/* * Copyright 2016 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "GrGLBuffer.h" #include "GrGLGpu.h" #include "GrGpuResourcePriv.h" #include "SkTraceMemoryDump.h" #define GL_CALL(X) GR_GL_CALL(this->glGpu()->glInterface(), X) #define GL_CALL_RET(RET, X) GR_GL_CALL_RET(this->glGpu()->glInterface(), RET, X) #if GR_GL_CHECK_ALLOC_WITH_GET_ERROR #define CLEAR_ERROR_BEFORE_ALLOC(iface) GrGLClearErr(iface) #define GL_ALLOC_CALL(iface, call) GR_GL_CALL_NOERRCHECK(iface, call) #define CHECK_ALLOC_ERROR(iface) GR_GL_GET_ERROR(iface) #else #define CLEAR_ERROR_BEFORE_ALLOC(iface) #define GL_ALLOC_CALL(iface, call) GR_GL_CALL(iface, call) #define CHECK_ALLOC_ERROR(iface) GR_GL_NO_ERROR #endif #ifdef SK_DEBUG #define VALIDATE() this->validate() #else #define VALIDATE() do {} while(false) #endif GrGLBuffer* GrGLBuffer::Create(GrGLGpu* gpu, size_t size, GrBufferType intendedType, GrAccessPattern accessPattern, const void* data) { if (gpu->glCaps().transferBufferType() == GrGLCaps::kNone_TransferBufferType && (kXferCpuToGpu_GrBufferType == intendedType || kXferGpuToCpu_GrBufferType == intendedType)) { return nullptr; } sk_sp buffer(new GrGLBuffer(gpu, size, intendedType, accessPattern, data)); if (0 == buffer->bufferID()) { return nullptr; } return buffer.release(); } // GL_STREAM_DRAW triggers an optimization in Chromium's GPU process where a client's vertex buffer // objects are implemented as client-side-arrays on tile-deferred architectures. #define DYNAMIC_DRAW_PARAM GR_GL_STREAM_DRAW inline static GrGLenum gr_to_gl_access_pattern(GrBufferType bufferType, GrAccessPattern accessPattern) { static const GrGLenum drawUsages[] = { DYNAMIC_DRAW_PARAM, // TODO: Do we really want to use STREAM_DRAW here on non-Chromium? GR_GL_STATIC_DRAW, // kStatic_GrAccessPattern GR_GL_STREAM_DRAW // kStream_GrAccessPattern }; static const GrGLenum readUsages[] = { GR_GL_DYNAMIC_READ, // kDynamic_GrAccessPattern GR_GL_STATIC_READ, // kStatic_GrAccessPattern GR_GL_STREAM_READ // kStream_GrAccessPattern }; GR_STATIC_ASSERT(0 == kDynamic_GrAccessPattern); GR_STATIC_ASSERT(1 == kStatic_GrAccessPattern); GR_STATIC_ASSERT(2 == kStream_GrAccessPattern); GR_STATIC_ASSERT(SK_ARRAY_COUNT(drawUsages) == 1 + kLast_GrAccessPattern); GR_STATIC_ASSERT(SK_ARRAY_COUNT(readUsages) == 1 + kLast_GrAccessPattern); static GrGLenum const* const usageTypes[] = { drawUsages, // kVertex_GrBufferType, drawUsages, // kIndex_GrBufferType, drawUsages, // kTexel_GrBufferType, drawUsages, // kDrawIndirect_GrBufferType, drawUsages, // kXferCpuToGpu_GrBufferType, readUsages // kXferGpuToCpu_GrBufferType, }; GR_STATIC_ASSERT(0 == kVertex_GrBufferType); GR_STATIC_ASSERT(1 == kIndex_GrBufferType); GR_STATIC_ASSERT(2 == kTexel_GrBufferType); GR_STATIC_ASSERT(3 == kDrawIndirect_GrBufferType); GR_STATIC_ASSERT(4 == kXferCpuToGpu_GrBufferType); GR_STATIC_ASSERT(5 == kXferGpuToCpu_GrBufferType); GR_STATIC_ASSERT(SK_ARRAY_COUNT(usageTypes) == kGrBufferTypeCount); SkASSERT(bufferType >= 0 && bufferType <= kLast_GrBufferType); SkASSERT(accessPattern >= 0 && accessPattern <= kLast_GrAccessPattern); return usageTypes[bufferType][accessPattern]; } GrGLBuffer::GrGLBuffer(GrGLGpu* gpu, size_t size, GrBufferType intendedType, GrAccessPattern accessPattern, const void* data) : INHERITED(gpu, size, intendedType, accessPattern) , fIntendedType(intendedType) , fBufferID(0) , fUsage(gr_to_gl_access_pattern(intendedType, accessPattern)) , fGLSizeInBytes(0) , fHasAttachedToTexture(false) { GL_CALL(GenBuffers(1, &fBufferID)); if (fBufferID) { GrGLenum target = gpu->bindBuffer(fIntendedType, this); CLEAR_ERROR_BEFORE_ALLOC(gpu->glInterface()); // make sure driver can allocate memory for this buffer GL_ALLOC_CALL(gpu->glInterface(), BufferData(target, (GrGLsizeiptr) size, data, fUsage)); if (CHECK_ALLOC_ERROR(gpu->glInterface()) != GR_GL_NO_ERROR) { GL_CALL(DeleteBuffers(1, &fBufferID)); fBufferID = 0; } else { fGLSizeInBytes = size; } } VALIDATE(); this->registerWithCache(SkBudgeted::kYes); if (!fBufferID) { this->resourcePriv().removeScratchKey(); } } inline GrGLGpu* GrGLBuffer::glGpu() const { SkASSERT(!this->wasDestroyed()); return static_cast(this->getGpu()); } inline const GrGLCaps& GrGLBuffer::glCaps() const { return this->glGpu()->glCaps(); } void GrGLBuffer::onRelease() { if (!this->wasDestroyed()) { VALIDATE(); // make sure we've not been abandoned or already released if (fBufferID) { GL_CALL(DeleteBuffers(1, &fBufferID)); fBufferID = 0; fGLSizeInBytes = 0; } fMapPtr = nullptr; VALIDATE(); } INHERITED::onRelease(); } void GrGLBuffer::onAbandon() { fBufferID = 0; fGLSizeInBytes = 0; fMapPtr = nullptr; VALIDATE(); INHERITED::onAbandon(); } void GrGLBuffer::onMap() { SkASSERT(fBufferID); if (this->wasDestroyed()) { return; } VALIDATE(); SkASSERT(!this->isMapped()); // TODO: Make this a function parameter. bool readOnly = (kXferGpuToCpu_GrBufferType == fIntendedType); // Handling dirty context is done in the bindBuffer call switch (this->glCaps().mapBufferType()) { case GrGLCaps::kNone_MapBufferType: break; case GrGLCaps::kMapBuffer_MapBufferType: { GrGLenum target = this->glGpu()->bindBuffer(fIntendedType, this); // Let driver know it can discard the old data if (this->glCaps().useBufferDataNullHint() || fGLSizeInBytes != this->sizeInBytes()) { GL_CALL(BufferData(target, this->sizeInBytes(), nullptr, fUsage)); } GL_CALL_RET(fMapPtr, MapBuffer(target, readOnly ? GR_GL_READ_ONLY : GR_GL_WRITE_ONLY)); break; } case GrGLCaps::kMapBufferRange_MapBufferType: { GrGLenum target = this->glGpu()->bindBuffer(fIntendedType, this); // Make sure the GL buffer size agrees with fDesc before mapping. if (fGLSizeInBytes != this->sizeInBytes()) { GL_CALL(BufferData(target, this->sizeInBytes(), nullptr, fUsage)); } GrGLbitfield writeAccess = GR_GL_MAP_WRITE_BIT; if (kXferCpuToGpu_GrBufferType != fIntendedType) { // TODO: Make this a function parameter. writeAccess |= GR_GL_MAP_INVALIDATE_BUFFER_BIT; } GL_CALL_RET(fMapPtr, MapBufferRange(target, 0, this->sizeInBytes(), readOnly ? GR_GL_MAP_READ_BIT : writeAccess)); break; } case GrGLCaps::kChromium_MapBufferType: { GrGLenum target = this->glGpu()->bindBuffer(fIntendedType, this); // Make