast(rowBytes / bpp); GR_GL_CALL(interface, PixelStorei(GR_GL_UNPACK_ROW_LENGTH, rowLength)); restoreGLRowLength = true; } } else if (kTransfer_UploadType != uploadType) { if (trimRowBytes != rowBytes || swFlipY) { // copy data into our new storage, skipping the trailing bytes const char* src = (const char*)texelsShallowCopy[currentMipLevel].fPixels; if (swFlipY && currentHeight >= 1) { src += (currentHeight - 1) * rowBytes; } char* dst = buffer + individual_mip_offsets[currentMipLevel]; for (int y = 0; y < currentHeight; y++) { memcpy(dst, src, trimRowBytes); if (swFlipY) { src -= rowBytes; } else { src += rowBytes; } dst += trimRowBytes; } // now point data to our copied version texelsShallowCopy[currentMipLevel].fPixels = buffer + individual_mip_offsets[currentMipLevel]; texelsShallowCopy[currentMipLevel].fRowBytes = trimRowBytes; } } else { return false; } } if (!texelsShallowCopy.empty()) { if (glFlipY) { GR_GL_CALL(interface, PixelStorei(GR_GL_UNPACK_FLIP_Y, GR_GL_TRUE)); } GR_GL_CALL(interface, PixelStorei(GR_GL_UNPACK_ALIGNMENT, config_alignment(desc.fConfig))); } bool succeeded = true; if (kNewTexture_UploadType == uploadType && 0 == left && 0 == top && desc.fWidth == width && desc.fHeight == height) { succeeded = allocate_and_populate_uncompressed_texture(desc, *interface, caps, target, internalFormat, externalFormat, externalType, texelsShallowCopy, width, height); } else { if (swFlipY || glFlipY) { top = desc.fHeight - (top + height); } for (int currentMipLevel = 0; currentMipLevel < texelsShallowCopy.count(); currentMipLevel++) { int twoToTheMipLevel = 1 << currentMipLevel; int currentWidth = SkTMax(1, width / twoToTheMipLevel); int currentHeight = SkTMax(1, height / twoToTheMipLevel); GL_CALL(TexSubImage2D(target, currentMipLevel, left, top, currentWidth, currentHeight, externalFormat, externalType, texelsShallowCopy[currentMipLevel].fPixels)); } } restore_pixelstore_state(*interface, caps, restoreGLRowLength, glFlipY); return succeeded; } // TODO: This function is using a lot of wonky semantics like, if width == -1 // then set width = desc.fWdith ... blah. A better way to do it might be to // create a CompressedTexData struct that takes a desc/ptr and figures out // the proper upload semantics. Then users can construct this function how they // see fit if they want to go against the "standard" way to do it. bool GrGLGpu::uploadCompressedTexData(const GrSurfaceDesc& desc, GrGLenum target, const SkTArray& texels, UploadType uploadType, int left, int top, int width, int height) { SkASSERT(this->caps()->isConfigTexturable(desc.fConfig)); // No support for software flip y, yet... SkASSERT(kBottomLeft_GrSurfaceOrigin != desc.fOrigin); const GrGLInterface* interface = this->glInterface(); const GrGLCaps& caps = this->glCaps(); if (-1 == width) { width = desc.fWidth; } #ifdef SK_DEBUG else { SkASSERT(width <= desc.fWidth); } #endif if (-1 == height) { height = desc.fHeight; } #ifdef SK_DEBUG else { SkASSERT(height <= desc.fHeight); } #endif // We only need the internal format for compressed 2D textures. GrGLenum internalFormat; if (!caps.getCompressedTexImageFormats(desc.fConfig, &internalFormat)) { return false; } if (kNewTexture_UploadType == uploadType) { return allocate_and_populate_compressed_texture(desc, *interface, caps, target, internalFormat, texels, width, height); } else { // Paletted textures can't be updated. if (GR_GL_PALETTE8_RGBA8 == internalFormat) { return false; } for (int currentMipLevel = 0; currentMipLevel < texels.count(); currentMipLevel++) { SkASSERT(texels[currentMipLevel].fPixels || kTransfer_UploadType == uploadType); int twoToTheMipLevel = 1 << currentMipLevel; int currentWidth = SkTMax(1, width / twoToTheMipLevel); int currentHeight = SkTMax(1, height / twoToTheMipLevel); // Make sure that the width and height that we pass to OpenGL // is a multiple of the block size. size_t dataSize = GrCompressedFormatDataSize(desc.fConfig, currentWidth, currentHeight); GL_CALL(CompressedTexSubImage2D(target, currentMipLevel, left, top, currentWidth, currentHeight, internalFormat, SkToInt(dataSize), texels[currentMipLevel].fPixels)); } } return true; } static bool renderbuffer_storage_msaa(const GrGLContext& ctx, int sampleCount, GrGLenum format, int width, int height) { CLEAR_ERROR_BEFORE_ALLOC(ctx.interface()); SkASSERT(GrGLCaps::kNone_MSFBOType != ctx.caps()->msFBOType()); switch (ctx.caps()->msFBOType()) { case GrGLCaps::kDesktop_ARB_MSFBOType: case GrGLCaps::kDesktop_EXT_MSFBOType: case GrGLCaps::kMixedSamples_MSFBOType: case GrGLCaps::kES_3_0_MSFBOType: GL_ALLOC_CALL(ctx.interface(), RenderbufferStorageMultisample(GR_GL_RENDERBUFFER, sampleCount, format, width, height)); break; case GrGLCaps::kES_Apple_MSFBOType: GL_ALLOC_CALL(ctx.interface(), RenderbufferStorageMultisampleES2APPLE(GR_GL_RENDERBUFFER, sampleCount, format, width, height)); break; case GrGLCaps::kES_EXT_MsToTexture_MSFBOType: case GrGLCaps::kES_IMG_MsToTexture_MSFBOType: GL_ALLOC_CALL(ctx.interface(), RenderbufferStorageMultisampleES2EXT(GR_GL_RENDERBUFFER, sampleCount, format, width, height)); break; case GrGLCaps::kNone_MSFBOType: SkFAIL("Shouldn't be here if we don't support multisampled renderbuffers."); break; } return (GR_GL_NO_ERROR == CHECK_ALLOC_ERROR(ctx.interface())); } bool GrGLGpu::createRenderTargetObjects(const GrSurfaceDesc& desc, GrGpuResource::LifeCycle lifeCycle, const GrGLTextureInfo& texInfo, GrGLRenderTarget::IDDesc* idDesc) { idDesc->fMSColorRenderbufferID = 0; idDesc->fRTFBOID = 0; idDesc->fTexFBOID = 0; idDesc->fLifeCycle = lifeCycle; idDesc->fSampleConfig = (GrGLCaps::kMixedSamples_MSFBOType == this->glCaps().msFBOType() && desc.fSampleCnt > 0) ? GrRenderTarget::kStencil_SampleConfig : GrRenderTarget::kUnified_SampleConfig; GrGLenum status; GrGLenum colorRenderbufferFormat = 0; // suppress warning if (desc.fSampleCnt > 0 && GrGLCaps::kNone_MSFBOType == this->glCaps().msFBOType()) { goto FAILED; } GL_CALL(GenFramebuffers(1, &idDesc->fTexFBOID)); if (!idDesc->fTexFBOID) { goto FAILED; } // If we are using multisampling we will create two FBOS. We render to one and then resolve to // the texture bound to the other. The exception is the IMG multisample extension. With this // extension the texture is multisampled when rendered to and then auto-resolves it when it is // rendered from. if (desc.fSampleCnt > 0 && this->glCaps().usesMSAARenderBuffers()) { GL_CALL(GenFramebuffers(1, &idDesc->fRTFBOID)); GL_CALL(GenRenderbuffers(1, &idDesc->fMSColorRenderbufferID)); if (!idDesc->fRTFBOID || !idDesc->fMSColorRenderbufferID) { goto FAILED; } if (!this->glCaps().getRenderbufferFormat(desc.fConfig, &colorRenderbufferFormat)) { return false; } } else { idDesc->fRTFBOID = idDesc->fTexFBOID; } // below here we may bind the FBO fHWBoundRenderTargetUniqueID = SK_InvalidUniqueID; if (idDesc->fRTFBOID != idDesc->fTexFBOID) { SkASSERT(desc.fSampleCnt > 0); GL_CALL(BindRenderbuffer(GR_GL_RENDERBUFFER, idDesc->fMSColorRenderbufferID)); if (!renderbuffer_storage_msaa(*fGLContext, desc.fSampleCnt, colorRenderbufferFormat, desc.fWidth, desc.fHeight)) { goto FAILED; } fStats.incRenderTargetBinds(); GL_CALL(BindFramebuffer(GR_GL_FRAMEBUFFER, idDesc->fRTFBOID)); GL_CALL(FramebufferRenderbuffer(GR_GL_FRAMEBUFFER, GR_GL_COLOR_ATTACHMENT0, GR_GL_RENDERBUFFER, idDesc->fMSColorRenderbufferID)); if ((desc.fFlags & kCheckAllocation_GrSurfaceFlag) || !this->glCaps().isConfigVerifiedColorAttachment(desc.fConfig)) { GL_CALL_RET(status, CheckFramebufferStatus(GR_GL_FRAMEBUFFER)); if (status != GR_GL_FRAMEBUFFER_COMPLETE) { goto FAILED; } fGLContext->caps()->markConfigAsValidColorAttachment(desc.fConfig); } } fStats.incRenderTargetBinds(); GL_CALL(BindFramebuffer(GR_GL_FRAMEBUFFER, idDesc->fTexFBOID)); if (this->glCaps().usesImplicitMSAAResolve() && desc.fSampleCnt > 0) { GL_CALL(FramebufferTexture2DMultisample(GR_GL_FRAMEBUFFER, GR_GL_COLOR_ATTACHMENT0, texInfo.fTarget, texInfo.fID, 0, desc.fSampleCnt)); } else { GL_CALL(FramebufferTexture2D(GR_GL_FRAMEBUFFER, GR_GL_COLOR_ATTACHMENT0, texInfo.fTarget, texInfo.fID, 0)); } if ((desc.fFlags & kCheckAllocation_GrSurfaceFlag) || !this->glCaps().isConfigVerifiedColorAttachment(desc.fConfig)) { GL_CALL_RET(status, CheckFramebufferStatus(GR_GL_FRAMEBUFFER)); if (status != GR_GL_FRAMEBUFFER_COMPLETE) { goto FAILED; } fGLContext->caps()->markConfigAsValidColorAttachment(desc.fConfig); } return true; FAILED: if (idDesc->fMSColorRenderbufferID) { GL_CALL(DeleteRenderbuffers(1, &idDesc->fMSColorRenderbufferID)); } if (idDesc->fRTFBOID != idDesc->fTexFBOID) { GL_CALL(DeleteFramebuffers(1, &idDesc->fRTFBOID)); } if (idDesc->fTexFBOID) { GL_CALL(DeleteFramebuffers(1, &idDesc->fTexFBOID)); } return false; } // good to set a break-point here to know when createTexture fails static GrTexture* return_null_texture() { // SkDEBUGFAIL("null texture"); return nullptr; } #if 0 && defined(SK_DEBUG) static size_t as_size_t(int x) { return x; } #endif static GrGLTexture::IDDesc generate_gl_texture(const GrGLInterface* interface, GrGpuResource::LifeCycle lifeCycle) { GrGLTexture::IDDesc idDesc; idDesc.fInfo.fID = 0; GR_GL_CALL(interface, GenTextures(1, &idDesc.fInfo.fID)); idDesc.fLifeCycle = lifeCycle; // When we create the texture, we only // create GL_TEXTURE_2D at the moment. // External clients can do something different. idDesc.fInfo.fTarget = GR_GL_TEXTURE_2D; return idDesc; } static void set_initial_texture_params(const GrGLInterface* interface, const GrGLTextureInfo& info, GrGLTexture::TexParams* initialTexParams) { // Some drivers like to know filter/wrap before seeing glTexImage2D. Some // drivers have a bug where an FBO won't be complete if it includes a // texture that is not mipmap complete (considering the filter in use). // we only set a subset here so invalidate first initialTexParams->invalidate(); initialTexParams->fMinFilter = GR_GL_NEAREST; initialTexParams->fMagFilter = GR_GL_NEAREST; initialTexParams->fWrapS = GR_GL_CLAMP_TO_EDGE; initialTexParams->fWrapT = GR_GL_CLAMP_TO_EDGE; GR_GL_CALL(interface, TexParameteri(info.fTarget, GR_GL_TEXTURE_MAG_FILTER, initialTexParams->fMagFilter)); GR_GL_CALL(interface, TexParameteri(info.fTarget, GR_GL_TEXTURE_MIN_FILTER, initialTexParams->fMinFilter)); GR_GL_CALL(interface, TexParameteri(info.fTarget, GR_GL_TEXTURE_WRAP_S, initialTexParams->fWrapS)); GR_GL_CALL(interface, TexParameteri(info.fTarget, GR_GL_TEXTURE_WRAP_T, initialTexParams->fWrapT)); } GrTexture* GrGLGpu::onCreateTexture(const GrSurfaceDesc& desc, GrGpuResource::LifeCycle lifeCycle, const SkTArray& texels) { // We fail if the MSAA was requested and is not available. if (GrGLCaps::kNone_MSFBOType == this->glCaps().msFBOType() && desc.fSampleCnt) { //SkDebugf("MSAA RT requested but not supported on this platform."); return return_null_texture(); } bool renderTarget = SkToBool(desc.fFlags & kRenderTarget_GrSurfaceFlag); GrGLTexture::IDDesc idDesc; idDesc.fLifeCycle = lifeCycle; GrGLTexture::TexParams initialTexParams; if (!this->createTextureImpl(desc, &idDesc.fInfo, renderTarget, &initialTexParams, texels)) { return return_null_texture(); } GrGLTexture* tex; if (renderTarget) { // unbind the texture from the texture unit before binding it to the frame buffer GL_CALL(BindTexture(idDesc.fInfo.fTarget, 0)); GrGLRenderTarget::IDDesc rtIDDesc; if (!this->createRenderTargetObjects(desc, lifeCycle, idDesc.fInfo, &rtIDDesc)) { GL_CALL(DeleteTextures(1, &idDesc.fInfo.fID)); return return_null_texture(); } tex = new GrGLTextureRenderTarget(this, desc, idDesc, rtIDDesc); } else { bool wasMipMapDataProvided = false; if (texels.count() > 1) { wasMipMapDataProvided = true; } tex = new GrGLTexture(this, desc, idDesc, wasMipMapDataProvided); } tex->setCachedTexParams(initialTexParams, this->getResetTimestamp()); #ifdef TRACE_TEXTURE_CREATION SkDebugf("--- new texture [%d] size=(%d %d) config=%d\n", glTexDesc.fInfo.fID, desc.fWidth, desc.fHeight, desc.fConfig); #endif return tex; } GrTexture* GrGLGpu::onCreateCompressedTexture(const GrSurfaceDesc& desc, GrGpuResource::LifeCycle lifeCycle, const SkTArray& texels) { // Make sure that we're