/* * Copyright 2012 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "GrTextureDomain.h" #include "GrResourceProvider.h" #include "GrShaderCaps.h" #include "GrSimpleTextureEffect.h" #include "GrSurfaceProxyPriv.h" #include "GrTexture.h" #include "SkFloatingPoint.h" #include "glsl/GrGLSLFragmentProcessor.h" #include "glsl/GrGLSLFragmentShaderBuilder.h" #include "glsl/GrGLSLProgramDataManager.h" #include "glsl/GrGLSLShaderBuilder.h" #include "glsl/GrGLSLUniformHandler.h" static bool can_ignore_rect(GrTextureProxy* proxy, const SkRect& domain) { if (GrResourceProvider::IsFunctionallyExact(proxy)) { const SkIRect kFullRect = SkIRect::MakeWH(proxy->width(), proxy->height()); return domain.contains(kFullRect); } return false; } GrTextureDomain::GrTextureDomain(GrTextureProxy* proxy, const SkRect& domain, Mode mode, int index) : fMode(mode) , fIndex(index) { if (kIgnore_Mode == fMode) { return; } if (kClamp_Mode == mode && can_ignore_rect(proxy, domain)) { fMode = kIgnore_Mode; return; } const SkRect kFullRect = SkRect::MakeIWH(proxy->width(), proxy->height()); // We don't currently handle domains that are empty or don't intersect the texture. // It is OK if the domain rect is a line or point, but it should not be inverted. We do not // handle rects that do not intersect the [0..1]x[0..1] rect. SkASSERT(domain.fLeft <= domain.fRight); SkASSERT(domain.fTop <= domain.fBottom); fDomain.fLeft = SkScalarPin(domain.fLeft, 0.0f, kFullRect.fRight); fDomain.fRight = SkScalarPin(domain.fRight, fDomain.fLeft, kFullRect.fRight); fDomain.fTop = SkScalarPin(domain.fTop, 0.0f, kFullRect.fBottom); fDomain.fBottom = SkScalarPin(domain.fBottom, fDomain.fTop, kFullRect.fBottom); SkASSERT(fDomain.fLeft <= fDomain.fRight); SkASSERT(fDomain.fTop <= fDomain.fBottom); } ////////////////////////////////////////////////////////////////////////////// void GrTextureDomain::GLDomain::sampleTexture(GrGLSLShaderBuilder* builder, GrGLSLUniformHandler* uniformHandler, const GrShaderCaps* shaderCaps, const GrTextureDomain& textureDomain, const char* outColor, const SkString& inCoords, GrGLSLFragmentProcessor::SamplerHandle sampler, const char* inModulateColor) { SkASSERT(!fHasMode || textureDomain.mode() == fMode); SkDEBUGCODE(fMode = textureDomain.mode();) SkDEBUGCODE(fHasMode = true;) if (textureDomain.mode() != kIgnore_Mode && !fDomainUni.isValid()) { const char* name; SkString uniName("TexDom"); if (textureDomain.fIndex >= 0) { uniName.appendS32(textureDomain.fIndex); } fDomainUni = uniformHandler->addUniform(kFragment_GrShaderFlag, kHalf4_GrSLType, uniName.c_str(), &name); fDomainName = name; } switch (textureDomain.mode()) { case kIgnore_Mode: { builder->codeAppendf("%s = ", outColor); builder->appendTextureLookupAndModulate(inModulateColor, sampler, inCoords.c_str(), kFloat2_GrSLType); builder->codeAppend(";"); break; } case kClamp_Mode: { SkString clampedCoords; clampedCoords.appendf("clamp(%s, %s.xy, %s.zw)", inCoords.c_str(), fDomainName.c_str(), fDomainName.c_str()); builder->codeAppendf("%s = ", outColor); builder->appendTextureLookupAndModulate(inModulateColor, sampler, clampedCoords.c_str(), kFloat2_GrSLType); builder->codeAppend(";"); break; } case kDecal_Mode: { // Add a block since we're going to declare variables. GrGLSLShaderBuilder::ShaderBlock block(builder); const char* domain = fDomainName.c_str(); if (!shaderCaps->canUseAnyFunctionInShader()) { // On the NexusS and GalaxyNexus, the other path (with the 'any' // call) causes the compilation error "Calls to any function that // may require a gradient calculation inside a conditional block // may return undefined results". This appears to be an issue with // the 'any' call since even the simple "result=black; if (any()) // result=white;" code fails to compile. builder->codeAppend("half4 outside = half4(0.0, 0.0, 0.0, 0.0);"); builder->codeAppend("half4 inside = "); builder->appendTextureLookupAndModulate(inModulateColor, sampler, inCoords.c_str(), kFloat2_GrSLType); builder->codeAppend(";"); builder->codeAppendf("float x = (%s).x;", inCoords.c_str()); builder->codeAppendf("float y = (%s).y;", inCoords.c_str()); builder->codeAppendf("x = abs(2.0*(x - %s.x)/(%s.z - %s.x) - 1.0);", domain, domain, domain); builder->codeAppendf("y = abs(2.0*(y - %s.y)/(%s.w - %s.y) - 1.0);", domain, domain, domain); builder->codeAppend("half blend = step(1.0, max(x, y));"); builder->codeAppendf("%s = mix(inside, outside, blend);", outColor); } else { builder->codeAppend("bool4 outside;\n"); builder->codeAppendf("outside.xy = lessThan(%s, %s.xy);", inCoords.c_str(), domain); builder->codeAppendf("outside.zw = greaterThan(%s, %s.zw);", inCoords.c_str(), domain); builder->codeAppendf("%s = any(outside) ? half4(0.0, 0.0, 0.0, 0.0) : ", outColor); builder->appendTextureLookupAndModulate(inModulateColor, sampler, inCoords.c_str(), kFloat2_GrSLType); builder->codeAppend(";"); } break; } case kRepeat_Mode: { SkString clampedCoords; clampedCoords.printf("mod(%s - %s.xy, %s.zw - %s.xy) + %s.xy", inCoords.c_str(), fDomainName.c_str(), fDomainName.c_str(), fDomainName.c_str(), fDomainName.c_str()); builder->codeAppendf("%s = ", outColor); builder->appendTextureLookupAndModulate(inModulateColor, sampler, clampedCoords.c_str(), kFloat2_GrSLType); builder->codeAppend(";"); break; } } } void GrTextureDomain::GLDomain::setData(const GrGLSLProgramDataManager& pdman, const GrTextureDomain& textureDomain, GrSurfaceProxy* proxy) { GrTexture* tex = proxy->priv().peekTexture(); SkASSERT(fHasMode && textureDomain.mode() == fMode); if (kIgnore_Mode != textureDomain.mode()) { SkScalar wInv = SK_Scalar1 / tex->width(); SkScalar hInv = SK_Scalar1 / tex->height(); float values[kPrevDomainCount] = { SkScalarToFloat(textureDomain.domain().fLeft * wInv), SkScalarToFloat(textureDomain.domain().fTop * hInv), SkScalarToFloat(textureDomain.domain().fRight * wInv), SkScalarToFloat(textureDomain.domain().fBottom * hInv) }; SkASSERT(values[0] >= 0.0f && values[0] <= 1.0f); SkASSERT(values[1] >= 0.0f && values[1] <= 1.0f); SkASSERT(values[2] >= 0.0f && values[2] <= 1.0f); SkASSERT(values[3] >= 0.0f && values[3] <= 1.0f); // vertical flip if necessary