/* * Copyright 2014 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "GrRRectEffect.h" #include "GrConvexPolyEffect.h" #include "GrFragmentProcessor.h" #include "GrInvariantOutput.h" #include "GrOvalEffect.h" #include "GrShaderCaps.h" #include "SkRRect.h" #include "SkTLazy.h" #include "glsl/GrGLSLFragmentProcessor.h" #include "glsl/GrGLSLFragmentShaderBuilder.h" #include "glsl/GrGLSLProgramDataManager.h" #include "glsl/GrGLSLUniformHandler.h" // The effects defined here only handle rrect radii >= kRadiusMin. static const SkScalar kRadiusMin = SK_ScalarHalf; ////////////////////////////////////////////////////////////////////////////// class CircularRRectEffect : public GrFragmentProcessor { public: enum CornerFlags { kTopLeft_CornerFlag = (1 << SkRRect::kUpperLeft_Corner), kTopRight_CornerFlag = (1 << SkRRect::kUpperRight_Corner), kBottomRight_CornerFlag = (1 << SkRRect::kLowerRight_Corner), kBottomLeft_CornerFlag = (1 << SkRRect::kLowerLeft_Corner), kLeft_CornerFlags = kTopLeft_CornerFlag | kBottomLeft_CornerFlag, kTop_CornerFlags = kTopLeft_CornerFlag | kTopRight_CornerFlag, kRight_CornerFlags = kTopRight_CornerFlag | kBottomRight_CornerFlag, kBottom_CornerFlags = kBottomLeft_CornerFlag | kBottomRight_CornerFlag, kAll_CornerFlags = kTopLeft_CornerFlag | kTopRight_CornerFlag | kBottomLeft_CornerFlag | kBottomRight_CornerFlag, kNone_CornerFlags = 0 }; // The flags are used to indicate which corners are circluar (unflagged corners are assumed to // be square). static sk_sp Make(GrPrimitiveEdgeType, uint32_t circularCornerFlags, const SkRRect&); virtual ~CircularRRectEffect() {} const char* name() const override { return "CircularRRect"; } const SkRRect& getRRect() const { return fRRect; } uint32_t getCircularCornerFlags() const { return fCircularCornerFlags; } GrPrimitiveEdgeType getEdgeType() const { return fEdgeType; } private: CircularRRectEffect(GrPrimitiveEdgeType, uint32_t circularCornerFlags, const SkRRect&); GrGLSLFragmentProcessor* onCreateGLSLInstance() const override; void onGetGLSLProcessorKey(const GrShaderCaps&, GrProcessorKeyBuilder*) const override; bool onIsEqual(const GrFragmentProcessor& other) const override; void onComputeInvariantOutput(GrInvariantOutput* inout) const override; SkRRect fRRect; GrPrimitiveEdgeType fEdgeType; uint32_t fCircularCornerFlags; GR_DECLARE_FRAGMENT_PROCESSOR_TEST; typedef GrFragmentProcessor INHERITED; }; sk_sp CircularRRectEffect::Make(GrPrimitiveEdgeType edgeType, uint32_t circularCornerFlags, const SkRRect& rrect) { if (kFillAA_GrProcessorEdgeType != edgeType && kInverseFillAA_GrProcessorEdgeType != edgeType) { return nullptr; } return sk_sp( new CircularRRectEffect(edgeType, circularCornerFlags, rrect)); } void CircularRRectEffect::onComputeInvariantOutput(GrInvariantOutput* inout) const { inout->mulByUnknownSingleComponent(); } CircularRRectEffect::CircularRRectEffect(GrPrimitiveEdgeType edgeType, uint32_t circularCornerFlags, const SkRRect& rrect) : fRRect(rrect) , fEdgeType(edgeType) , fCircularCornerFlags(circularCornerFlags) { this->initClassID(); this->setWillReadFragmentPosition(); } bool CircularRRectEffect::onIsEqual(const GrFragmentProcessor& other) const { const CircularRRectEffect& crre = other.cast(); // The corner flags are derived from fRRect, so no need to check them. return fEdgeType == crre.fEdgeType && fRRect == crre.fRRect; } ////////////////////////////////////////////////////////////////////////////// GR_DEFINE_FRAGMENT_PROCESSOR_TEST(CircularRRectEffect); sk_sp CircularRRectEffect::TestCreate(GrProcessorTestData* d) { SkScalar w = d->fRandom->nextRangeScalar(20.f, 1000.f); SkScalar h = d->fRandom->nextRangeScalar(20.f, 1000.f); SkScalar r = d->fRandom->nextRangeF(kRadiusMin, 9.f); SkRRect rrect; rrect.setRectXY(SkRect::MakeWH(w, h), r, r); sk_sp fp; do { GrPrimitiveEdgeType et = (GrPrimitiveEdgeType)d->fRandom->nextULessThan(kGrProcessorEdgeTypeCnt); fp = GrRRectEffect::Make(et, rrect); } while (nullptr == fp); return fp; } ////////////////////////////////////////////////////////////////////////////// class GLCircularRRectEffect : public GrGLSLFragmentProcessor { public: GLCircularRRectEffect() { fPrevRRect.setEmpty(); } virtual void emitCode(EmitArgs&) override; static inline void GenKey(const GrProcessor&, const GrShaderCaps&, GrProcessorKeyBuilder*); protected: void onSetData(const GrGLSLProgramDataManager&, const GrProcessor&) override; private: GrGLSLProgramDataManager::UniformHandle fInnerRectUniform; GrGLSLProgramDataManager::UniformHandle fRadiusPlusHalfUniform; SkRRect fPrevRRect; typedef GrGLSLFragmentProcessor INHERITED; }; void GLCircularRRectEffect::emitCode(EmitArgs& args) { const CircularRRectEffect& crre = args.fFp.cast(); GrGLSLUniformHandler* uniformHandler = args.fUniformHandler; const char *rectName; const char *radiusPlusHalfName; // The inner rect is the rrect bounds inset by the radius. Its left, top, right, and bottom // edges correspond to components x, y, z, and w, respectively. When a side of the rrect has // only rectangular corners, that side's value corresponds to the rect edge's value outset by // half a pixel. fInnerRectUniform = uniformHandler->addUniform(kFragment_GrShaderFlag, kVec4f_GrSLType, kDefault_GrSLPrecision, "innerRect", &rectName); // x is (r + .5) and y is 1/(r + .5) fRadiusPlusHalfUniform = uniformHandler->addUniform(kFragment_GrShaderFlag, kVec2f_GrSLType, kDefault_GrSLPrecision, "radiusPlusHalf", &radiusPlusHalfName); // If we're on a device with a "real" mediump then the length calculation could overflow. SkString clampedCircleDistance; if (args.fShaderCaps->floatPrecisionVaries()) { clampedCircleDistance.printf("clamp(%s.x * (1.0 - length(dxy * %s.y)), 0.0, 1.0);", radiusPlusHalfName, radiusPlusHalfName); } else { clampedCircleDistance.printf("clamp(%s.x - length(dxy), 0.0, 1.0);", radiusPlusHalfName); } GrGLSLFPFragmentBuilder* fragBuilder = args.fFragBuilder; const char* fragmentPos = fragBuilder->fragmentPosition(); // At each quarter-circle corner we compute a vector that is the offset of the fragment position // from the circle center. The vector is pinned in x and y to be in the quarter-plane relevant // to that corner. This means that points near the interior near the rrect top edge will have // a vector that points straight up for both the TL left and TR corners. Computing an // alpha from this vector at either the TR or TL corner will give the correct result. Similarly, // fragments near the other three edges will get the correct AA. Fragments in the interior of // the rrect will have a (0,0) vector at all four corners. So long as the radius > 0.5 they will // correctly produce an alpha value of 1 at all four corners. We take the min of all the alphas. // The code below is a simplified version of the above that