not flipping Y. if (kBottomLeft_GrSurfaceOrigin == desc.fOrigin) { return return_null_texture(); } GrGLTexture::IDDesc idDesc = generate_gl_texture(this->glInterface(), lifeCycle); if (!idDesc.fInfo.fID) { return return_null_texture(); } this->setScratchTextureUnit(); GL_CALL(BindTexture(idDesc.fInfo.fTarget, idDesc.fInfo.fID)); GrGLTexture::TexParams initialTexParams; set_initial_texture_params(this->glInterface(), idDesc.fInfo, &initialTexParams); if (!this->uploadCompressedTexData(desc, idDesc.fInfo.fTarget, texels)) { GL_CALL(DeleteTextures(1, &idDesc.fInfo.fID)); return return_null_texture(); } GrGLTexture* tex; tex = new GrGLTexture(this, desc, idDesc); tex->setCachedTexParams(initialTexParams, this->getResetTimestamp()); #ifdef TRACE_TEXTURE_CREATION SkDebugf("--- new compressed texture [%d] size=(%d %d) config=%d\n", glTexDesc.fInfo.fID, desc.fWidth, desc.fHeight, desc.fConfig); #endif return tex; } namespace { const GrGLuint kUnknownBitCount = GrGLStencilAttachment::kUnknownBitCount; void inline get_stencil_rb_sizes(const GrGLInterface* gl, GrGLStencilAttachment::Format* format) { // we shouldn't ever know one size and not the other SkASSERT((kUnknownBitCount == format->fStencilBits) == (kUnknownBitCount == format->fTotalBits)); if (kUnknownBitCount == format->fStencilBits) { GR_GL_GetRenderbufferParameteriv(gl, GR_GL_RENDERBUFFER, GR_GL_RENDERBUFFER_STENCIL_SIZE, (GrGLint*)&format->fStencilBits); if (format->fPacked) { GR_GL_GetRenderbufferParameteriv(gl, GR_GL_RENDERBUFFER, GR_GL_RENDERBUFFER_DEPTH_SIZE, (GrGLint*)&format->fTotalBits); format->fTotalBits += format->fStencilBits; } else { format->fTotalBits = format->fStencilBits; } } } } int GrGLGpu::getCompatibleStencilIndex(GrPixelConfig config) { static const int kSize = 16; SkASSERT(this->caps()->isConfigRenderable(config, false)); if (!this->glCaps().hasStencilFormatBeenDeterminedForConfig(config)) { // Default to unsupported, set this if we find a stencil format that works. int firstWorkingStencilFormatIndex = -1; // Create color texture GrGLuint colorID = 0; GL_CALL(GenTextures(1, &colorID)); this->setScratchTextureUnit(); GL_CALL(BindTexture(GR_GL_TEXTURE_2D, colorID)); GL_CALL(TexParameteri(GR_GL_TEXTURE_2D, GR_GL_TEXTURE_MAG_FILTER, GR_GL_NEAREST)); GL_CALL(TexParameteri(GR_GL_TEXTURE_2D, GR_GL_TEXTURE_MIN_FILTER, GR_GL_NEAREST)); GL_CALL(TexParameteri(GR_GL_TEXTURE_2D, GR_GL_TEXTURE_WRAP_S, GR_GL_CLAMP_TO_EDGE)); GL_CALL(TexParameteri(GR_GL_TEXTURE_2D, GR_GL_TEXTURE_WRAP_T, GR_GL_CLAMP_TO_EDGE)); GrGLenum internalFormat; GrGLenum externalFormat; GrGLenum externalType; if (!this->glCaps().getTexImageFormats(config, config, &internalFormat, &externalFormat, &externalType)) { return false; } CLEAR_ERROR_BEFORE_ALLOC(this->glInterface()); GL_ALLOC_CALL(this->glInterface(), TexImage2D(GR_GL_TEXTURE_2D, 0, internalFormat, kSize, kSize, 0, externalFormat, externalType, NULL)); if (GR_GL_NO_ERROR != CHECK_ALLOC_ERROR(this->glInterface())) { GL_CALL(DeleteTextures(1, &colorID)); return -1; } // unbind the texture from the texture unit before binding it to the frame buffer GL_CALL(BindTexture(GR_GL_TEXTURE_2D, 0)); // Create Framebuffer GrGLuint fb = 0; GL_CALL(GenFramebuffers(1, &fb)); GL_CALL(BindFramebuffer(GR_GL_FRAMEBUFFER, fb)); fHWBoundRenderTargetUniqueID = SK_InvalidUniqueID; GL_CALL(FramebufferTexture2D(GR_GL_FRAMEBUFFER, GR_GL_COLOR_ATTACHMENT0, GR_GL_TEXTURE_2D, colorID, 0)); GrGLuint sbRBID = 0; GL_CALL(GenRenderbuffers(1, &sbRBID)); // look over formats till I find a compatible one int stencilFmtCnt = this->glCaps().stencilFormats().count(); if (sbRBID) { GL_CALL(BindRenderbuffer(GR_GL_RENDERBUFFER, sbRBID)); for (int i = 0; i < stencilFmtCnt && sbRBID; ++i) { const GrGLCaps::StencilFormat& sFmt = this->glCaps().stencilFormats()[i]; CLEAR_ERROR_BEFORE_ALLOC(this->glInterface()); GL_ALLOC_CALL(this->glInterface(), RenderbufferStorage(GR_GL_RENDERBUFFER, sFmt.fInternalFormat, kSize, kSize)); if (GR_GL_NO_ERROR == CHECK_ALLOC_ERROR(this->glInterface())) { GL_CALL(FramebufferRenderbuffer(GR_GL_FRAMEBUFFER, GR_GL_STENCIL_ATTACHMENT, GR_GL_RENDERBUFFER, sbRBID)); if (sFmt.fPacked) { GL_CALL(FramebufferRenderbuffer(GR_GL_FRAMEBUFFER, GR_GL_DEPTH_ATTACHMENT, GR_GL_RENDERBUFFER, sbRBID)); } else { GL_CALL(FramebufferRenderbuffer(GR_GL_FRAMEBUFFER, GR_GL_DEPTH_ATTACHMENT, GR_GL_RENDERBUFFER, 0)); } GrGLenum status; GL_CALL_RET(status, CheckFramebufferStatus(GR_GL_FRAMEBUFFER)); if (status == GR_GL_FRAMEBUFFER_COMPLETE) { firstWorkingStencilFormatIndex = i; break; } GL_CALL(FramebufferRenderbuffer(GR_GL_FRAMEBUFFER, GR_GL_STENCIL_ATTACHMENT, GR_GL_RENDERBUFFER, 0)); if (sFmt.fPacked) { GL_CALL(FramebufferRenderbuffer(GR_GL_FRAMEBUFFER, GR_GL_DEPTH_ATTACHMENT, GR_GL_RENDERBUFFER, 0)); } } } GL_CALL(DeleteRenderbuffers(1, &sbRBID)); } GL_CALL(DeleteTextures(1, &colorID)); GL_CALL(BindFramebuffer(GR_GL_FRAMEBUFFER, 0)); GL_CALL(DeleteFramebuffers(1, &fb)); fGLContext->caps()->setStencilFormatIndexForConfig(config, firstWorkingStencilFormatIndex); } return this->glCaps().getStencilFormatIndexForConfig(config); } bool GrGLGpu::createTextureImpl(const GrSurfaceDesc& desc, GrGLTextureInfo* info, bool renderTarget, GrGLTexture::TexParams* initialTexParams, const SkTArray& texels) { info->fID = 0; info->fTarget = GR_GL_TEXTURE_2D; GL_CALL(GenTextures(1, &(info->fID))); if (!info->fID) { return false; } this->setScratchTextureUnit(); GL_CALL(BindTexture(info->fTarget, info->fID)); if (renderTarget && this->glCaps().textureUsageSupport()) { // provides a hint about how this texture will be used GL_CALL(TexParameteri(info->fTarget, GR_GL_TEXTURE_USAGE, GR_GL_FRAMEBUFFER_ATTACHMENT)); } if (info) { set_initial_texture_params(this->glInterface(), *info, initialTexParams); } if (!this->uploadTexData(desc, info->fTarget, kNewTexture_UploadType, 0, 0, desc.fWidth, desc.fHeight, desc.fConfig, texels)) { GL_CALL(DeleteTextures(1, &(info->fID))); return false; } return true; } GrStencilAttachment* GrGLGpu::createStencilAttachmentForRenderTarget(const GrRenderTarget* rt, int width, int height) { SkASSERT(width >= rt->width()); SkASSERT(height >= rt->height()); int samples = rt->numStencilSamples(); GrGLStencilAttachment::IDDesc sbDesc; int sIdx = this->getCompatibleStencilIndex(rt->config()); if (sIdx < 0) { return nullptr; } if (!sbDesc.fRenderbufferID) { GL_CALL(GenRenderbuffers(1, &sbDesc.fRenderbufferID)); } if (!sbDesc.fRenderbufferID) { return nullptr; } GL_CALL(BindRenderbuffer(GR_GL_RENDERBUFFER, sbDesc.fRenderbufferID)); const GrGLCaps::StencilFormat& sFmt = this->glCaps().stencilFormats()[sIdx]; CLEAR_ERROR_BEFORE_ALLOC(this->glInterface()); // we do this "if" so that we don't call the multisample // version on a GL that doesn't have an MSAA extension. if (samples > 0) { SkAssertResult(renderbuffer_storage_msaa(*fGLContext, samples, sFmt.fInternalFormat, width, height)); } else { GL_ALLOC_CALL(this->glInterface(), RenderbufferStorage(GR_GL_RENDERBUFFER, sFmt.fInternalFormat, width, height)); SkASSERT(GR_GL_NO_ERROR == check_alloc_error(rt->desc(), this->glInterface())); } fStats.incStencilAttachmentCreates(); // After sized formats we attempt an unsized format and take // whatever sizes GL gives us. In that case we query for the size. GrGLStencilAttachment::Format format = sFmt; get_stencil_rb_sizes(this->glInterface(), &format); GrGLStencilAttachment* stencil = new GrGLStencilAttachment(this, sbDesc, width, height, samples, format); return stencil; } //////////////////////////////////////////////////////////////////////////////// // GL_STREAM_DRAW triggers an optimization in Chromium's GPU process where a client's vertex buffer // objects are implemented as client-side-arrays on tile-deferred architectures. #define DYNAMIC_USAGE_PARAM GR_GL_STREAM_DRAW GrBuffer* GrGLGpu::onCreateBuffer(size_t size, GrBufferType intendedType, GrAccessPattern accessPattern, const void* data) { return GrGLBuffer::Create(this, size, intendedType, accessPattern, data); } void GrGLGpu::flushScissor(const GrScissorState& scissorState, const GrGLIRect& rtViewport, GrSurfaceOrigin rtOrigin) { if (scissorState.enabled()) { GrGLIRect scissor; scissor.setRelativeTo(rtViewport, scissorState.rect().fLeft, scissorState.rect().fTop, scissorState.rect().width(), scissorState.rect().height(), rtOrigin); // if the scissor fully contains the viewport then we fall through and // disable the scissor test. if (!scissor.contains(rtViewport)) { if (fHWScissorSettings.fRect != scissor) { scissor.pushToGLScissor(this->glInterface()); fHWScissorSettings.fRect = scissor; } if (kYes_TriState != fHWScissorSettings.fEnabled) { GL_CALL(Enable(GR_GL_SCISSOR_TEST)); fHWScissorSettings.fEnabled = kYes_TriState; } return; } } // See fall through note above this->disableScissor(); } void GrGLGpu::flushMinSampleShading(float minSampleShading) { if (fHWMinSampleShading != minSampleShading) { if (minSampleShading > 0.0) { GL_CALL(Enable(GR_GL_SAMPLE_SHADING)); GL_CALL(MinSampleShading(minSampleShading)); } else { GL_CALL(Disable(GR_GL_SAMPLE_SHADING)); } fHWMinSampleShading = minSampleShading; } } bool GrGLGpu::flushGLState(const GrPipeline& pipeline, const GrPrimitiveProcessor& primProc) { GrXferProcessor::BlendInfo blendInfo; pipeline.getXferProcessor().getBlendInfo(&blendInfo); this->flushColorWrite(blendInfo.fWriteColor); this->flushDrawFace(pipeline.getDrawFace()); this->flushMinSampleShading(primProc.getSampleShading()); SkAutoTUnref program(fProgramCache->refProgram(this, pipeline, primProc)); if (!program) { GrCapsDebugf(this->caps(), "Failed to create program!\n"); return false; } GrGLuint programID = program->programID(); if (fHWProgramID != programID) { GL_CALL(UseProgram(programID)); fHWProgramID = programID; } if (blendInfo.fWriteColor) { // Swizzle the blend to match what the shader will output. const GrSwizzle& swizzle = this->glCaps().glslCaps()->configOutputSwizzle( pipeline.getRenderTarget()->config()); this->flushBlend(blendInfo, swizzle); } program->setData(primProc, pipeline); GrGLRenderTarget* glRT = static_cast(pipeline.getRenderTarget()); this->flushStencil(pipeline.getStencil()); this->flushScissor(pipeline.getScissorState(), glRT->getViewport(), glRT->origin()); this->flushHWAAState(glRT, pipeline.isHWAntialiasState(), !pipeline.getStencil().isDisabled()); // This must come after textures are flushed because a texture may need // to be msaa-resolved (which will modify bound FBO state). this->flushRenderTarget(glRT, nullptr, pipeline.getDisableOutputConversionToSRGB()); return true; } void GrGLGpu::setupGeometry(const GrPrimitiveProcessor& primProc, const GrNonInstancedMesh& mesh, size_t* indexOffsetInBytes) { const GrGLBuffer* vbuf; vbuf = static_cast(mesh.vertexBuffer()); SkASSERT(vbuf); SkASSERT(!vbuf->isMapped()); GrGLAttribArrayState* attribState; if (mesh.isIndexed()) { SkASSERT(indexOffsetInBytes); *indexOffsetInBytes = 0; const GrGLBuffer* ibuf = static_cast(mesh.indexBuffer()); SkASSERT(ibuf); SkASSERT(!ibuf->isMapped()); *indexOffsetInBytes += ibuf->baseOffset(); attribState = fHWVertexArrayState.bindInternalVertexArray(this, ibuf); } else { attribState = fHWVertexArrayState.bindInternalVertexArray(this); } int vaCount = primProc.numAttribs(); if (vaCount > 0) { GrGLsizei stride = static_cast(primProc.getVertexStride()); size_t vertexOffsetInBytes = stride * mesh.startVertex(); vertexOffsetInBytes += vbuf->baseOffset(); uint32_t usedAttribArraysMask = 0; size_t offset = 0; for (int attribIndex = 0; attribIndex < vaCount; attribIndex++) { const GrGeometryProcessor::Attribute& attrib = primProc.getAttrib(attribIndex); usedAttribArraysMask |= (1 << attribIndex); GrVertexAttribType attribType = attrib.fType; attribState->set(this, attribIndex, vbuf, attribType, stride, reinterpret_cast(vertexOffsetInBytes + offset)); offset += attrib.fOffset; } attribState->disableUnusedArrays(this, usedAttribArraysMask); } } GrGLenum GrGLGpu::bindBuffer(GrBufferType type, const GrGLBuffer* buffer) { this->handleDirtyContext(); // Index buffer state is tied to the vertex array. if (kIndex_GrBufferType == type) { this->bindVertexArray(0); } SkASSERT(type >= 0 && type <= kLast_GrBufferType); auto& bufferState = fHWBufferState[type]; if (buffer->getUniqueID() != bufferState.fBoundBufferUniqueID) { if (!buffer->isCPUBacked() || !bufferState.fBufferZeroKnownBound) { GL_CALL(BindBuffer(bufferState.fGLTarget, buffer->bufferID())); bufferState.fBufferZeroKnownBound = buffer->isCPUBacked(); } bufferState.fBoundBufferUniqueID = buffer->getUniqueID(); } return bufferState.fGLTarget; } void GrGLGpu::notifyBufferReleased(const GrGLBuffer* buffer) { if (buffer->hasAttachedToTexture()) { // Detach this buffer from any textures to ensure the underlying memory is freed. uint32_t uniqueID = buffer->getUniqueID(); for (int i = fHWMaxUsedBufferTextureUnit; i >= 0; --i) { auto& buffTex = fHWBufferTextures[i]; if (uniqueID != buffTex.fAttachedBufferUniqueID) { continue; } if (i == fHWMaxUsedBufferTextureUnit) { --fHWMaxUsedBufferTextureUnit; } this->setTextureUnit(i); if (!buffTex.fKnownBound) { SkASSERT(buffTex.fTextureID); GL_CALL(BindTexture(GR_GL_TEXTURE_BUFFER, buffTex.fTextureID)); buffTex.fKnownBound = true; } GL_CALL(TexBuffer(GR_GL_TEXTURE_BUFFER, this->glCaps().configSizedInternalFormat(buffTex.fTexelConfig), 0)); } } } void GrGLGpu::disableScissor() { if (kNo_TriState != fHWScissorSettings.fEnabled) { GL_CALL(Disable(GR_GL_SCISSOR_TEST)); fHWScissorSettings.fEnabled = kNo_TriState; return; } } void GrGLGpu::onClear(GrRenderTarget* target, const SkIRect& rect, GrColor color) { // parent class should never let us get here with no RT SkASSERT(target); GrGLRenderTarget* glRT = static_cast(target); this->flushRenderTarget(glRT, &rect); GrScissorState scissorState; scissorState.set(rect); this->flushScissor(scissorState, glRT->getViewport(), glRT->origin()); GrGLfloat r, g, b, a; static const GrGLfloat scale255 = 1.f / 255.f; a = GrColorUnpackA(color) * scale255; GrGLfloat scaleRGB = scale255; r = GrColorUnpackR(color) * scaleRGB; g = GrColorUnpackG(color) * scaleRGB; b = GrColorUnpackB(color) * scaleRGB; GL_CALL(ColorMask(GR_GL_TRUE, GR_GL_TRUE, GR_GL_TRUE, GR_GL_TRUE)); fHWWriteToColor = kYes_TriState; GL_CALL(ClearColor(r, g, b, a)); GL_CALL(Clear(GR_GL_COLOR_BUFFER_BIT)); } void GrGLGpu::discard(GrRenderTarget* renderTarget) { SkASSERT(renderTarget); if (!this->caps()->discardRenderTargetSupport()) { return; } GrGLRenderTarget* glRT = static_cast(renderTarget); if (renderTarget->getUniqueID() != fHWBoundRenderTargetUniqueID) { fHWBoundRenderTargetUniqueID = SK_InvalidUniqueID; fStats.incRenderTargetBinds(); GL_CALL(BindFramebuffer(GR_GL_FRAMEBUFFER, glRT->renderFBOID())); } switch (this->glCaps().invalidateFBType()) { case GrGLCaps::kNone_InvalidateFBType: SkFAIL("Should never get here."); break; case GrGLCaps::kInvalidate_InvalidateFBType: if (0 == glRT->renderFBOID()) { // When rendering to the default framebuffer the legal values for attachments // are GL_COLOR, GL_DEPTH, GL_STENCIL, ... rather than the various FBO attachment // types. static const GrGLenum attachments[] = { GR_GL_COLOR }; GL_CALL(InvalidateFramebuffer(GR_GL_FRAMEBUFFER, SK_ARRAY_COUNT(attachments), attachments)); } else { static const GrGLenum attachments[] = { GR_GL_COLOR_ATTACHMENT0 }; GL_CALL(InvalidateFramebuffer(GR_GL_FRAMEBUFFER, SK_ARRAY_COUNT(attachments), attachments)); } break; case GrGLCaps::kDiscard_InvalidateFBType: { if (0 == glRT->renderFBOID()) { // When rendering to the default framebuffer the legal values for attachments // are GL_COLOR, GL_DEPTH, GL_STENCIL, ... rather than the various FBO attachment // types. See glDiscardFramebuffer() spec. static const GrGLenum attachments[] = { GR_GL_COLOR }; GL_CALL(DiscardFramebuffer(GR_GL_FRAMEBUFFER, SK_ARRAY_COUNT(attachments), attachments)); } else { static const GrGLenum attachments[] = { GR_GL_COLOR_ATTACHMENT0 }; GL_CALL(DiscardFramebuffer(GR_GL_FRAMEBUFFER, SK_ARRAY_COUNT(attachments), attachments)); } break; } } renderTarget->flagAsResolved(); } void GrGLGpu::clearStencil(GrRenderTarget* target) { if (nullptr == target) { return; } GrGLRenderTarget* glRT = static_cast(target); this->flushRenderTarget(glRT, &SkIRect::EmptyIRect()); this->disableScissor(); GL_CALL(StencilMask(0xffffffff)); GL_CALL(ClearStencil(0)); GL_CALL(Clear(GR_GL_STENCIL_BUFFER_BIT)); fHWStencilSettings.invalidate(); } void GrGLGpu::onClearStencilClip(GrRenderTarget* target, const SkIRect& rect, bool insideClip) { SkASSERT(target); GrStencilAttachment* sb = target->renderTargetPriv().getStencilAttachment(); // this should only be called internally when we know we have a // stencil buffer. SkASSERT(sb); GrGLint stencilBitCount = sb->bits(); #if 0 SkASSERT(stencilBitCount > 0); GrGLint clipStencilMask = (1 << (stencilBitCount - 1)); #else // we could just clear the clip bit but when we go through // ANGLE a partial stencil mask will cause clears to be // turned into draws. Our contract on GrDrawTarget says that // changing the clip between stencil passes may or may not // zero the client's clip bits. So we just clear the whole thing. static const GrGLint clipStencilMask = ~0; #endif GrGLint value; if (insideClip) { value = (1 << (stencilBitCount - 1)); } else { value = 0; } GrGLRenderTarget* glRT = static_cast(target); this->flushRenderTarget(glRT, &SkIRect::EmptyIRect()); GrScissorState scissorState; scissorState.set(rect); this->flushScissor(scissorState, glRT->getViewport(), glRT->origin()); GL_CALL(StencilMask((uint32_t) clipStencilMask)); GL_CALL(ClearStencil(value)); GL_CALL(Clear(GR_GL_STENCIL_BUFFER_BIT)); fHWStencilSettings.invalidate(); } static bool read_pixels_pays_for_y_flip(GrRenderTarget* renderTarget, const GrGLCaps& caps, int width, int height, GrPixelConfig config, size_t rowBytes) { // If this render target is already TopLeft, we don't need to flip. if (kTopLeft_GrSurfaceOrigin == renderTarget->origin()) { return false; } // If the read is really small or smaller than the min texture size, don't force a draw. static const int kMinSize = 32; if (width < kMinSize || height < kMinSize) { return false; } // if GL can do the flip then we'll never pay for it. if (caps.packFlipYSupport()) { return false; } // If we have to do memcpy to handle non-trim rowBytes then we // get the flip for free. Otherwise it costs. // Note that we're assuming that 0 rowBytes has already been handled and that the width has been // clipped. return caps.packRowLengthSupport() || GrBytesPerPixel(config) * width == rowBytes; } bool GrGLGpu::readPixelsSupported(GrRenderTarget* target, GrPixelConfig readConfig) { auto bindRenderTarget = [this, target]() -> bool { this->flushRenderTarget(static_cast(target), &SkIRect::EmptyIRect()); return true; }; auto getIntegerv = [this](GrGLenum query, GrGLint* value) { GR_GL_GetIntegerv(this->glInterface(), query, value); }; GrPixelConfig rtConfig = target->config(); return this->glCaps().readPixelsSupported(rtConfig, readConfig, getIntegerv, bindRenderTarget); } bool GrGLGpu::readPixelsSupported(GrPixelConfig rtConfig, GrPixelConfig readConfig) { auto bindRenderTarget = [this, rtConfig]() -> bool { GrTextureDesc desc; desc.fConfig = rtConfig; desc.fWidth = desc.fHeight = 16; desc.fFlags = kRenderTarget_GrSurfaceFlag; SkAutoTUnref temp(this->createTexture(desc, SkBudgeted::kNo)); if (!temp) { return false; } GrGLRenderTarget* glrt = static_cast(temp->asRenderTarget()); this->flushRenderTarget(glrt, &SkIRect::EmptyIRect()); return true; }; auto getIntegerv = [this](GrGLenum query, GrGLint* value) { GR_GL_GetIntegerv(this->glInterface(), query, value); }; return this->glCaps().readPixelsSupported(rtConfig, readConfig, getIntegerv, bindRenderTarget); } bool GrGLGpu::readPixelsSupported(GrSurface* surfaceForConfig, GrPixelConfig readConfig) { if (GrRenderTarget* rt = surfaceForConfig->asRenderTarget()) { return this->readPixelsSupported(rt, readConfig); } else { GrPixelConfig config = surfaceForConfig->config(); return this->readPixelsSupported(config, readConfig); } } static bool requires_srgb_conversion(GrPixelConfig a, GrPixelConfig b) { if (GrPixelConfigIsSRGB(a)) { return !GrPixelConfigIsSRGB(b) && !GrPixelConfigIsAlphaOnly(b); } else if (GrPixelConfigIsSRGB(b)) { return !GrPixelConfigIsSRGB(a) && !GrPixelConfigIsAlphaOnly(a); } return false; } bool GrGLGpu::onGetReadPixelsInfo(GrSurface* srcSurface, int width, int height, size_t rowBytes, GrPixelConfig readConfig, DrawPreference* drawPreference, ReadPixelTempDrawInfo* tempDrawInfo) { GrPixelConfig srcConfig = srcSurface->config(); // These settings we will always want if a temp draw is performed. tempDrawInfo->fTempSurfaceDesc.fFlags = kRenderTarget_GrSurfaceFlag; tempDrawInfo->fTempSurfaceDesc.fWidth = width; tempDrawInfo->fTempSurfaceDesc.fHeight = height; tempDrawInfo->fTempSurfaceDesc.fSampleCnt = 0; tempDrawInfo->fTempSurfaceDesc.fOrigin = kTopLeft_GrSurfaceOrigin; // no CPU y-flip for TL. tempDrawInfo->fUseExactScratch = this->glCaps().partialFBOReadIsSlow(); // For now assume no swizzling, we may change that below. tempDrawInfo->fSwizzle = GrSwizzle::RGBA(); // Depends on why we need/want a temp draw. Start off assuming no change, the surface we read // from will be srcConfig and we will read readConfig pixels from it. // Not that if we require a draw and return a non-renderable format for the temp surface the // base class will fail for us. tempDrawInfo->fTempSurfaceDesc.fConfig = srcConfig; tempDrawInfo->fReadConfig = readConfig; if (requires_srgb_conversion(srcConfig, readConfig)) { if (!this->readPixelsSupported(readConfig, readConfig)) { return false; } // Draw to do srgb to linear conversion or vice versa. ElevateDrawPreference(drawPreference, kRequireDraw_DrawPreference); tempDrawInfo->fTempSurfaceDesc.fConfig = readConfig; tempDrawInfo->fReadConfig = readConfig; return true; } GrRenderTarget* srcAsRT = srcSurface->asRenderTarget(); if (!srcAsRT) { // For now keep assuming the draw is not a format transformation, just a draw to get to a // RT. We may add additional transformations below. ElevateDrawPreference(drawPreference, kRequireDraw_DrawPreference); } if (this->glCaps().rgba8888PixelsOpsAreSlow() && kRGBA_8888_GrPixelConfig == readConfig && this->readPixelsSupported(kBGRA_8888_GrPixelConfig, kBGRA_8888_GrPixelConfig)) { tempDrawInfo->fTempSurfaceDesc.fConfig = kBGRA_8888_GrPixelConfig; tempDrawInfo->fSwizzle = GrSwizzle::BGRA(); tempDrawInfo->fReadConfig = kBGRA_8888_GrPixelConfig; ElevateDrawPreference(drawPreference, kGpuPrefersDraw_DrawPreference); } else if (this->glCaps().rgbaToBgraReadbackConversionsAreSlow() && GrBytesPerPixel(readConfig) == 4 && GrPixelConfigSwapRAndB(readConfig) == srcConfig && this->readPixelsSupported(srcSurface, srcConfig)) { // Mesa 3D takes a slow path on when reading back BGRA from an RGBA surface and vice-versa. // Better to do a draw with a R/B swap and then read as the original config. tempDrawInfo->fTempSurfaceDesc.fConfig = srcConfig; tempDrawInfo->fSwizzle = GrSwizzle::BGRA(); tempDrawInfo->fReadConfig = srcConfig; ElevateDrawPreference(drawPreference, kGpuPrefersDraw_DrawPreference); } else if (!this->readPixelsSupported(srcSurface, readConfig)) { if (readConfig == kBGRA_8888_GrPixelConfig && this->glCaps().isConfigRenderable(kRGBA_8888_GrPixelConfig, false) && this->readPixelsSupported(kRGBA_8888_GrPixelConfig, kRGBA_8888_GrPixelConfig)) { // We're trying to read BGRA but it's not supported. If RGBA is renderable and // we can read it back, then do a swizzling draw to a RGBA and read it back (which // will effectively be BGRA). tempDrawInfo->fTempSurfaceDesc.fConfig = kRGBA_8888_GrPixelConfig; tempDrawInfo->fSwizzle = GrSwizzle::BGRA(); tempDrawInfo->fReadConfig = kRGBA_8888_GrPixelConfig; ElevateDrawPreference(drawPreference, kRequireDraw_DrawPreference); } else if (readConfig == kSBGRA_8888_GrPixelConfig && this->glCaps().isConfigRenderable(kSRGBA_8888_GrPixelConfig, false) && this->readPixelsSupported(kSRGBA_8888_GrPixelConfig, kSRGBA_8888_GrPixelConfig)) { // We're trying to read sBGRA but it's not supported. If sRGBA is renderable and // we can read it back, then do a swizzling draw to a sRGBA and read it back (which // will effectively