if (kBottomLeft_GrSurfaceOrigin == proxy->origin()) { values[1] = 1.0f - values[1]; values[3] = 1.0f - values[3]; // The top and bottom were just flipped, so correct the ordering // of elements so that values = (l, t, r, b). SkTSwap(values[1], values[3]); } if (0 != memcmp(values, fPrevDomain, kPrevDomainCount * sizeof(float))) { pdman.set4fv(fDomainUni, 1, values); memcpy(fPrevDomain, values, kPrevDomainCount * sizeof(float)); } } } /////////////////////////////////////////////////////////////////////////////// inline GrFragmentProcessor::OptimizationFlags GrTextureDomainEffect::OptFlags( GrPixelConfig config, GrTextureDomain::Mode mode) { if (mode == GrTextureDomain::kDecal_Mode || !GrPixelConfigIsOpaque(config)) { return GrFragmentProcessor::kCompatibleWithCoverageAsAlpha_OptimizationFlag; } else { return GrFragmentProcessor::kCompatibleWithCoverageAsAlpha_OptimizationFlag | GrFragmentProcessor::kPreservesOpaqueInput_OptimizationFlag; } } std::unique_ptr GrTextureDomainEffect::Make( sk_sp proxy, const SkMatrix& matrix, const SkRect& domain, GrTextureDomain::Mode mode, GrSamplerState::Filter filterMode) { if (GrTextureDomain::kIgnore_Mode == mode || (GrTextureDomain::kClamp_Mode == mode && can_ignore_rect(proxy.get(), domain))) { return GrSimpleTextureEffect::Make(std::move(proxy), matrix, filterMode); } else { return std::unique_ptr(new GrTextureDomainEffect( std::move(proxy), matrix, domain, mode, filterMode)); } } GrTextureDomainEffect::GrTextureDomainEffect(sk_sp proxy, const SkMatrix& matrix, const SkRect& domain, GrTextureDomain::Mode mode, GrSamplerState::Filter filterMode) : INHERITED(kGrTextureDomainEffect_ClassID, OptFlags(proxy->config(), mode)) , fCoordTransform(matrix, proxy.get()) , fTextureDomain(proxy.get(), domain, mode) , fTextureSampler(std::move(proxy), filterMode) { SkASSERT(mode != GrTextureDomain::kRepeat_Mode || filterMode == GrSamplerState::Filter::kNearest); this->addCoordTransform(&fCoordTransform); this->addTextureSampler(&fTextureSampler); } GrTextureDomainEffect::GrTextureDomainEffect(const GrTextureDomainEffect& that) : INHERITED(kGrTextureDomainEffect_ClassID, that.optimizationFlags()) , fCoordTransform(that.fCoordTransform) , fTextureDomain(that.fTextureDomain) , fTextureSampler(that.fTextureSampler) { this->addCoordTransform(&fCoordTransform); this->addTextureSampler(&fTextureSampler); } void GrTextureDomainEffect::onGetGLSLProcessorKey(const GrShaderCaps& caps, GrProcessorKeyBuilder* b) const { b->add32(GrTextureDomain::GLDomain::DomainKey(fTextureDomain)); } GrGLSLFragmentProcessor* GrTextureDomainEffect::onCreateGLSLInstance() const { class GLSLProcessor : public GrGLSLFragmentProcessor { public: void emitCode(EmitArgs& args) override { const GrTextureDomainEffect& tde = args.fFp.cast(); const GrTextureDomain& domain = tde.fTextureDomain; GrGLSLFPFragmentBuilder* fragBuilder = args.fFragBuilder; SkString coords2D = fragBuilder->ensureCoords2D(args.fTransformedCoords[0]); fGLDomain.sampleTexture(fragBuilder, args.fUniformHandler, args.fShaderCaps, domain, args.fOutputColor, coords2D, args.fTexSamplers[0], args.fInputColor); } protected: void onSetData(const GrGLSLProgramDataManager& pdman, const GrFragmentProcessor& fp) override { const GrTextureDomainEffect& tde = fp.cast(); const GrTextureDomain& domain = tde.fTextureDomain; GrSurfaceProxy* proxy = tde.textureSampler(0).proxy(); fGLDomain.setData(pdman, domain, proxy); } private: GrTextureDomain::GLDomain fGLDomain; }; return new GLSLProcessor; } bool GrTextureDomainEffect::onIsEqual(const GrFragmentProcessor& sBase) const { const GrTextureDomainEffect& s = sBase.cast(); return this->fTextureDomain == s.fTextureDomain; } /////////////////////////////////////////////////////////////////////////////// GR_DEFINE_FRAGMENT_PROCESSOR_TEST(GrTextureDomainEffect); #if GR_TEST_UTILS std::unique_ptr GrTextureDomainEffect::TestCreate(GrProcessorTestData* d) { int texIdx = d->fRandom->nextBool() ? GrProcessorUnitTest::kSkiaPMTextureIdx : GrProcessorUnitTest::kAlphaTextureIdx; sk_sp proxy = d->textureProxy(texIdx); SkRect domain; domain.fLeft = d->fRandom->nextRangeScalar(0, proxy->width()); domain.fRight = d->fRandom->nextRangeScalar(domain.fLeft, proxy->width()); domain.fTop = d->fRandom->nextRangeScalar(0, proxy->height()); domain.fBottom = d->fRandom->nextRangeScalar(domain.fTop, proxy->height()); GrTextureDomain::Mode mode = (GrTextureDomain::Mode) d->fRandom->nextULessThan(GrTextureDomain::kModeCount); const SkMatrix& matrix = GrTest::TestMatrix(d->fRandom); bool bilerp = mode != GrTextureDomain::kRepeat_Mode ? d->fRandom->nextBool() : false; return GrTextureDomainEffect::Make( std::move(proxy), matrix, domain, mode, bilerp ? GrSamplerState::Filter::kBilerp : GrSamplerState::Filter::kNearest); } #endif /////////////////////////////////////////////////////////////////////////////// std::unique_ptr GrDeviceSpaceTextureDecalFragmentProcessor::Make( sk_sp proxy, const SkIRect& subset, const SkIPoint& deviceSpaceOffset) { return std::unique_ptr(new GrDeviceSpaceTextureDecalFragmentProcessor( std::move(proxy), subset, deviceSpaceOffset)); } GrDeviceSpaceTextureDecalFragmentProcessor::GrDeviceSpaceTextureDecalFragmentProcessor( sk_sp proxy, const SkIRect& subset, const SkIPoint& deviceSpaceOffset) : INHERITED(kGrDeviceSpaceTextureDecalFragmentProcessor_ClassID, kCompatibleWithCoverageAsAlpha_OptimizationFlag) , fTextureSampler(proxy, GrSamplerState::ClampNearest()) , fTextureDomain(proxy.get(), GrTextureDomain::MakeTexelDomain(subset), GrTextureDomain::kDecal_Mode) { this->addTextureSampler(&fTextureSampler); fDeviceSpaceOffset.fX = deviceSpaceOffset.fX - subset.fLeft; fDeviceSpaceOffset.fY = deviceSpaceOffset.fY - subset.fTop; } GrDeviceSpaceTextureDecalFragmentProcessor::GrDeviceSpaceTextureDecalFragmentProcessor( const GrDeviceSpaceTextureDecalFragmentProcessor& that) : INHERITED(kGrDeviceSpaceTextureDecalFragmentProcessor_ClassID, kCompatibleWithCoverageAsAlpha_OptimizationFlag) , fTextureSampler(that.fTextureSampler) , fTextureDomain(that.fTextureDomain) , fDeviceSpaceOffset(that.fDeviceSpaceOffset) { this->addTextureSampler(&fTextureSampler); } std::unique_ptr