performs maxs on the vector // components before computing distances and alpha values so that only one distance computation // need be computed to determine the min alpha. // // For the cases where one half of the rrect is rectangular we drop one of the x or y // computations, compute a separate rect edge alpha for the rect side, and mul the two computed // alphas together. switch (crre.getCircularCornerFlags()) { case CircularRRectEffect::kAll_CornerFlags: fragBuilder->codeAppendf("vec2 dxy0 = %s.xy - %s.xy;", rectName, fragmentPos); fragBuilder->codeAppendf("vec2 dxy1 = %s.xy - %s.zw;", fragmentPos, rectName); fragBuilder->codeAppend("vec2 dxy = max(max(dxy0, dxy1), 0.0);"); fragBuilder->codeAppendf("float alpha = %s;", clampedCircleDistance.c_str()); break; case CircularRRectEffect::kTopLeft_CornerFlag: fragBuilder->codeAppendf("vec2 dxy = max(%s.xy - %s.xy, 0.0);", rectName, fragmentPos); fragBuilder->codeAppendf("float rightAlpha = clamp(%s.z - %s.x, 0.0, 1.0);", rectName, fragmentPos); fragBuilder->codeAppendf("float bottomAlpha = clamp(%s.w - %s.y, 0.0, 1.0);", rectName, fragmentPos); fragBuilder->codeAppendf("float alpha = bottomAlpha * rightAlpha * %s;", clampedCircleDistance.c_str()); break; case CircularRRectEffect::kTopRight_CornerFlag: fragBuilder->codeAppendf("vec2 dxy = max(vec2(%s.x - %s.z, %s.y - %s.y), 0.0);", fragmentPos, rectName, rectName, fragmentPos); fragBuilder->codeAppendf("float leftAlpha = clamp(%s.x - %s.x, 0.0, 1.0);", fragmentPos, rectName); fragBuilder->codeAppendf("float bottomAlpha = clamp(%s.w - %s.y, 0.0, 1.0);", rectName, fragmentPos); fragBuilder->codeAppendf("float alpha = bottomAlpha * leftAlpha * %s;", clampedCircleDistance.c_str()); break; case CircularRRectEffect::kBottomRight_CornerFlag: fragBuilder->codeAppendf("vec2 dxy = max(%s.xy - %s.zw, 0.0);", fragmentPos, rectName); fragBuilder->codeAppendf("float leftAlpha = clamp(%s.x - %s.x, 0.0, 1.0);", fragmentPos, rectName); fragBuilder->codeAppendf("float topAlpha = clamp(%s.y - %s.y, 0.0, 1.0);", fragmentPos, rectName); fragBuilder->codeAppendf("float alpha = topAlpha * leftAlpha * %s;", clampedCircleDistance.c_str()); break; case CircularRRectEffect::kBottomLeft_CornerFlag: fragBuilder->codeAppendf("vec2 dxy = max(vec2(%s.x - %s.x, %s.y - %s.w), 0.0);", rectName, fragmentPos, fragmentPos, rectName); fragBuilder->codeAppendf("float rightAlpha = clamp(%s.z - %s.x, 0.0, 1.0);", rectName, fragmentPos); fragBuilder->codeAppendf("float topAlpha = clamp(%s.y - %s.y, 0.0, 1.0);", fragmentPos, rectName); fragBuilder->codeAppendf("float alpha = topAlpha * rightAlpha * %s;", clampedCircleDistance.c_str()); break; case CircularRRectEffect::kLeft_CornerFlags: fragBuilder->codeAppendf("vec2 dxy0 = %s.xy - %s.xy;", rectName, fragmentPos); fragBuilder->codeAppendf("float dy1 = %s.y - %s.w;", fragmentPos, rectName); fragBuilder->codeAppend("vec2 dxy = max(vec2(dxy0.x, max(dxy0.y, dy1)), 0.0);"); fragBuilder->codeAppendf("float rightAlpha = clamp(%s.z - %s.x, 0.0, 1.0);", rectName, fragmentPos); fragBuilder->codeAppendf("float alpha = rightAlpha * %s;", clampedCircleDistance.c_str()); break; case CircularRRectEffect::kTop_CornerFlags: fragBuilder->codeAppendf("vec2 dxy0 = %s.xy - %s.xy;", rectName, fragmentPos); fragBuilder->codeAppendf("float dx1 = %s.x - %s.z;", fragmentPos, rectName); fragBuilder->codeAppend("vec2 dxy = max(vec2(max(dxy0.x, dx1), dxy0.y), 