be sBGRA). tempDrawInfo->fTempSurfaceDesc.fConfig = kSRGBA_8888_GrPixelConfig; tempDrawInfo->fSwizzle = GrSwizzle::BGRA(); tempDrawInfo->fReadConfig = kSRGBA_8888_GrPixelConfig; ElevateDrawPreference(drawPreference, kRequireDraw_DrawPreference); } else if (readConfig == kAlpha_8_GrPixelConfig) { // onReadPixels implements a fallback for cases where we are want to read kAlpha_8, // it's unsupported, but 32bit RGBA reads are supported. // Don't attempt to do any srgb conversions since we only care about alpha. GrPixelConfig cpuTempConfig = kRGBA_8888_GrPixelConfig; if (GrPixelConfigIsSRGB(srcSurface->config())) { cpuTempConfig = kSRGBA_8888_GrPixelConfig; } if (!this->readPixelsSupported(srcSurface, cpuTempConfig)) { // If we can't read RGBA from the src try to draw to a kRGBA_8888 (or kSRGBA_8888) // first and then onReadPixels will read that to a 32bit temporary buffer. if (this->caps()->isConfigRenderable(cpuTempConfig, false)) { ElevateDrawPreference(drawPreference, kRequireDraw_DrawPreference); tempDrawInfo->fTempSurfaceDesc.fConfig = cpuTempConfig; tempDrawInfo->fReadConfig = kAlpha_8_GrPixelConfig; } else { return false; } } else { SkASSERT(tempDrawInfo->fTempSurfaceDesc.fConfig == srcConfig); SkASSERT(tempDrawInfo->fReadConfig == kAlpha_8_GrPixelConfig); } } else if (this->caps()->isConfigRenderable(readConfig, false) && this->readPixelsSupported(readConfig, readConfig)) { // Do a draw to convert from the src config to the read config. ElevateDrawPreference(drawPreference, kRequireDraw_DrawPreference); tempDrawInfo->fTempSurfaceDesc.fConfig = readConfig; tempDrawInfo->fReadConfig = readConfig; } else { return false; } } if (srcAsRT && read_pixels_pays_for_y_flip(srcAsRT, this->glCaps(), width, height, readConfig, rowBytes)) { ElevateDrawPreference(drawPreference, kGpuPrefersDraw_DrawPreference); } return true; } bool GrGLGpu::onReadPixels(GrSurface* surface, int left, int top, int width, int height, GrPixelConfig config, void* buffer, size_t rowBytes) { SkASSERT(surface); GrGLRenderTarget* renderTarget = static_cast(surface->asRenderTarget()); if (!renderTarget) { return false; } // OpenGL doesn't do sRGB <-> linear conversions when reading and writing pixels. if (requires_srgb_conversion(surface->config(), config)) { return false; } // We have a special case fallback for reading eight bit alpha. We will read back all four 8 // bit channels as RGBA and then extract A. if (!this->readPixelsSupported(renderTarget, config)) { // Don't attempt to do any srgb conversions since we only care about alpha. GrPixelConfig tempConfig = kRGBA_8888_GrPixelConfig; if (GrPixelConfigIsSRGB(renderTarget->config())) { tempConfig = kSRGBA_8888_GrPixelConfig; } if (kAlpha_8_GrPixelConfig == config && this->readPixelsSupported(renderTarget, tempConfig)) { SkAutoTDeleteArray temp(new uint32_t[width * height * 4]); if (this->onReadPixels(renderTarget, left, top, width, height, tempConfig, temp.get(), width*4)) { uint8_t* dst = reinterpret_cast(buffer); for (int j = 0; j < height; ++j) { for (int i = 0; i < width; ++i) { dst[j*rowBytes + i] = (0xFF000000U & temp[j*width+i]) >> 24; } } return true; } } return false; } GrGLenum externalFormat; GrGLenum externalType; if (!this->glCaps().getReadPixelsFormat(renderTarget->config(), config, &externalFormat, &externalType)) { return false; } bool flipY = kBottomLeft_GrSurfaceOrigin == surface->origin(); // resolve the render target if necessary switch (renderTarget->getResolveType()) { case GrGLRenderTarget::kCantResolve_ResolveType: return false; case GrGLRenderTarget::kAutoResolves_ResolveType: this->flushRenderTarget(renderTarget, &SkIRect::EmptyIRect()); break; case GrGLRenderTarget::kCanResolve_ResolveType: this->onResolveRenderTarget(renderTarget); // we don't track the state of the READ FBO ID. fStats.incRenderTargetBinds(); GL_CALL(BindFramebuffer(GR_GL_READ_FRAMEBUFFER, renderTarget->textureFBOID())); break; default: SkFAIL("Unknown resolve type"); } const GrGLIRect& glvp = renderTarget->getViewport(); // the read rect is viewport-relative GrGLIRect readRect; readRect.setRelativeTo(glvp, left, top, width, height, renderTarget->origin()); size_t bytesPerPixel = GrBytesPerPixel(config); size_t tightRowBytes = bytesPerPixel * width; size_t readDstRowBytes = tightRowBytes; void* readDst = buffer; // determine if GL can read using the passed rowBytes or if we need // a scratch buffer. SkAutoSMalloc<32 * sizeof(GrColor)> scratch; if (rowBytes != tightRowBytes) { if (this->glCaps().packRowLengthSupport() && !(rowBytes % bytesPerPixel)) { GL_CALL(PixelStorei(GR_GL_PACK_ROW_LENGTH, static_cast(rowBytes / bytesPerPixel))); readDstRowBytes = rowBytes; } else { scratch.reset(tightRowBytes * height); readDst = scratch.get(); } } if (flipY && this->glCaps().packFlipYSupport()) { GL_CALL(PixelStorei(GR_GL_PACK_REVERSE_ROW_ORDER, 1)); } GL_CALL(PixelStorei(GR_GL_PACK_ALIGNMENT, config_alignment(config))); GL_CALL(ReadPixels(readRect.fLeft, readRect.fBottom, readRect.fWidth, readRect.fHeight, externalFormat, externalType, readDst)); if (readDstRowBytes != tightRowBytes) { SkASSERT(this->glCaps().packRowLengthSupport()); GL_CALL(PixelStorei(GR_GL_PACK_ROW_LENGTH, 0)); } if (flipY && this->glCaps().packFlipYSupport()) { GL_CALL(PixelStorei(GR_GL_PACK_REVERSE_ROW_ORDER, 0)); flipY = false; } // now reverse the order of the rows, since GL's are bottom-to-top, but our // API presents top-to-bottom. We must preserve the padding contents. Note // that the above readPixels did not overwrite the padding. if (readDst == buffer) { SkASSERT(rowBytes == readDstRowBytes); if (flipY) { scratch.reset(tightRowBytes); void* tmpRow = scratch.get(); // flip y in-place by rows const int halfY = height >> 1; char* top = reinterpret_cast(buffer); char* bottom = top + (height - 1) * rowBytes; for (int y = 0; y < halfY; y++) { memcpy(tmpRow, top, tightRowBytes); memcpy(top, bottom, tightRowBytes); memcpy(bottom, tmpRow, tightRowBytes); top += rowBytes; bottom -= rowBytes; } } } else { SkASSERT(readDst != buffer); SkASSERT(rowBytes != tightRowBytes); // copy from readDst to buffer while flipping y // const int halfY = height >> 1; const char* src = reinterpret_cast(readDst); char* dst = reinterpret_cast(buffer); if (flipY) { dst += (height-1) * rowBytes; } for (int y = 0; y < height; y++) { memcpy(dst, src, tightRowBytes); src += readDstRowBytes; if (!flipY) { dst += rowBytes; } else { dst -= rowBytes; } } } return true; } void GrGLGpu::finishDrawTarget() { if (fPLSHasBeenUsed) { /* There is an ARM driver bug where if we use PLS, and then draw a frame which does not * use PLS, it leaves garbage all over the place. As a workaround, we use PLS in a * trivial way every frame. And since we use it every frame, there's never a point at which * it becomes safe to stop using this workaround once we start. */ this->disableScissor(); // using PLS in the presence of MSAA results in GL_INVALID_OPERATION this->flushHWAAState(nullptr, false, false); SkASSERT(!fHWPLSEnabled); SkASSERT(fMSAAEnabled != kYes_TriState); GL_CALL(Enable(GR_GL_SHADER_PIXEL_LOCAL_STORAGE)); this->stampPLSSetupRect(SkRect::MakeXYWH(-100.0f, -100.0f, 0.01f, 0.01f)); GL_CALL(Disable(GR_GL_SHADER_PIXEL_LOCAL_STORAGE)); } } void GrGLGpu::flushRenderTarget(GrGLRenderTarget* target, const SkIRect* bounds, bool disableSRGB) { SkASSERT(target); uint32_t rtID = target->getUniqueID(); if (fHWBoundRenderTargetUniqueID != rtID) { fStats.incRenderTargetBinds(); GL_CALL(BindFramebuffer(GR_GL_FRAMEBUFFER, target->renderFBOID())); #ifdef SK_DEBUG // don't do this check in Chromium -- this is causing // lots of repeated command buffer flushes when the compositor is // rendering with Ganesh, which is really slow; even too slow for // Debug mode. if (kChromium_GrGLDriver != this->glContext().driver()) { GrGLenum status; GL_CALL_RET(status, CheckFramebufferStatus(GR_GL_FRAMEBUFFER)); if (status != GR_GL_FRAMEBUFFER_COMPLETE) { SkDebugf("GrGLGpu::flushRenderTarget glCheckFramebufferStatus %x\n", status); } } #endif fHWBoundRenderTargetUniqueID = rtID; this->flushViewport(target->getViewport()); } if (this->glCaps().srgbSupport()) { bool enableSRGBWrite = GrPixelConfigIsSRGB(target->config()) && !disableSRGB; if (enableSRGBWrite && kYes_TriState != fHWSRGBFramebuffer) { GL_CALL(Enable(GR_GL_FRAMEBUFFER_SRGB)); fHWSRGBFramebuffer = kYes_TriState; } else if (!enableSRGBWrite && kNo_TriState != fHWSRGBFramebuffer) { GL_CALL(Disable(GR_GL_FRAMEBUFFER_SRGB)); fHWSRGBFramebuffer = kNo_TriState; } } this->didWriteToSurface(target, bounds); } void GrGLGpu::flushViewport(const GrGLIRect& viewport) { if (fHWViewport != viewport) { viewport.pushToGLViewport(this->glInterface()); fHWViewport = viewport; } } void GrGLGpu::didWriteToSurface(GrSurface* surface, const SkIRect* bounds) const { SkASSERT(surface); // Mark any MIP chain and resolve buffer as dirty if and only if there is a non-empty bounds. if (nullptr == bounds || !bounds->isEmpty()) { if (GrRenderTarget* target = surface->asRenderTarget()) { target->flagAsNeedingResolve(bounds); } if (GrTexture* texture = surface->asTexture()) { texture->texturePriv().dirtyMipMaps(true); } } } GrGLenum gPrimitiveType2GLMode[] = { GR_GL_TRIANGLES, GR_GL_TRIANGLE_STRIP, GR_GL_TRIANGLE_FAN, GR_GL_POINTS, GR_GL_LINES, GR_GL_LINE_STRIP }; #define SWAP_PER_DRAW 0 #if SWAP_PER_DRAW #if defined(SK_BUILD_FOR_MAC) #include #elif defined(SK_BUILD_FOR_WIN32) #include void SwapBuf() { DWORD procID = GetCurrentProcessId(); HWND hwnd = GetTopWindow(GetDesktopWindow()); while(hwnd) { DWORD wndProcID = 0; GetWindowThreadProcessId(hwnd, &wndProcID); if(wndProcID == procID) { SwapBuffers(GetDC(hwnd)); } hwnd = GetNextWindow(hwnd, GW_HWNDNEXT); } } #endif #endif void GrGLGpu::onDraw(const GrPipeline& pipeline, const GrPrimitiveProcessor& primProc, const GrMesh* meshes, int meshCount) { if (!this->flushGLState(pipeline, primProc)) { return; } GrPixelLocalStorageState plsState = primProc.getPixelLocalStorageState(); if (!fHWPLSEnabled && plsState != GrPixelLocalStorageState::kDisabled_GrPixelLocalStorageState) { GL_CALL(Enable(GR_GL_SHADER_PIXEL_LOCAL_STORAGE)); this->setupPixelLocalStorage(pipeline, primProc); fHWPLSEnabled = true; } if (plsState == GrPixelLocalStorageState::kFinish_GrPixelLocalStorageState) { GrStencilSettings stencil; stencil.setDisabled(); this->flushStencil(stencil); } for (int i = 0; i < meshCount; ++i) { if (GrXferBarrierType barrierType = pipeline.xferBarrierType(*this->caps())) { this->xferBarrier(pipeline.getRenderTarget(), barrierType); } const GrMesh& mesh = meshes[i]; GrMesh::Iterator iter; const GrNonInstancedMesh* nonIdxMesh = iter.init(mesh); do { size_t indexOffsetInBytes = 0; this->setupGeometry(primProc, *nonIdxMesh, &indexOffsetInBytes); if (nonIdxMesh->isIndexed()) { GrGLvoid* indices = reinterpret_cast(indexOffsetInBytes + sizeof(uint16_t) * nonIdxMesh->startIndex()); // info.startVertex() was accounted for by setupGeometry. GL_CALL(DrawElements(gPrimitiveType2GLMode[nonIdxMesh->primitiveType()], nonIdxMesh->indexCount(), GR_GL_UNSIGNED_SHORT, indices)); } else { // Pass 0 for parameter first. We have to adjust glVertexAttribPointer() to account // for startVertex in the DrawElements case. So we always rely on setupGeometry to // have accounted for startVertex. GL_CALL(DrawArrays(gPrimitiveType2GLMode[nonIdxMesh->primitiveType()], 0, nonIdxMesh->vertexCount())); } fStats.incNumDraws(); } while ((nonIdxMesh = iter.next())); } if (fHWPLSEnabled && plsState == GrPixelLocalStorageState::kFinish_GrPixelLocalStorageState) { // PLS draws always involve multiple draws, finishing up with a non-PLS // draw that writes to the color buffer. That draw ends up here; we wait // until after it is complete to actually disable PLS. GL_CALL(Disable(GR_GL_SHADER_PIXEL_LOCAL_STORAGE)); fHWPLSEnabled = false; this->disableScissor(); } #if SWAP_PER_DRAW glFlush(); #if defined(SK_BUILD_FOR_MAC) aglSwapBuffers(aglGetCurrentContext()); int set_a_break_pt_here = 9; aglSwapBuffers(aglGetCurrentContext()); #elif defined(SK_BUILD_FOR_WIN32) SwapBuf(); int set_a_break_pt_here = 9; SwapBuf(); #endif #endif } void GrGLGpu::stampPLSSetupRect(const SkRect& bounds) { SkASSERT(this->glCaps().glslCaps()->plsPathRenderingSupport()) if (!fPLSSetupProgram.fProgram) { if (!this->createPLSSetupProgram()) { SkDebugf("Failed to create PLS setup program.