sure the GL buffer size agrees with fDesc before mapping. if (fGLSizeInBytes != this->sizeInBytes()) { GL_CALL(BufferData(target, this->sizeInBytes(), nullptr, fUsage)); } GL_CALL_RET(fMapPtr, MapBufferSubData(target, 0, this->sizeInBytes(), readOnly ? GR_GL_READ_ONLY : GR_GL_WRITE_ONLY)); break; } } fGLSizeInBytes = this->sizeInBytes(); VALIDATE(); } void GrGLBuffer::onUnmap() { SkASSERT(fBufferID); if (this->wasDestroyed()) { return; } VALIDATE(); SkASSERT(this->isMapped()); if (0 == fBufferID) { fMapPtr = nullptr; return; } // bind buffer handles the dirty context switch (this->glCaps().mapBufferType()) { case GrGLCaps::kNone_MapBufferType: SkDEBUGFAIL("Shouldn't get here."); return; case GrGLCaps::kMapBuffer_MapBufferType: // fall through case GrGLCaps::kMapBufferRange_MapBufferType: { GrGLenum target = this->glGpu()->bindBuffer(fIntendedType, this); GL_CALL(UnmapBuffer(target)); break; } case GrGLCaps::kChromium_MapBufferType: this->glGpu()->bindBuffer(fIntendedType, this); // TODO: Is this needed? GL_CALL(UnmapBufferSubData(fMapPtr)); break; } fMapPtr = nullptr; } bool GrGLBuffer::onUpdateData(const void* src, size_t srcSizeInBytes) { SkASSERT(fBufferID); if (this->wasDestroyed()) { return false; } SkASSERT(!this->isMapped()); VALIDATE(); if (srcSizeInBytes > this->sizeInBytes()) { return false; } SkASSERT(srcSizeInBytes <= this->sizeInBytes()); // bindbuffer handles dirty context GrGLenum target = this->glGpu()->bindBuffer(fIntendedType, this); if (this->glCaps().useBufferDataNullHint()) { if (this->sizeInBytes() == srcSizeInBytes) { GL_CALL(BufferData(target, (GrGLsizeiptr) srcSizeInBytes, src, fUsage)); } else { // Before we call glBufferSubData we give the driver a hint using // glBufferData with nullptr. This makes the old buffer contents // inaccessible to future draws. The GPU may still be processing // draws that reference the old contents. With this hint it can // assign a different allocation for the new contents to avoid // flushing the gpu past draws consuming the old contents. // TODO I think we actually want to try calling bufferData here GL_CALL(BufferData(target, this->sizeInBytes(), nullptr, fUsage)); GL_CALL(BufferSubData(target, 0, (GrGLsizeiptr) srcSizeInBytes, src)); } fGLSizeInBytes = this->sizeInBytes(); } else { // Note that we're cheating on the size here. Currently no methods // allow a partial update that preserves contents of non-updated // portions of the buffer (map() does a glBufferData(..size, nullptr..)) GL_CALL(BufferData(target, srcSizeInBytes, src, fUsage)); fGLSizeInBytes = srcSizeInBytes; } VALIDATE(); return true; } void GrGLBuffer::setMemoryBacking(SkTraceMemoryDump* traceMemoryDump, const SkString& dumpName) const { SkString buffer_id; buffer_id.appendU32(this->bufferID()); traceMemoryDump->setMemoryBacking(dumpName.c_str(), "gl_buffer", buffer_id.c_str()); } #ifdef SK_DEBUG void GrGLBuffer::validate() const { SkASSERT(0 != fBufferID || 0 == fGLSizeInBytes); SkASSERT(nullptr == fMapPtr || fGLSizeInBytes <= this->sizeInBytes()); } #endif