0.0);"); fragBuilder->codeAppendf("float bottomAlpha = clamp(%s.w - %s.y, 0.0, 1.0);", rectName, fragmentPos); fragBuilder->codeAppendf("float alpha = bottomAlpha * %s;", clampedCircleDistance.c_str()); break; case CircularRRectEffect::kRight_CornerFlags: fragBuilder->codeAppendf("float dy0 = %s.y - %s.y;", rectName, fragmentPos); fragBuilder->codeAppendf("vec2 dxy1 = %s.xy - %s.zw;", fragmentPos, rectName); fragBuilder->codeAppend("vec2 dxy = max(vec2(dxy1.x, max(dy0, dxy1.y)), 0.0);"); fragBuilder->codeAppendf("float leftAlpha = clamp(%s.x - %s.x, 0.0, 1.0);", fragmentPos, rectName); fragBuilder->codeAppendf("float alpha = leftAlpha * %s;", clampedCircleDistance.c_str()); break; case CircularRRectEffect::kBottom_CornerFlags: fragBuilder->codeAppendf("float dx0 = %s.x - %s.x;", rectName, fragmentPos); fragBuilder->codeAppendf("vec2 dxy1 = %s.xy - %s.zw;", fragmentPos, rectName); fragBuilder->codeAppend("vec2 dxy = max(vec2(max(dx0, dxy1.x), dxy1.y), 0.0);"); fragBuilder->codeAppendf("float topAlpha = clamp(%s.y - %s.y, 0.0, 1.0);", fragmentPos, rectName); fragBuilder->codeAppendf("float alpha = topAlpha * %s;", clampedCircleDistance.c_str()); break; } if (kInverseFillAA_GrProcessorEdgeType == crre.getEdgeType()) { fragBuilder->codeAppend("alpha = 1.0 - alpha;"); } fragBuilder->codeAppendf("%s = %s;", args.fOutputColor, (GrGLSLExpr4(args.fInputColor) * GrGLSLExpr1("alpha")).c_str()); } void GLCircularRRectEffect::GenKey(const GrProcessor& processor, const GrShaderCaps&, GrProcessorKeyBuilder* b) { const CircularRRectEffect& crre = processor.cast(); GR_STATIC_ASSERT(kGrProcessorEdgeTypeCnt <= 8); b->add32((crre.getCircularCornerFlags() << 3) | crre.getEdgeType()); } void GLCircularRRectEffect::onSetData(const GrGLSLProgramDataManager& pdman, const GrProcessor& processor) { const CircularRRectEffect& crre = processor.cast(); const SkRRect& rrect = crre.getRRect(); if (rrect != fPrevRRect) { SkRect rect = rrect.getBounds(); SkScalar radius = 0; switch (crre.getCircularCornerFlags()) { case CircularRRectEffect::kAll_CornerFlags: SkASSERT(rrect.isSimpleCircular()); radius = rrect.getSimpleRadii().fX; SkASSERT(radius >= kRadiusMin); rect.inset(radius, radius); break; case CircularRRectEffect::kTopLeft_CornerFlag: radius = rrect.radii(SkRRect::kUpperLeft_Corner).fX; rect.fLeft += radius; rect.fTop += radius; rect.fRight += 0.5f; rect.fBottom += 0.5f; break; case CircularRRectEffect::kTopRight_CornerFlag: radius = rrect.radii(SkRRect::kUpperRight_Corner).fX; rect.fLeft -= 0.5f; rect.fTop += radius; rect.fRight -= radius; rect.fBottom += 0.5f; break; case CircularRRectEffect::kBottomRight_CornerFlag: radius = rrect.radii(SkRRect::kLowerRight_Corner).fX; rect.fLeft -= 0.5f; rect.fTop -= 0.5f; rect.fRight -= radius; rect.fBottom -= radius; break; case CircularRRectEffect::kBottomLeft_CornerFlag: radius = rrect.radii(SkRRect::kLowerLeft_Corner).fX; rect.fLeft += radius; rect.fTop -= 0.5f; rect.fRight += 0.5f; rect.fBottom -= radius; break; case CircularRRectEffect::kLeft_CornerFlags: radius = rrect.radii(SkRRect::kUpperLeft_Corner).fX; rect.fLeft += radius; rect.fTop += radius; rect.fRight += 0.5f; rect.fBottom -= radius; break; case CircularRRectEffect::kTop_CornerFlags: radius = rrect.radii(SkRRect::kUpperLeft_Corner).fX; rect.fLeft += radius; rect.fTop += radius; rect.fRight -= radius; rect.fBottom += 0.5f; break; case