\n"); return; } } GL_CALL(UseProgram(fPLSSetupProgram.fProgram)); this->fHWVertexArrayState.setVertexArrayID(this, 0); GrGLAttribArrayState* attribs = this->fHWVertexArrayState.bindInternalVertexArray(this); attribs->set(this, 0, fPLSSetupProgram.fArrayBuffer, kVec2f_GrVertexAttribType, 2 * sizeof(GrGLfloat), 0); attribs->disableUnusedArrays(this, 0x1); GL_CALL(Uniform4f(fPLSSetupProgram.fPosXformUniform, bounds.width(), bounds.height(), bounds.left(), bounds.top())); GrXferProcessor::BlendInfo blendInfo; blendInfo.reset(); this->flushBlend(blendInfo, GrSwizzle()); this->flushColorWrite(true); this->flushDrawFace(GrPipelineBuilder::kBoth_DrawFace); if (!fHWStencilSettings.isDisabled()) { GL_CALL(Disable(GR_GL_STENCIL_TEST)); } GL_CALL(DrawArrays(GR_GL_TRIANGLE_STRIP, 0, 4)); GL_CALL(UseProgram(fHWProgramID)); if (!fHWStencilSettings.isDisabled()) { GL_CALL(Enable(GR_GL_STENCIL_TEST)); } } void GrGLGpu::setupPixelLocalStorage(const GrPipeline& pipeline, const GrPrimitiveProcessor& primProc) { fPLSHasBeenUsed = true; const SkRect& bounds = static_cast(primProc).getBounds(); // setup pixel local storage -- this means capturing and storing the current framebuffer color // and initializing the winding counts to zero GrRenderTarget* rt = pipeline.getRenderTarget(); SkScalar width = SkIntToScalar(rt->width()); SkScalar height = SkIntToScalar(rt->height()); // dst rect edges in NDC (-1 to 1) // having some issues with rounding, just expand the bounds by 1 and trust the scissor to keep // it contained properly GrGLfloat dx0 = 2.0f * (bounds.left() - 1) / width - 1.0f; GrGLfloat dx1 = 2.0f * (bounds.right() + 1) / width - 1.0f; GrGLfloat dy0 = -2.0f * (bounds.top() - 1) / height + 1.0f; GrGLfloat dy1 = -2.0f * (bounds.bottom() + 1) / height + 1.0f; SkRect deviceBounds = SkRect::MakeXYWH(dx0, dy0, dx1 - dx0, dy1 - dy0); GL_CALL(Enable(GR_GL_FETCH_PER_SAMPLE_ARM)); this->stampPLSSetupRect(deviceBounds); } void GrGLGpu::onResolveRenderTarget(GrRenderTarget* target) { GrGLRenderTarget* rt = static_cast(target); if (rt->needsResolve()) { // Some extensions automatically resolves the texture when it is read. if (this->glCaps().usesMSAARenderBuffers()) { SkASSERT(rt->textureFBOID() != rt->renderFBOID()); fStats.incRenderTargetBinds(); fStats.incRenderTargetBinds(); GL_CALL(BindFramebuffer(GR_GL_READ_FRAMEBUFFER, rt->renderFBOID())); GL_CALL(BindFramebuffer(GR_GL_DRAW_FRAMEBUFFER, rt->textureFBOID())); // make sure we go through flushRenderTarget() since we've modified // the bound DRAW FBO ID. fHWBoundRenderTargetUniqueID = SK_InvalidUniqueID; const GrGLIRect& vp = rt->getViewport(); const SkIRect dirtyRect = rt->getResolveRect(); if (GrGLCaps::kES_Apple_MSFBOType == this->glCaps().msFBOType()) { // Apple's extension uses the scissor as the blit bounds. GrScissorState scissorState; scissorState.set(dirtyRect); this->flushScissor(scissorState, vp, rt->origin()); GL_CALL(ResolveMultisampleFramebuffer()); } else { GrGLIRect r; r.setRelativeTo(vp, dirtyRect.fLeft, dirtyRect.fTop, dirtyRect.width(), dirtyRect.height(), target->origin()); int right = r.fLeft + r.fWidth; int top = r.fBottom + r.fHeight; // BlitFrameBuffer respects the scissor, so disable it. this->disableScissor(); GL_CALL(BlitFramebuffer(r.fLeft, r.fBottom, right, top, r.fLeft, r.fBottom, right, top, GR_GL_COLOR_BUFFER_BIT, GR_GL_NEAREST)); } } rt->flagAsResolved(); } } namespace { GrGLenum gr_to_gl_stencil_op(GrStencilOp op) { static const GrGLenum gTable[] = { GR_GL_KEEP, // kKeep_StencilOp GR_GL_REPLACE, // kReplace_StencilOp GR_GL_INCR_WRAP, // kIncWrap_StencilOp GR_GL_INCR, // kIncClamp_StencilOp GR_GL_DECR_WRAP, // kDecWrap_StencilOp GR_GL_DECR, // kDecClamp_StencilOp GR_GL_ZERO, // kZero_StencilOp GR_GL_INVERT, // kInvert_StencilOp }; GR_STATIC_ASSERT(SK_ARRAY_COUNT(gTable) == kStencilOpCount); GR_STATIC_ASSERT(0 == kKeep_StencilOp); GR_STATIC_ASSERT(1 == kReplace_StencilOp); GR_STATIC_ASSERT(2 == kIncWrap_StencilOp); GR_STATIC_ASSERT(3 == kIncClamp_StencilOp); GR_STATIC_ASSERT(4 == kDecWrap_StencilOp); GR_STATIC_ASSERT(5 == kDecClamp_StencilOp); GR_STATIC_ASSERT(6 == kZero_StencilOp); GR_STATIC_ASSERT(7 == kInvert_StencilOp); SkASSERT((unsigned) op < kStencilOpCount); return gTable[op]; } void set_gl_stencil(const GrGLInterface* gl, const GrStencilSettings& settings, GrGLenum glFace, GrStencilSettings::Face grFace) { GrGLenum glFunc = GrToGLStencilFunc(settings.func(grFace)); GrGLenum glFailOp = gr_to_gl_stencil_op(settings.failOp(grFace)); GrGLenum glPassOp = gr_to_gl_stencil_op(settings.passOp(grFace)); GrGLint ref = settings.funcRef(grFace); GrGLint mask = settings.funcMask(grFace); GrGLint writeMask = settings.writeMask(grFace); if (GR_GL_FRONT_AND_BACK == glFace) { // we call the combined func just in case separate stencil is not // supported. GR_GL_CALL(gl, StencilFunc(glFunc, ref, mask)); GR_GL_CALL(gl, StencilMask(writeMask)); GR_GL_CALL(gl, StencilOp(glFailOp, GR_GL_KEEP, glPassOp)); } else { GR_GL_CALL(gl, StencilFuncSeparate(glFace, glFunc, ref, mask)); GR_GL_CALL(gl, StencilMaskSeparate(glFace, writeMask)); GR_GL_CALL(gl, StencilOpSeparate(glFace, glFailOp, GR_GL_KEEP, glPassOp)); } } } void GrGLGpu::flushStencil(const GrStencilSettings& stencilSettings) { if (fHWStencilSettings != stencilSettings) { if (stencilSettings.isDisabled()) { if (kNo_TriState != fHWStencilTestEnabled) { GL_CALL(Disable(GR_GL_STENCIL_TEST)); fHWStencilTestEnabled = kNo_TriState; } } else { if (kYes_TriState != fHWStencilTestEnabled) { GL_CALL(Enable(GR_GL_STENCIL_TEST)); fHWStencilTestEnabled = kYes_TriState; } } if (!stencilSettings.isDisabled()) { if (this->caps()->twoSidedStencilSupport()) { set_gl_stencil(this->glInterface(), stencilSettings, GR_GL_FRONT, GrStencilSettings::kFront_Face); set_gl_stencil(this->glInterface(), stencilSettings, GR_GL_BACK, GrStencilSettings::kBack_Face); } else { set_gl_stencil(this->glInterface(), stencilSettings, GR_GL_FRONT_AND_BACK, GrStencilSettings::kFront_Face); } } fHWStencilSettings = stencilSettings; } } void GrGLGpu::flushHWAAState(GrRenderTarget* rt, bool useHWAA, bool stencilEnabled) { // rt is only optional if useHWAA is false. SkASSERT(rt || !useHWAA); SkASSERT(!useHWAA || rt->isStencilBufferMultisampled()); if (this->glCaps().multisampleDisableSupport()) { if (useHWAA) { if (kYes_TriState != fMSAAEnabled) { GL_CALL(Enable(GR_GL_MULTISAMPLE)); fMSAAEnabled = kYes_TriState; } } else { if (kNo_TriState != fMSAAEnabled) { GL_CALL(Disable(GR_GL_MULTISAMPLE)); fMSAAEnabled = kNo_TriState; } } } if (0 != this->caps()->maxRasterSamples()) { if (useHWAA && rt->hasMixedSamples() && !stencilEnabled) { // Since stencil is disabled and we want more samples than are in the color buffer, we // need to tell the rasterizer explicitly how many to run. if (kYes_TriState != fHWRasterMultisampleEnabled) { GL_CALL(Enable(GR_GL_RASTER_MULTISAMPLE)); fHWRasterMultisampleEnabled = kYes_TriState; } if (rt->numStencilSamples() != fHWNumRasterSamples) { SkASSERT(rt->numStencilSamples() <= this->caps()->maxRasterSamples()); GL_CALL(RasterSamples(rt->numStencilSamples(), GR_GL_TRUE)); fHWNumRasterSamples = rt->numStencilSamples(); } } else { if (kNo_TriState != fHWRasterMultisampleEnabled) { GL_CALL(Disable(GR_GL_RASTER_MULTISAMPLE)); fHWRasterMultisampleEnabled = kNo_TriState; } } } else { SkASSERT(!useHWAA || !rt->hasMixedSamples() || stencilEnabled); } } void GrGLGpu::flushBlend(const GrXferProcessor::BlendInfo& blendInfo, const GrSwizzle& swizzle) { // Any optimization to disable blending should have already been applied and // tweaked the equation to "add" or "subtract", and the coeffs to (1, 0). GrBlendEquation equation = blendInfo.fEquation; GrBlendCoeff srcCoeff = blendInfo.fSrcBlend; GrBlendCoeff dstCoeff = blendInfo.fDstBlend; bool blendOff = (kAdd_GrBlendEquation == equation || kSubtract_GrBlendEquation == equation) && kOne_GrBlendCoeff == srcCoeff && kZero_GrBlendCoeff == dstCoeff; if (blendOff) { if (kNo_TriState != fHWBlendState.fEnabled) { GL_CALL(Disable(GR_GL_BLEND)); // Workaround for the ARM KHR_blend_equation_advanced blacklist issue // https://code.google.com/p/skia/issues/detail?id=3943 if (kARM_GrGLVendor == this->ctxInfo().vendor() && GrBlendEquationIsAdvanced(fHWBlendState.fEquation)) { SkASSERT(this->caps()->advancedBlendEquationSupport()); // Set to any basic blending equation. GrBlendEquation blend_equation = kAdd_GrBlendEquation; GL_CALL(BlendEquation(gXfermodeEquation2Blend[blend_equation])); fHWBlendState.fEquation = blend_equation; } fHWBlendState.fEnabled = kNo_TriState; } return; } if (kYes_TriState != fHWBlendState.fEnabled) { GL_CALL(Enable(GR_GL_BLEND)); fHWBlendState.fEnabled = kYes_TriState; } if (fHWBlendState.fEquation != equation) { GL_CALL(BlendEquation(gXfermodeEquation2Blend[equation])); fHWBlendState.fEquation = equation; } if (GrBlendEquationIsAdvanced(equation)) { SkASSERT(this->caps()->advancedBlendEquationSupport()); // Advanced equations have no other blend state. return; } if (fHWBlendState.fSrcCoeff != srcCoeff || fHWBlendState.fDstCoeff != dstCoeff) { GL_CALL(BlendFunc(gXfermodeCoeff2Blend[srcCoeff], gXfermodeCoeff2Blend[dstCoeff])); fHWBlendState.fSrcCoeff = srcCoeff; fHWBlendState.fDstCoeff = dstCoeff; } if ((BlendCoeffReferencesConstant(srcCoeff) || BlendCoeffReferencesConstant(dstCoeff))) { GrColor blendConst = blendInfo.fBlendConstant; blendConst = swizzle.applyTo(blendConst); if (!fHWBlendState.fConstColorValid || fHWBlendState.fConstColor != blendConst) { GrGLfloat c[4]; GrColorToRGBAFloat(blendConst, c); GL_CALL(BlendColor(c[0], c[1], c[2], c[3])); fHWBlendState.fConstColor = blendConst; fHWBlendState.fConstColorValid = true; } } } static inline GrGLenum tile_to_gl_wrap(SkShader::TileMode tm) { static const GrGLenum gWrapModes[] = { GR_GL_CLAMP_TO_EDGE, GR_GL_REPEAT, GR_GL_MIRRORED_REPEAT }; GR_STATIC_ASSERT(SkShader::kTileModeCount == SK_ARRAY_COUNT(gWrapModes)); GR_STATIC_ASSERT(0 == SkShader::kClamp_TileMode); GR_STATIC_ASSERT(1 == SkShader::kRepeat_TileMode); GR_STATIC_ASSERT(2 == SkShader::kMirror_TileMode); return gWrapModes[tm]; } static GrGLenum get_component_enum_from_char(char component) { switch (component) { case 'r': return GR_GL_RED; case 'g': return GR_GL_GREEN; case 'b': return GR_GL_BLUE; case 'a': return GR_GL_ALPHA; default: SkFAIL("Unsupported component"); return 0; } } /** If texture swizzling is available using tex parameters then it is preferred over mangling the generated shader code. This potentially allows greater reuse of cached shaders. */ static void get_tex_param_swizzle(GrPixelConfig config, const GrGLCaps& caps, GrGLenum* glSwizzle) { const GrSwizzle& swizzle = caps.configSwizzle(config); for (int i = 0; i < 4; ++i) { glSwizzle[i] = get_component_enum_from_char(swizzle.c_str()[i]); } } void GrGLGpu::bindTexture(int unitIdx, const GrTextureParams& params, bool dstConfigAllowsSRGB, GrGLTexture* texture) { SkASSERT(texture); #ifdef SK_DEBUG if (!this->caps()->npotTextureTileSupport()) { const bool tileX = SkShader::kClamp_TileMode != params.getTileModeX(); const bool tileY = SkShader::kClamp_TileMode != params.getTileModeY(); if (tileX || tileY) { const int w = texture->width(); const int h = texture->height(); SkASSERT(SkIsPow2(w) && SkIsPow2(h)); } } #endif // If we created a rt/tex and rendered to it without using a texture and now we're texturing // from the rt it will still be the last bound texture, but it needs resolving. So keep this // out of the "last != next" check. GrGLRenderTarget* texRT = static_cast(texture->asRenderTarget()); if (texRT) { this->onResolveRenderTarget(texRT); } uint32_t textureID = texture->getUniqueID(); GrGLenum target = texture->target(); if (fHWBoundTextureUniqueIDs[unitIdx] != textureID) { this->setTextureUnit(unitIdx); GL_CALL(BindTexture(target, texture->textureID())); fHWBoundTextureUniqueIDs[unitIdx] = textureID; } ResetTimestamp