GrDeviceSpaceTextureDecalFragmentProcessor::clone() const { return std::unique_ptr( new GrDeviceSpaceTextureDecalFragmentProcessor(*this)); } GrGLSLFragmentProcessor* GrDeviceSpaceTextureDecalFragmentProcessor::onCreateGLSLInstance() const { class GLSLProcessor : public GrGLSLFragmentProcessor { public: void emitCode(EmitArgs& args) override { const GrDeviceSpaceTextureDecalFragmentProcessor& dstdfp = args.fFp.cast(); const char* scaleAndTranslateName; fScaleAndTranslateUni = args.fUniformHandler->addUniform(kFragment_GrShaderFlag, kHalf4_GrSLType, "scaleAndTranslate", &scaleAndTranslateName); args.fFragBuilder->codeAppendf("half2 coords = sk_FragCoord.xy * %s.xy + %s.zw;", scaleAndTranslateName, scaleAndTranslateName); fGLDomain.sampleTexture(args.fFragBuilder, args.fUniformHandler, args.fShaderCaps, dstdfp.fTextureDomain, args.fOutputColor, SkString("coords"), args.fTexSamplers[0], args.fInputColor); } protected: void onSetData(const GrGLSLProgramDataManager& pdman, const GrFragmentProcessor& fp) override { const GrDeviceSpaceTextureDecalFragmentProcessor& dstdfp = fp.cast(); GrSurfaceProxy* proxy = dstdfp.textureSampler(0).proxy(); GrTexture* texture = proxy->priv().peekTexture(); fGLDomain.setData(pdman, dstdfp.fTextureDomain, proxy); float iw = 1.f / texture->width(); float ih = 1.f / texture->height(); float scaleAndTransData[4] = { iw, ih, -dstdfp.fDeviceSpaceOffset.fX * iw, -dstdfp.fDeviceSpaceOffset.fY * ih }; if (proxy->origin() == kBottomLeft_GrSurfaceOrigin) { scaleAndTransData[1] = -scaleAndTransData[1]; scaleAndTransData[3] = 1 - scaleAndTransData[3]; } pdman.set4fv(fScaleAndTranslateUni, 1, scaleAndTransData); } private: GrTextureDomain::GLDomain fGLDomain; UniformHandle fScaleAndTranslateUni; }; return new GLSLProcessor; } bool GrDeviceSpaceTextureDecalFragmentProcessor::onIsEqual(const GrFragmentProcessor& fp) const { const GrDeviceSpaceTextureDecalFragmentProcessor& dstdfp = fp.cast(); return dstdfp.fTextureSampler.proxy()->underlyingUniqueID() == fTextureSampler.proxy()->underlyingUniqueID() && dstdfp.fDeviceSpaceOffset == fDeviceSpaceOffset && dstdfp.fTextureDomain == fTextureDomain; } /////////////////////////////////////////////////////////////////////////////// GR_DEFINE_FRAGMENT_PROCESSOR_TEST(GrDeviceSpaceTextureDecalFragmentProcessor); #if GR_TEST_UTILS std::unique_ptr GrDeviceSpaceTextureDecalFragmentProcessor::TestCreate( GrProcessorTestData* d) { int texIdx = d->fRandom->nextBool() ? GrProcessorUnitTest::kSkiaPMTextureIdx : GrProcessorUnitTest::kAlphaTextureIdx; sk_sp proxy = d->textureProxy(texIdx); SkIRect subset; subset.fLeft = d->fRandom->nextULessThan(proxy->width() - 1); subset.fRight = d->fRandom->nextRangeU(subset.fLeft, proxy->width()); subset.fTop = d->fRandom->nextULessThan(proxy->height() - 1); subset.fBottom = d->fRandom->nextRangeU(subset.fTop, proxy->height()); SkIPoint pt; pt.fX = d->fRandom->nextULessThan(2048); pt.fY = d->fRandom->nextULessThan(2048); return GrDeviceSpaceTextureDecalFragmentProcessor::Make(std::move(proxy), subset, pt); } #endif