CircularRRectEffect::kRight_CornerFlags: radius = rrect.radii(SkRRect::kUpperRight_Corner).fX; rect.fLeft -= 0.5f; rect.fTop += radius; rect.fRight -= radius; rect.fBottom -= radius; break; case CircularRRectEffect::kBottom_CornerFlags: radius = rrect.radii(SkRRect::kLowerLeft_Corner).fX; rect.fLeft += radius; rect.fTop -= 0.5f; rect.fRight -= radius; rect.fBottom -= radius; break; default: SkFAIL("Should have been one of the above cases."); } pdman.set4f(fInnerRectUniform, rect.fLeft, rect.fTop, rect.fRight, rect.fBottom); radius += 0.5f; pdman.set2f(fRadiusPlusHalfUniform, radius, 1.f / radius); fPrevRRect = rrect; } } //////////////////////////////////////////////////////////////////////////////////////////////////// void CircularRRectEffect::onGetGLSLProcessorKey(const GrShaderCaps& caps, GrProcessorKeyBuilder* b) const { GLCircularRRectEffect::GenKey(*this, caps, b); } GrGLSLFragmentProcessor* CircularRRectEffect::onCreateGLSLInstance() const { return new GLCircularRRectEffect; } ////////////////////////////////////////////////////////////////////////////// class EllipticalRRectEffect : public GrFragmentProcessor { public: static sk_sp Make(GrPrimitiveEdgeType, const SkRRect&); virtual ~EllipticalRRectEffect() {} const char* name() const override { return "EllipticalRRect"; } const SkRRect& getRRect() const { return fRRect; } GrPrimitiveEdgeType getEdgeType() const { return fEdgeType; } private: EllipticalRRectEffect(GrPrimitiveEdgeType, const SkRRect&); GrGLSLFragmentProcessor* onCreateGLSLInstance() const override; void onGetGLSLProcessorKey(const GrShaderCaps&, GrProcessorKeyBuilder*) const override; bool onIsEqual(const GrFragmentProcessor& other) const override; void onComputeInvariantOutput(GrInvariantOutput* inout) const override; SkRRect fRRect; GrPrimitiveEdgeType fEdgeType; GR_DECLARE_FRAGMENT_PROCESSOR_TEST; typedef GrFragmentProcessor INHERITED; }; sk_sp EllipticalRRectEffect::Make(GrPrimitiveEdgeType edgeType, const SkRRect& rrect) { if (kFillAA_GrProcessorEdgeType != edgeType && kInverseFillAA_GrProcessorEdgeType != edgeType) { return nullptr; } return sk_sp(new EllipticalRRectEffect(edgeType, rrect)); } void EllipticalRRectEffect::onComputeInvariantOutput(GrInvariantOutput* inout) const { inout->mulByUnknownSingleComponent(); } EllipticalRRectEffect::EllipticalRRectEffect(GrPrimitiveEdgeType edgeType, const SkRRect& rrect) : fRRect(rrect) , fEdgeType(edgeType) { this->initClassID(); this->setWillReadFragmentPosition(); } bool EllipticalRRectEffect::onIsEqual(const GrFragmentProcessor& other) const { const EllipticalRRectEffect& erre = other.cast(); return fEdgeType == erre.fEdgeType && fRRect == erre.fRRect; } ////////////////////////////////////////////////////////////////////////////// GR_DEFINE_FRAGMENT_PROCESSOR_TEST(EllipticalRRectEffect); sk_sp EllipticalRRectEffect::TestCreate(GrProcessorTestData* d) { SkScalar w = d->fRandom->nextRangeScalar(20.f, 1000.f); SkScalar h = d->fRandom->nextRangeScalar(20.f, 1000.f); SkVector r[4]; r[SkRRect::kUpperLeft_Corner].fX = d->fRandom->nextRangeF(kRadiusMin, 9.f); // ensure at least one corner really is elliptical do { r[SkRRect::kUpperLeft_Corner].fY = d->fRandom->nextRangeF(kRadiusMin, 9.f); } while (r[SkRRect::kUpperLeft_Corner].fY == r[SkRRect::kUpperLeft_Corner].fX); SkRRect rrect; if (d->fRandom->nextBool()) { // half the time create a four-radii