timestamp; const GrGLTexture::TexParams& oldTexParams = texture->getCachedTexParams(×tamp); bool setAll = timestamp < this->getResetTimestamp(); GrGLTexture::TexParams newTexParams; if (this->caps()->srgbSupport()) { // By default, the decision to allow SRGB decode is based on the destination config. // A texture can override that by specifying a value in GrTextureParams. newTexParams.fSRGBDecode = (dstConfigAllowsSRGB || GrTextureParams::kForceAllowSRGB_SRGBMode == params.srgbMode()) ? GR_GL_DECODE_EXT : GR_GL_SKIP_DECODE_EXT; if (setAll || newTexParams.fSRGBDecode != oldTexParams.fSRGBDecode) { this->setTextureUnit(unitIdx); GL_CALL(TexParameteri(target, GR_GL_TEXTURE_SRGB_DECODE_EXT, newTexParams.fSRGBDecode)); } } static GrGLenum glMinFilterModes[] = { GR_GL_NEAREST, GR_GL_LINEAR, GR_GL_LINEAR_MIPMAP_LINEAR }; static GrGLenum glMagFilterModes[] = { GR_GL_NEAREST, GR_GL_LINEAR, GR_GL_LINEAR }; GrTextureParams::FilterMode filterMode = params.filterMode(); if (GrTextureParams::kMipMap_FilterMode == filterMode) { if (!this->caps()->mipMapSupport() || GrPixelConfigIsCompressed(texture->config())) { filterMode = GrTextureParams::kBilerp_FilterMode; } } newTexParams.fMinFilter = glMinFilterModes[filterMode]; newTexParams.fMagFilter = glMagFilterModes[filterMode]; if (GrTextureParams::kMipMap_FilterMode == filterMode) { if (texture->texturePriv().mipMapsAreDirty()) { GL_CALL(GenerateMipmap(target)); texture->texturePriv().dirtyMipMaps(false); texture->texturePriv().setMaxMipMapLevel(SkMipMap::ComputeLevelCount( texture->width(), texture->height())); } } newTexParams.fMaxMipMapLevel = texture->texturePriv().maxMipMapLevel(); newTexParams.fWrapS = tile_to_gl_wrap(params.getTileModeX()); newTexParams.fWrapT = tile_to_gl_wrap(params.getTileModeY()); get_tex_param_swizzle(texture->config(), this->glCaps(), newTexParams.fSwizzleRGBA); if (setAll || newTexParams.fMagFilter != oldTexParams.fMagFilter) { this->setTextureUnit(unitIdx); GL_CALL(TexParameteri(target, GR_GL_TEXTURE_MAG_FILTER, newTexParams.fMagFilter)); } if (setAll || newTexParams.fMinFilter != oldTexParams.fMinFilter) { this->setTextureUnit(unitIdx); GL_CALL(TexParameteri(target, GR_GL_TEXTURE_MIN_FILTER, newTexParams.fMinFilter)); } if (setAll || newTexParams.fMaxMipMapLevel != oldTexParams.fMaxMipMapLevel) { // These are not supported in ES2 contexts if (this->glCaps().mipMapLevelAndLodControlSupport()) { if (newTexParams.fMaxMipMapLevel != 0) { this->setTextureUnit(unitIdx); GL_CALL(TexParameteri(target, GR_GL_TEXTURE_MIN_LOD, 0)); GL_CALL(TexParameteri(target, GR_GL_TEXTURE_BASE_LEVEL, 0)); GL_CALL(TexParameteri(target, GR_GL_TEXTURE_MAX_LOD, newTexParams.fMaxMipMapLevel)); GL_CALL(TexParameteri(target, GR_GL_TEXTURE_MAX_LEVEL, newTexParams.fMaxMipMapLevel)); } } } if (setAll || newTexParams.fWrapS != oldTexParams.fWrapS) { this->setTextureUnit(unitIdx); GL_CALL(TexParameteri(target, GR_GL_TEXTURE_WRAP_S, newTexParams.fWrapS)); } if (setAll || newTexParams.fWrapT != oldTexParams.fWrapT) { this->setTextureUnit(unitIdx); GL_CALL(TexParameteri(target, GR_GL_TEXTURE_WRAP_T, newTexParams.fWrapT)); } if (this->glCaps().textureSwizzleSupport() && (setAll || memcmp(newTexParams.fSwizzleRGBA, oldTexParams.fSwizzleRGBA, sizeof(newTexParams.fSwizzleRGBA)))) { this->setTextureSwizzle(unitIdx, target, newTexParams.fSwizzleRGBA); } texture->setCachedTexParams(newTexParams, this->getResetTimestamp()); } void GrGLGpu::bindTexelBuffer(int unitIdx, intptr_t offsetInBytes, GrPixelConfig texelConfig, GrGLBuffer* buffer) { SkASSERT(this->glCaps().canUseConfigWithTexelBuffer(texelConfig)); SkASSERT(unitIdx >= 0 && unitIdx < fHWBufferTextures.count()); SkASSERT(offsetInBytes >= 0 && offsetInBytes < (intptr_t) buffer->glSizeInBytes()); BufferTexture& buffTex = fHWBufferTextures[unitIdx]; if (!buffTex.fKnownBound) { if (!buffTex.fTextureID) { GL_CALL(GenTextures(1, &buffTex.fTextureID)); if (!buffTex.fTextureID) { return; } } this->setTextureUnit(unitIdx); GL_CALL(BindTexture(GR_GL_TEXTURE_BUFFER, buffTex.fTextureID)); buffTex.fKnownBound = true; } if (buffer->getUniqueID() != buffTex.fAttachedBufferUniqueID || buffTex.fOffsetInBytes != offsetInBytes || buffTex.fTexelConfig != texelConfig || buffTex.fAttachedSizeInBytes != buffer->glSizeInBytes() - offsetInBytes) { size_t attachmentSizeInBytes = buffer->glSizeInBytes() - offsetInBytes; this->setTextureUnit(unitIdx); GL_CALL(TexBufferRange(GR_GL_TEXTURE_BUFFER, this->glCaps().configSizedInternalFormat(texelConfig), buffer->bufferID(), offsetInBytes, attachmentSizeInBytes)); buffTex.fOffsetInBytes = offsetInBytes; buffTex.fTexelConfig = texelConfig; buffTex.fAttachedSizeInBytes = attachmentSizeInBytes; buffTex.fAttachedBufferUniqueID = buffer->getUniqueID(); if (this->glCaps().textureSwizzleSupport() && this->glCaps().configSwizzle(texelConfig) != buffTex.fSwizzle) { GrGLenum glSwizzle[4]; get_tex_param_swizzle(texelConfig, this->glCaps(), glSwizzle); this->setTextureSwizzle(unitIdx, GR_GL_TEXTURE_BUFFER, glSwizzle); buffTex.fSwizzle = this->glCaps().configSwizzle(texelConfig); } buffer->setHasAttachedToTexture(); fHWMaxUsedBufferTextureUnit = SkTMax(unitIdx, fHWMaxUsedBufferTextureUnit); } } void GrGLGpu::setTextureSwizzle(int unitIdx, GrGLenum target, const GrGLenum swizzle[]) { this->setTextureUnit(unitIdx); if (this->glStandard() == kGLES_GrGLStandard) { // ES3 added swizzle support but not GL_TEXTURE_SWIZZLE_RGBA. GL_CALL(TexParameteri(target, GR_GL_TEXTURE_SWIZZLE_R, swizzle[0])); GL_CALL(TexParameteri(target, GR_GL_TEXTURE_SWIZZLE_G, swizzle[1])); GL_CALL(TexParameteri(target, GR_GL_TEXTURE_SWIZZLE_B, swizzle[2])); GL_CALL(TexParameteri(target, GR_GL_TEXTURE_SWIZZLE_A, swizzle[3])); } else { GR_STATIC_ASSERT(sizeof(swizzle[0]) == sizeof(GrGLint)); GL_CALL(TexParameteriv(target, GR_GL_TEXTURE_SWIZZLE_RGBA, reinterpret_cast(swizzle))); } } void GrGLGpu::flushColorWrite(bool writeColor) { if (!writeColor) { if (kNo_TriState != fHWWriteToColor) { GL_CALL(ColorMask(GR_GL_FALSE, GR_GL_FALSE, GR_GL_FALSE, GR_GL_FALSE)); fHWWriteToColor = kNo_TriState; } } else { if (kYes_TriState != fHWWriteToColor) { GL_CALL(ColorMask(GR_GL_TRUE, GR_GL_TRUE, GR_GL_TRUE, GR_GL_TRUE)); fHWWriteToColor = kYes_TriState; } } } void GrGLGpu::flushDrawFace(GrPipelineBuilder::DrawFace face) { if (fHWDrawFace != face) { switch (face) { case GrPipelineBuilder::kCCW_DrawFace: GL_CALL(Enable(GR_GL_CULL_FACE)); GL_CALL(CullFace(GR_GL_BACK)); break; case GrPipelineBuilder::kCW_DrawFace: GL_CALL(Enable(GR_GL_CULL_FACE)); GL_CALL(CullFace(GR_GL_FRONT)); break; case GrPipelineBuilder::kBoth_DrawFace: GL_CALL(Disable(GR_GL_CULL_FACE)); break; default: SkFAIL("Unknown draw face."); } fHWDrawFace = face; } } void GrGLGpu::setTextureUnit(int unit) { SkASSERT(unit >= 0 && unit < fHWBoundTextureUniqueIDs.count()); if (unit != fHWActiveTextureUnitIdx) { GL_CALL(ActiveTexture(GR_GL_TEXTURE0 + unit)); fHWActiveTextureUnitIdx = unit; } } void GrGLGpu::setScratchTextureUnit() { // Bind the last texture unit since it is the least likely to be used by GrGLProgram. int lastUnitIdx = fHWBoundTextureUniqueIDs.count() - 1; if (lastUnitIdx != fHWActiveTextureUnitIdx) { GL_CALL(ActiveTexture(GR_GL_TEXTURE0 + lastUnitIdx)); fHWActiveTextureUnitIdx = lastUnitIdx; } // clear out the this field so that if a program does use this unit it will rebind the correct // texture. fHWBoundTextureUniqueIDs[lastUnitIdx] = SK_InvalidUniqueID; } // Determines whether glBlitFramebuffer could be used between src and dst. static inline bool can_blit_framebuffer(const GrSurface* dst, const GrSurface* src, const GrGLGpu* gpu) { if (gpu->glCaps().isConfigRenderable(dst->config(), dst->desc().fSampleCnt > 0) && gpu->glCaps().isConfigRenderable(src->config(), src->desc().fSampleCnt > 0)) { switch (gpu->glCaps().blitFramebufferSupport()) { case GrGLCaps::kNone_BlitFramebufferSupport: return false; case GrGLCaps::kNoScalingNoMirroring_BlitFramebufferSupport: // Our copy surface doesn't support scaling so just check for mirroring. if (dst->origin() != src->origin()) { return false; } break; case GrGLCaps::kFull_BlitFramebufferSupport: break; } // ES3 doesn't allow framebuffer blits when the src has MSAA and the configs don't match // or the rects are not the same (not just the same size but have the same edges). if (GrGLCaps::kES_3_0_MSFBOType == gpu->glCaps().msFBOType() && (src->desc().fSampleCnt > 0 || src->config() != dst->config())) { return false; } const GrGLTexture* dstTex = static_cast(dst->asTexture()); if (dstTex && dstTex->target() != GR_GL_TEXTURE_2D) { return false; } const GrGLTexture* srcTex = static_cast(dst->asTexture()); if (srcTex && srcTex->target() != GR_GL_TEXTURE_2D) { return false; } return true; } else { return false; } } static inline bool can_copy_texsubimage(const GrSurface* dst, const GrSurface* src, const GrGLGpu* gpu) { // Table 3.9 of the ES2 spec indicates the supported formats with CopyTexSubImage // and BGRA isn't in the spec. There doesn't appear to be any extension that adds it. Perhaps // many drivers would allow it to work, but ANGLE does not. if (kGLES_GrGLStandard == gpu->glStandard() && gpu->glCaps().bgraIsInternalFormat() && (kBGRA_8888_GrPixelConfig == dst->config() || kBGRA_8888_GrPixelConfig == src->config())) { return false; } const GrGLRenderTarget* dstRT = static_cast(dst->asRenderTarget()); // If dst is multisampled (and uses an extension where there is a separate MSAA renderbuffer) // then we don't want to copy to the texture but to the MSAA buffer. if (dstRT && dstRT->renderFBOID() != dstRT->textureFBOID()) { return false; } const GrGLRenderTarget* srcRT = static_cast(src->asRenderTarget()); // If the src is multisampled (and uses an extension where there is a separate MSAA // renderbuffer) then it is an invalid operation to call CopyTexSubImage if (srcRT && srcRT->renderFBOID() != srcRT->textureFBOID()) { return false; } const GrGLTexture* dstTex = static_cast(dst->asTexture()); // CopyTex(Sub)Image writes to a texture and we have no way of dynamically wrapping a RT in a // texture. if (!dstTex) { return false; } const GrGLTexture* srcTex = static_cast(src->asTexture()); // Check that we could wrap the source in an FBO, that the dst is TEXTURE_2D, that no mirroring // is required. if (gpu->glCaps().isConfigRenderable(src->config(), src->desc().fSampleCnt > 0) && !GrPixelConfigIsCompressed(src->config()) && (!srcTex || srcTex->target() == GR_GL_TEXTURE_2D) && dstTex->target() == GR_GL_TEXTURE_2D && dst->origin() == src->origin()) { return true; } else { return false; } } // If a temporary FBO was created, its non-zero ID is returned. The viewport that the copy rect is // relative to is output. void GrGLGpu::bindSurfaceFBOForCopy(GrSurface* surface, GrGLenum fboTarget, GrGLIRect* viewport, TempFBOTarget tempFBOTarget) { GrGLRenderTarget* rt = static_cast(surface->asRenderTarget()); if (!rt) { SkASSERT(surface->asTexture()); GrGLuint texID = static_cast(surface->asTexture())->textureID(); GrGLenum target = static_cast(surface->asTexture())->target(); GrGLuint* tempFBOID; tempFBOID = kSrc_TempFBOTarget == tempFBOTarget ? &fTempSrcFBOID : &fTempDstFBOID; if (0 == *tempFBOID) { GR_GL_CALL(this->glInterface(), GenFramebuffers(1, tempFBOID)); } fStats.incRenderTargetBinds(); GR_GL_CALL(this->glInterface(), BindFramebuffer(fboTarget, *tempFBOID)); GR_GL_CALL(this->glInterface(), FramebufferTexture2D(fboTarget, GR_GL_COLOR_ATTACHMENT0, target, texID, 0)); viewport->fLeft = 0; viewport->fBottom = 0; viewport->fWidth = surface->width(); viewport->fHeight = surface->height(); } else { fStats.incRenderTargetBinds(); GR_GL_CALL(this->glInterface(), BindFramebuffer(fboTarget, rt->renderFBOID())); *viewport = rt->getViewport(); } } void GrGLGpu::unbindTextureFBOForCopy(GrGLenum fboTarget, GrSurface* surface) { // bindSurfaceFBOForCopy temporarily binds textures that are not render targets to if (!surface->asRenderTarget()) { SkASSERT(surface->asTexture()); GrGLenum textureTarget = static_cast(surface->asTexture())->target(); GR_GL_CALL(this->glInterface(), FramebufferTexture2D(fboTarget, GR_GL_COLOR_ATTACHMENT0, textureTarget, 0, 0)); } } bool GrGLGpu::initCopySurfaceDstDesc(const GrSurface* src, GrSurfaceDesc* desc) const { // If the src is a texture, we can implement the blit as a draw assuming the config is // renderable. if (src->asTexture() && this->caps()->isConfigRenderable(src->config(), false)) { desc->fOrigin = kDefault_GrSurfaceOrigin; desc->fFlags = kRenderTarget_GrSurfaceFlag; desc->fConfig = src->config(); return true; } const GrGLTexture* srcTexture = static_cast(src->asTexture()); if (srcTexture && srcTexture->target() != GR_GL_TEXTURE_2D) { // Not supported for FBO blit or CopyTexSubImage return false; } // We look for opportunities to use CopyTexSubImage, or fbo blit. If neither are // possible and we return false to fallback to creating a render target dst for render-to- // texture. This code prefers CopyTexSubImage to fbo blit and avoids triggering temporary fbo // creation. It isn't clear that avoiding temporary fbo creation is actually optimal. // Check for format issues with glCopyTexSubImage2D if (kGLES_GrGLStandard == this->glStandard() && this->glCaps().bgraIsInternalFormat() && kBGRA_8888_GrPixelConfig == src->config()) { // glCopyTexSubImage2D doesn't work with this config. If the bgra can be used with fbo blit // then we set up for that, otherwise fail. if (this->caps()->isConfigRenderable(kBGRA_8888_GrPixelConfig, false)) { desc->fOrigin = kDefault_GrSurfaceOrigin; desc->fFlags = kRenderTarget_GrSurfaceFlag; desc->fConfig = kBGRA_8888_GrPixelConfig; return true; } return false; } else if (nullptr == src->asRenderTarget()) { // CopyTexSubImage2D or fbo blit would require creating a temp fbo for the src. return false; } const GrGLRenderTarget* srcRT = static_cast(src->asRenderTarget()); if (srcRT && srcRT->renderFBOID() != srcRT->textureFBOID()) { // It's illegal to call CopyTexSubImage2D on a MSAA renderbuffer. Set up for FBO blit or // fail. if (this->caps()->isConfigRenderable(src->config(), false)) { desc->fOrigin = kDefault_GrSurfaceOrigin; desc->fFlags = kRenderTarget_GrSurfaceFlag; desc->fConfig = src->config(); return true; } return false; } // We'll do a CopyTexSubImage. Make the dst a plain old texture. desc->fConfig = src->config(); desc->fOrigin = src->origin(); desc->fFlags = kNone_GrSurfaceFlags; return true; } bool GrGLGpu::onCopySurface(GrSurface* dst, GrSurface* src, const SkIRect& srcRect, const SkIPoint& dstPoint) { // None of our copy methods can handle a swizzle. TODO: Make copySurfaceAsDraw handle the // swizzle. if (this->glCaps().glslCaps()->configOutputSwizzle(src->config()) != this->glCaps().glslCaps()->configOutputSwizzle(dst->config())) { return false; } // Don't prefer copying as a draw if the dst doesn't already have a FBO object. bool preferCopy = SkToBool(dst->asRenderTarget()); if (preferCopy && src->asTexture()) { if (this->copySurfaceAsDraw(dst, src, srcRect, dstPoint)) { return true; } } if (can_copy_texsubimage(dst, src, this)) { this->copySurfaceAsCopyTexSubImage(dst, src, srcRect, dstPoint); return true; } if (can_blit_framebuffer(dst, src, this)) { return this->copySurfaceAsBlitFramebuffer(dst, src, srcRect, dstPoint); } if (!preferCopy && src->asTexture()) { if (this->copySurfaceAsDraw(dst, src, srcRect, dstPoint)) { return true; } } return false; } bool GrGLGpu::createCopyProgram(int progIdx) { const GrGLSLCaps* glslCaps = this->glCaps().glslCaps(); static const GrSLType kSamplerTypes[3] = { kSampler2D_GrSLType, kSamplerExternal_GrSLType, kSampler2DRect_GrSLType }; if (kSamplerExternal_GrSLType == kSamplerTypes[progIdx] && !this->glCaps().glslCaps()->externalTextureSupport()) { return false; } if (kSampler2DRect_GrSLType == kSamplerTypes[progIdx] && !this->glCaps().rectangleTextureSupport()) { return false; } if (!fCopyProgramArrayBuffer) { static const GrGLfloat vdata[] = { 0, 0, 0, 1, 1, 0, 1, 1 }; fCopyProgramArrayBuffer.reset(GrGLBuffer::Create(this, sizeof(vdata), kVertex_GrBufferType, kStatic_GrAccessPattern, vdata)); } if (!fCopyProgramArrayBuffer) { return false; } SkASSERT(!fCopyPrograms[progIdx].fProgram); GL_CALL_RET(fCopyPrograms[progIdx].fProgram, CreateProgram()); if (!fCopyPrograms[progIdx].fProgram) { return false; } const char* version = glslCaps->versionDeclString(); GrGLSLShaderVar aVertex("a_vertex", kVec2f_GrSLType, GrShaderVar::kAttribute_TypeModifier); GrGLSLShaderVar uTexCoordXform("u_texCoordXform", kVec4f_GrSLType, GrShaderVar::kUniform_TypeModifier); GrGLSLShaderVar uPosXform("u_posXform", kVec4f_GrSLType, GrShaderVar::kUniform_TypeModifier); GrGLSLShaderVar uTexture("u_texture", kSamplerTypes[progIdx], GrShaderVar::kUniform_TypeModifier); GrGLSLShaderVar vTexCoord("v_texCoord", kVec2f_GrSLType, GrShaderVar::kVaryingOut_TypeModifier); GrGLSLShaderVar oFragColor("o_FragColor", kVec4f_GrSLType, GrShaderVar::kOut_TypeModifier); SkString vshaderTxt(version); if (glslCaps->noperspectiveInterpolationSupport()) { if (const char* extension = glslCaps->noperspectiveInterpolationExtensionString()) { vshaderTxt.appendf("#extension %s : require\n", extension); } vTexCoord.addModifier("noperspective"); } aVertex.appendDecl(glslCaps, &vshaderTxt); vshaderTxt.append(";"); uTexCoordXform.appendDecl(glslCaps, &vshaderTxt); vshaderTxt.append(";"); uPosXform.appendDecl(glslCaps, &vshaderTxt); vshaderTxt.append(";"); vTexCoord.appendDecl(glslCaps, &vshaderTxt); vshaderTxt.append(";"); vshaderTxt.append( "// Copy Program VS\n" "void main() {" " v_texCoord = a_vertex.xy * u_texCoordXform.xy + u_texCoordXform.zw;" " gl_Position.xy = a_vertex * u_posXform.xy + u_posXform.zw;" " gl_Position.zw = vec2(0, 1);" "}" ); SkString fshaderTxt(version); if (glslCaps->noperspectiveInterpolationSupport()) { if (const char* extension = glslCaps->noperspectiveInterpolationExtensionString()) { fshaderTxt.appendf("#extension %s : require\n", extension); } } if (kSamplerTypes[progIdx] == kSamplerExternal_GrSLType) { fshaderTxt.appendf("#extension %s : require\n", glslCaps->externalTextureExtensionString()); } GrGLSLAppendDefaultFloatPrecisionDeclaration(kDefault_GrSLPrecision, *glslCaps, &fshaderTxt); vTexCoord.setTypeModifier(GrShaderVar::kVaryingIn_TypeModifier); vTexCoord.appendDecl(glslCaps, &fshaderTxt); fshaderTxt.append(";"); uTexture.appendDecl(glslCaps, &fshaderTxt); fshaderTxt.append(";"); const char* fsOutName; if (glslCaps->mustDeclareFragmentShaderOutput()) { oFragColor.appendDecl(glslCaps, &fshaderTxt); fshaderTxt.append(";"); fsOutName = oFragColor.c_str(); } else { fsOutName = "gl_FragColor"; } fshaderTxt.appendf( "// Copy Program FS\n" "void main() {" " %s = %s(u_texture, v_texCoord);" "}", fsOutName, GrGLSLTexture2DFunctionName(kVec2f_GrSLType, kSamplerTypes[progIdx], this->glslGeneration()) ); const char* str; GrGLint length; str = vshaderTxt.c_str(); length = SkToInt(vshaderTxt.size()); GrGLuint vshader = GrGLCompileAndAttachShader(*fGLContext, fCopyPrograms[progIdx].fProgram, GR_GL_VERTEX_SHADER, &str, &length, 1, &fStats); str = fshaderTxt.c_str(); length = SkToInt(fshaderTxt.size()); GrGLuint fshader = GrGLCompileAndAttachShader(*fGLContext, fCopyPrograms[progIdx].fProgram, GR_GL_FRAGMENT_SHADER, &str, &length, 1, &fStats); GL_CALL(LinkProgram(fCopyPrograms[progIdx].fProgram)); GL_CALL_RET(fCopyPrograms[progIdx].fTextureUniform, GetUniformLocation(fCopyPrograms[progIdx].fProgram, "u_texture")); GL_CALL_RET(fCopyPrograms[progIdx].fPosXformUniform, GetUniformLocation(fCopyPrograms[progIdx].fProgram, "u_posXform")); GL_CALL_RET(fCopyPrograms[progIdx].fTexCoordXformUniform, GetUniformLocation(fCopyPrograms[progIdx].fProgram, "u_texCoordXform")); GL_CALL(BindAttribLocation(fCopyPrograms[progIdx].fProgram, 0, "a_vertex")); GL_CALL(DeleteShader(vshader)); GL_CALL(DeleteShader(fshader)); return true; } bool GrGLGpu::createWireRectProgram() { if (!fWireRectArrayBuffer) { static const GrGLfloat vdata[] = { 0, 0, 0, 1, 1, 1, 1, 0 }; fWireRectArrayBuffer.reset(GrGLBuffer::Create(this, sizeof(vdata), kVertex_GrBufferType, kStatic_GrAccessPattern, vdata)); if (!fWireRectArrayBuffer) { return false; } } SkASSERT(!fWireRectProgram.fProgram); GL_CALL_RET(fWireRectProgram.fProgram, CreateProgram()); if (!fWireRectProgram.fProgram) { return false; } GrGLSLShaderVar uColor("u_color", kVec4f_GrSLType, GrShaderVar::kUniform_TypeModifier); GrGLSLShaderVar uRect("u_rect", kVec4f_GrSLType, GrShaderVar::kUniform_TypeModifier); GrGLSLShaderVar aVertex("a_vertex", kVec2f_GrSLType, GrShaderVar::kAttribute_TypeModifier); const char* version = this->glCaps().glslCaps()->versionDeclString(); // The rect uniform specifies the rectangle in NDC space as a vec4 (left,top,right,bottom). The // program is used with a vbo containing the unit square. Vertices are computed from the rect // uniform using the 4 vbo vertices. SkString vshaderTxt(version); aVertex.appendDecl(this->glCaps().glslCaps(), &vshaderTxt); vshaderTxt.append(";"); uRect.appendDecl(this->glCaps().glslCaps(), &vshaderTxt); vshaderTxt.append(";"); vshaderTxt.append( "// Wire Rect Program VS\n" "void main() {" " gl_Position.x = u_rect.x + a_vertex.x * (u_rect.z - u_rect.x);" " gl_Position.y = u_rect.y + a_vertex.y * (u_rect.w - u_rect.y);" " gl_Position.zw = vec2(0, 1);" "}" ); GrGLSLShaderVar oFragColor("o_FragColor", kVec4f_GrSLType, GrShaderVar::kOut_TypeModifier); SkString fshaderTxt(version); GrGLSLAppendDefaultFloatPrecisionDeclaration(kDefault_GrSLPrecision, *this->glCaps().glslCaps(), &fshaderTxt); uColor.appendDecl(this->glCaps().glslCaps(), &fshaderTxt); fshaderTxt.append(";"); const char* fsOutName; if (this->glCaps().glslCaps()->mustDeclareFragmentShaderOutput()) { oFragColor.appendDecl(this->glCaps().glslCaps(), &fshaderTxt); fshaderTxt.append(";"); fsOutName = oFragColor.c_str(); } else { fsOutName = "gl_FragColor"; } fshaderTxt.appendf( "// Write Rect Program FS\n" "void main() {" " %s = %s;" "}", fsOutName, uColor.c_str() ); const char* str; GrGLint length; str = vshaderTxt.c_str(); length = SkToInt(vshaderTxt.size()); GrGLuint vshader = GrGLCompileAndAttachShader(*fGLContext, fWireRectProgram.fProgram, GR_GL_VERTEX_SHADER, &str, &length, 1, &fStats); str = fshaderTxt.c_str(); length = SkToInt(fshaderTxt.size()); GrGLuint fshader = GrGLCompileAndAttachShader(*fGLContext, fWireRectProgram.fProgram, GR_GL_FRAGMENT_SHADER, &str, &length, 1, &fStats); GL_CALL(LinkProgram(fWireRectProgram.fProgram)); GL_CALL_RET(fWireRectProgram.fColorUniform, GetUniformLocation(fWireRectProgram.fProgram, "u_color")); GL_CALL_RET(fWireRectProgram.fRectUniform, GetUniformLocation(fWireRectProgram.fProgram, "u_rect")); GL_CALL(BindAttribLocation(fWireRectProgram.fProgram, 0, "a_vertex")); GL_CALL(DeleteShader(vshader)); GL_CALL(DeleteShader(fshader)); return true; } void GrGLGpu::drawDebugWireRect(GrRenderTarget* rt, const SkIRect& rect, GrColor color) { // TODO: This should swizzle the output to match dst's config, though it is a debugging // visualization. this->handleDirtyContext(); if (!fWireRectProgram.fProgram) { if (!this->createWireRectProgram()) { SkDebugf("Failed to create wire rect program.\n"); return; } } int w = rt->width(); int h = rt->height(); // Compute the edges of the rectangle (top,left,right,bottom) in NDC space. Must consider // whether the render target is flipped or not. GrGLfloat edges[4]; edges[0] = SkIntToScalar(rect.fLeft) + 0.5f; edges[2] = SkIntToScalar(rect.fRight) - 0.5f; if (kBottomLeft_GrSurfaceOrigin == rt->origin()) { edges[1] = h - (SkIntToScalar(rect.fTop) + 0.5f); edges[3] = h - (SkIntToScalar(rect.fBottom) - 0.5f); } else { edges[1] = SkIntToScalar(rect.fTop) + 0.5f; edges[3] = SkIntToScalar(rect.fBottom) - 0.5f; } edges[0] = 2 * edges[0] / w - 1.0f; edges[1] = 2 * edges[1] / h - 1.0f; edges[2] = 2 * edges[2] / w - 1.0f; edges[3] = 2 * edges[3] / h - 1.0f; GrGLfloat channels[4]; static const GrGLfloat scale255 = 1.f / 255.f; channels[0] = GrColorUnpackR(color) * scale255; channels[1] = GrColorUnpackG(color) * scale255; channels[2] = GrColorUnpackB(color) * scale255; channels[3] = GrColorUnpackA(color) * scale255; GrGLRenderTarget* glRT = static_cast(rt->asRenderTarget()); this->flushRenderTarget(glRT, &rect); GL_CALL(UseProgram(fWireRectProgram.fProgram)); fHWProgramID = fWireRectProgram.fProgram; fHWVertexArrayState.setVertexArrayID(this, 0); GrGLAttribArrayState* attribs = fHWVertexArrayState.bindInternalVertexArray(this); attribs->set(this, 0, fWireRectArrayBuffer, kVec2f_GrVertexAttribType, 2 * sizeof(GrGLfloat), 0); attribs->disableUnusedArrays(this, 0x1); GL_CALL(Uniform4fv(fWireRectProgram.fRectUniform, 1, edges)); GL_CALL(Uniform4fv(fWireRectProgram.fColorUniform, 1, channels)); GrXferProcessor::BlendInfo blendInfo; blendInfo.reset(); this->flushBlend(blendInfo, GrSwizzle::RGBA()); this->flushColorWrite(true); this->flushDrawFace(GrPipelineBuilder::kBoth_DrawFace); this->flushHWAAState(glRT, false, false); this->disableScissor(); GrStencilSettings stencil; stencil.setDisabled(); this->flushStencil(stencil); GL_CALL(DrawArrays(GR_GL_LINE_LOOP, 0, 4)); } bool GrGLGpu::copySurfaceAsDraw(GrSurface* dst, GrSurface* src, const SkIRect& srcRect, const SkIPoint& dstPoint) { GrGLTexture* srcTex = static_cast(src->asTexture()); int progIdx = TextureTargetToCopyProgramIdx(srcTex->target()); if (!fCopyPrograms[progIdx].fProgram) { if (!this->createCopyProgram(progIdx)) { SkDebugf("Failed to create copy program.\n"); return false; } } int w = srcRect.width(); int h = srcRect.height(); GrTextureParams params(SkShader::kClamp_TileMode, GrTextureParams::kNone_FilterMode); this->bindTexture(0, params, true, srcTex); GrGLIRect dstVP; this->bindSurfaceFBOForCopy(dst, GR_GL_FRAMEBUFFER, &dstVP, kDst_TempFBOTarget); this->flushViewport(dstVP); fHWBoundRenderTargetUniqueID = SK_InvalidUniqueID; SkIRect dstRect = SkIRect::MakeXYWH(dstPoint.fX, dstPoint.fY, w, h); GL_CALL(UseProgram(fCopyPrograms[progIdx].fProgram)); fHWProgramID = fCopyPrograms[progIdx].fProgram; fHWVertexArrayState.setVertexArrayID(this, 0); GrGLAttribArrayState* attribs = fHWVertexArrayState.bindInternalVertexArray(this); attribs->set(this, 0, fCopyProgramArrayBuffer, kVec2f_GrVertexAttribType, 2 * sizeof(GrGLfloat), 0); attribs->disableUnusedArrays(this, 0x1); // dst rect edges in NDC (-1 to 1) int dw = dst->width(); int dh = dst->height(); GrGLfloat dx0 = 2.f * dstPoint.fX / dw - 1.f; GrGLfloat dx1 = 2.f * (dstPoint.fX + w) / dw - 1.f; GrGLfloat dy0 = 2.f * dstPoint.fY / dh - 1.f; GrGLfloat dy1 = 2.f * (dstPoint.fY + h) / dh - 1.f; if (kBottomLeft_GrSurfaceOrigin == dst->origin()) { dy0 = -dy0; dy1 = -dy1; } GrGLfloat sx0 = (GrGLfloat)srcRect.fLeft; GrGLfloat sx1 = (GrGLfloat)(srcRect.fLeft + w); GrGLfloat sy0 = (GrGLfloat)srcRect.fTop; GrGLfloat sy1 = (GrGLfloat)(srcRect.fTop + h); int sh = src->height(); if (kBottomLeft_GrSurfaceOrigin == src->origin()) { sy0 = sh - sy0; sy1 = sh - sy1; } // src rect edges in normalized texture space (0 to 1) unless we're using a RECTANGLE texture. GrGLenum srcTarget = srcTex->target(); if (GR_GL_TEXTURE_RECTANGLE != srcTarget) { int sw = src->width(); sx0 /= sw; sx1 /= sw; sy0 /= sh; sy1 /= sh; } GL_CALL(Uniform4f(fCopyPrograms[progIdx].fPosXformUniform, dx1 - dx0, dy1 - dy0, dx0, dy0)); GL_CALL(Uniform4f(fCopyPrograms[progIdx].fTexCoordXformUniform, sx1 - sx0, sy1 - sy0, sx0, sy0)); GL_CALL(Uniform1i(fCopyPrograms[progIdx].fTextureUniform, 0)); GrXferProcessor::BlendInfo blendInfo; blendInfo.reset(); this->flushBlend(blendInfo, GrSwizzle::RGBA()); this->flushColorWrite(true); this->flushDrawFace(GrPipelineBuilder::kBoth_DrawFace); this->flushHWAAState(nullptr, false, false); this->disableScissor(); GrStencilSettings stencil; stencil.setDisabled(); this->flushStencil(stencil); GL_CALL(DrawArrays(GR_GL_TRIANGLE_STRIP, 0, 4)); this->unbindTextureFBOForCopy(GR_GL_FRAMEBUFFER, dst); this->didWriteToSurface(dst, &dstRect); return true; } void GrGLGpu::copySurfaceAsCopyTexSubImage(GrSurface* dst, GrSurface* src, const SkIRect& srcRect, const SkIPoint& dstPoint) { SkASSERT(can_copy_texsubimage(dst, src, this)); GrGLIRect srcVP; this->bindSurfaceFBOForCopy(src, GR_GL_FRAMEBUFFER, &srcVP, kSrc_TempFBOTarget); GrGLTexture* dstTex = static_cast(dst->asTexture()); SkASSERT(dstTex); // We modified the bound FBO fHWBoundRenderTargetUniqueID = SK_InvalidUniqueID; GrGLIRect srcGLRect; srcGLRect.setRelativeTo(srcVP, srcRect.fLeft, srcRect.fTop, srcRect.width(), srcRect.height(), src->origin()); this->setScratchTextureUnit(); GL_CALL(BindTexture(dstTex->target(), dstTex->textureID())); GrGLint dstY; if (kBottomLeft_GrSurfaceOrigin == dst->origin()) { dstY = dst->height() - (dstPoint.fY + srcGLRect.fHeight); } else { dstY = dstPoint.fY; } GL_CALL(CopyTexSubImage2D(dstTex->target(), 0, dstPoint.fX, dstY, srcGLRect.fLeft, srcGLRect.fBottom, srcGLRect.fWidth, srcGLRect.fHeight)); this->unbindTextureFBOForCopy(GR_GL_FRAMEBUFFER, src); SkIRect dstRect = SkIRect::MakeXYWH(dstPoint.fX, dstPoint.fY, srcRect.width(), srcRect.height()); this->didWriteToSurface(dst, &dstRect); } bool GrGLGpu::copySurfaceAsBlitFramebuffer(GrSurface* dst, GrSurface* src, const SkIRect& srcRect, const SkIPoint& dstPoint) { SkASSERT(can_blit_framebuffer(dst, src, this)); SkIRect dstRect = SkIRect::MakeXYWH(dstPoint.fX, dstPoint.fY, srcRect.width(), srcRect.height()); if (dst == src) { if (SkIRect::IntersectsNoEmptyCheck(dstRect, srcRect)) { return false; } } GrGLIRect dstVP; GrGLIRect srcVP; this->bindSurfaceFBOForCopy(dst, GR_GL_DRAW_FRAMEBUFFER, &dstVP, kDst_TempFBOTarget); this->bindSurfaceFBOForCopy(src, GR_GL_READ_FRAMEBUFFER, &srcVP, kSrc_TempFBOTarget); // We modified the bound FBO fHWBoundRenderTargetUniqueID = SK_InvalidUniqueID; GrGLIRect srcGLRect; GrGLIRect dstGLRect; srcGLRect.setRelativeTo(srcVP, srcRect.fLeft, srcRect.fTop, srcRect.width(), srcRect.height(), src->origin()); dstGLRect.setRelativeTo(dstVP, dstRect.fLeft, dstRect.fTop, dstRect.width(), dstRect.height(), dst->origin()); // BlitFrameBuffer respects the scissor, so disable it. this->disableScissor(); GrGLint srcY0; GrGLint srcY1; // Does the blit need to y-mirror or not? if (src->origin() == dst->origin()) { srcY0 = srcGLRect.fBottom; srcY1 = srcGLRect.fBottom + srcGLRect.fHeight; } else { srcY0 = srcGLRect.fBottom + srcGLRect.fHeight; srcY1 = srcGLRect.fBottom; } GL_CALL(BlitFramebuffer(srcGLRect.fLeft, srcY0, srcGLRect.fLeft + srcGLRect.fWidth, srcY1, dstGLRect.fLeft, dstGLRect.fBottom, dstGLRect.fLeft + dstGLRect.fWidth, dstGLRect.fBottom + dstGLRect.fHeight, GR_GL_COLOR_BUFFER_BIT, GR_GL_NEAREST)); this->unbindTextureFBOForCopy(GR_GL_DRAW_FRAMEBUFFER, dst); this->unbindTextureFBOForCopy(GR_GL_READ_FRAMEBUFFER, src); this->didWriteToSurface(dst, &dstRect); return true; } void GrGLGpu::onGetMultisampleSpecs(GrRenderTarget* rt, const GrStencilSettings& stencil, int* effectiveSampleCnt, SkAutoTDeleteArray* sampleLocations) { SkASSERT(!rt->hasMixedSamples() || rt->renderTargetPriv().getStencilAttachment() || stencil.isDisabled()); this->flushStencil(stencil); this->flushHWAAState(rt, true, !stencil.isDisabled()); this->flushRenderTarget(static_cast(rt), &SkIRect::EmptyIRect()); if (0 != this->caps()->maxRasterSamples()) { GR_GL_GetIntegerv(this->glInterface(), GR_GL_EFFECTIVE_RASTER_SAMPLES, effectiveSampleCnt); } else { GR_GL_GetIntegerv(this->glInterface(), GR_GL_SAMPLES, effectiveSampleCnt); } SkASSERT(*effectiveSampleCnt >= rt->desc().fSampleCnt); if (this->caps()->sampleLocationsSupport()) { sampleLocations->reset(new SkPoint[*effectiveSampleCnt]); for (int i = 0; i < *effectiveSampleCnt; ++i) { GrGLfloat pos[2]; GL_CALL(GetMultisamplefv(GR_GL_SAMPLE_POSITION, i, pos)); if (kTopLeft_GrSurfaceOrigin == rt->origin()) { (*sampleLocations)[i].set(pos[0], pos[1]); } else { (*sampleLocations)[i].set(pos[0], 1 - pos[1]); } } } } void GrGLGpu::xferBarrier(GrRenderTarget* rt, GrXferBarrierType type) { SkASSERT(type); switch (type) { case kTexture_GrXferBarrierType: { GrGLRenderTarget* glrt = static_cast(rt); if (glrt->textureFBOID() != glrt->renderFBOID()) { // The render target uses separate storage so no need for glTextureBarrier. // FIXME: The render target will resolve automatically when its texture is bound, // but we could resolve only the bounds that will be read if we do it here instead. return; } SkASSERT(this->caps()->textureBarrierSupport()); GL_CALL(TextureBarrier()); return; } case kBlend_GrXferBarrierType: SkASSERT(GrCaps::kAdvanced_BlendEquationSupport == this->caps()->blendEquationSupport()); GL_CALL(BlendBarrier()); return; default: break; // placate compiler warnings that kNone not handled } } GrBackendObject GrGLGpu::createTestingOnlyBackendTexture(void* pixels, int w, int h, GrPixelConfig config) { if (!this->caps()->isConfigTexturable(config)) { return false; } GrGLTextureInfo* info = new GrGLTextureInfo; info->fTarget = GR_GL_TEXTURE_2D; info->fID = 0; GL_CALL(GenTextures(1, &info->fID)); GL_CALL(ActiveTexture(GR_GL_TEXTURE0)); GL_CALL(PixelStorei(GR_GL_UNPACK_ALIGNMENT, 1)); GL_CALL(BindTexture(info->fTarget, info->fID)); fHWBoundTextureUniqueIDs[0] = 0; GL_CALL(TexParameteri(info->fTarget, GR_GL_TEXTURE_MAG_FILTER, GR_GL_NEAREST)); GL_CALL(TexParameteri(info->fTarget, GR_GL_TEXTURE_MIN_FILTER, GR_GL_NEAREST)); GL_CALL(TexParameteri(info->fTarget, GR_GL_TEXTURE_WRAP_S, GR_GL_CLAMP_TO_EDGE)); GL_CALL(TexParameteri(info->fTarget, GR_GL_TEXTURE_WRAP_T, GR_GL_CLAMP_TO_EDGE)); GrGLenum internalFormat; GrGLenum externalFormat; GrGLenum externalType; if (!this->glCaps().getTexImageFormats(config, config, &internalFormat, &externalFormat, &externalType)) { delete info; #ifdef SK_IGNORE_GL_TEXTURE_TARGET return 0; #else return reinterpret_cast(nullptr); #endif } GL_CALL(TexImage2D(info->fTarget, 0, internalFormat, w, h, 0, externalFormat, externalType, pixels)); #ifdef SK_IGNORE_GL_TEXTURE_TARGET GrGLuint id = info->fID; delete info; return id; #else return reinterpret_cast(info); #endif } bool GrGLGpu::isTestingOnlyBackendTexture(GrBackendObject id) const { #ifdef SK_IGNORE_GL_TEXTURE_TARGET GrGLuint texID = (GrGLuint)id; #else GrGLuint texID = reinterpret_cast(id)->fID; #endif GrGLboolean result; GL_CALL_RET(result, IsTexture(texID)); return (GR_GL_TRUE == result); } void GrGLGpu::deleteTestingOnlyBackendTexture(GrBackendObject id, bool abandonTexture) { #ifdef SK_IGNORE_GL_TEXTURE_TARGET GrGLuint texID = (GrGLuint)id; #else const GrGLTextureInfo* info = reinterpret_cast(id); GrGLuint texID = info->fID; #endif if (!abandonTexture) { GL_CALL(DeleteTextures(1, &texID)); } #ifndef SK_IGNORE_GL_TEXTURE_TARGET delete info; #endif } void GrGLGpu::resetShaderCacheForTesting() const { fProgramCache->abandon(); } /////////////////////////////////////////////////////////////////////////////// GrGLAttribArrayState* GrGLGpu::HWVertexArrayState::bindInternalVertexArray(GrGLGpu* gpu, const GrGLBuffer* ibuf) { GrGLAttribArrayState* attribState; if (gpu->glCaps().isCoreProfile()) { if (!fCoreProfileVertexArray) { GrGLuint arrayID; GR_GL_CALL(gpu->glInterface(), GenVertexArrays(1, &arrayID)); int attrCount = gpu->glCaps().maxVertexAttributes(); fCoreProfileVertexArray = new GrGLVertexArray(arrayID, attrCount); } if (ibuf) { attribState = fCoreProfileVertexArray->bindWithIndexBuffer(gpu, ibuf); } else { attribState = fCoreProfileVertexArray->bind(gpu); } } else { if (ibuf) { // bindBuffer implicitly binds VAO 0 when binding an index buffer. gpu->bindBuffer(kIndex_GrBufferType, ibuf); } else { this->setVertexArrayID(gpu, 0); } int attrCount = gpu->glCaps().maxVertexAttributes(); if (fDefaultVertexArrayAttribState.count() != attrCount) { fDefaultVertexArrayAttribState.resize(attrCount); } attribState = &fDefaultVertexArrayAttribState; } return attribState; } bool GrGLGpu::onMakeCopyForTextureParams(GrTexture* texture, const GrTextureParams& textureParams, GrTextureProducer::CopyParams* copyParams) const { if (textureParams.isTiled() || GrTextureParams::kMipMap_FilterMode == textureParams.filterMode()) { GrGLTexture* glTexture = static_cast(texture); if (GR_GL_TEXTURE_EXTERNAL == glTexture->target() || GR_GL_TEXTURE_RECTANGLE == glTexture->target()) { copyParams->fFilter = GrTextureParams::kNone_FilterMode; copyParams->fWidth = texture->width(); copyParams->fHeight = texture->height(); return true; } } return false; }