rrect. r[SkRRect::kLowerRight_Corner].fX = d->fRandom->nextRangeF(kRadiusMin, 9.f); r[SkRRect::kLowerRight_Corner].fY = d->fRandom->nextRangeF(kRadiusMin, 9.f); r[SkRRect::kUpperRight_Corner].fX = r[SkRRect::kLowerRight_Corner].fX; r[SkRRect::kUpperRight_Corner].fY = r[SkRRect::kUpperLeft_Corner].fY; r[SkRRect::kLowerLeft_Corner].fX = r[SkRRect::kUpperLeft_Corner].fX; r[SkRRect::kLowerLeft_Corner].fY = r[SkRRect::kLowerRight_Corner].fY; rrect.setRectRadii(SkRect::MakeWH(w, h), r); } else { rrect.setRectXY(SkRect::MakeWH(w, h), r[SkRRect::kUpperLeft_Corner].fX, r[SkRRect::kUpperLeft_Corner].fY); } sk_sp fp; do { GrPrimitiveEdgeType et = (GrPrimitiveEdgeType)d->fRandom->nextULessThan(kGrProcessorEdgeTypeCnt); fp = GrRRectEffect::Make(et, rrect); } while (nullptr == fp); return fp; } ////////////////////////////////////////////////////////////////////////////// class GLEllipticalRRectEffect : public GrGLSLFragmentProcessor { public: GLEllipticalRRectEffect() { fPrevRRect.setEmpty(); } void emitCode(EmitArgs&) override; static inline void GenKey(const GrProcessor&, const GrShaderCaps&, GrProcessorKeyBuilder*); protected: void onSetData(const GrGLSLProgramDataManager&, const GrProcessor&) override; private: GrGLSLProgramDataManager::UniformHandle fInnerRectUniform; GrGLSLProgramDataManager::UniformHandle fInvRadiiSqdUniform; GrGLSLProgramDataManager::UniformHandle fScaleUniform; SkRRect fPrevRRect; typedef GrGLSLFragmentProcessor INHERITED; }; void GLEllipticalRRectEffect::emitCode(EmitArgs& args) { const EllipticalRRectEffect& erre = args.fFp.cast(); GrGLSLUniformHandler* uniformHandler = args.fUniformHandler; const char *rectName; // The inner rect is the rrect bounds inset by the x/y radii fInnerRectUniform = uniformHandler->addUniform(kFragment_GrShaderFlag, kVec4f_GrSLType, kDefault_GrSLPrecision, "innerRect", &rectName); GrGLSLFPFragmentBuilder* fragBuilder = args.fFragBuilder; const char* fragmentPos = fragBuilder->fragmentPosition(); // At each quarter-ellipse corner we compute a vector that is the offset of the fragment pos // to the ellipse center. The vector is pinned in x and y to be in the quarter-plane relevant // to that corner. This means that points near the interior near the rrect top edge will have // a vector that points straight up for both the TL left and TR corners. Computing an // alpha from this vector at either the TR or TL corner will give the correct result. Similarly, // fragments near the other three edges will get the correct AA. Fragments in the interior of // the rrect will have a (0,0) vector at all four corners. So long as the radii > 0.5 they will // correctly produce an alpha value of 1 at all four corners. We take the min of all the alphas. // // The code below is a simplified version of the above that performs maxs on the vector // components before computing distances and alpha values so that only one distance computation // need be computed to determine the min alpha. fragBuilder->codeAppendf("vec2 dxy0 = %s.xy - %s.xy;", rectName, fragmentPos); fragBuilder->codeAppendf("vec2 dxy1 = %s.xy - %s.zw;", fragmentPos, rectName); // If we're on a device with a "real" mediump then we'll do the distance computation in a space // that is normalized by the largest radius. The scale uniform will be scale, 1/scale. The // radii uniform values are already in this normalized space. const char* scaleName = nullptr; if (args.fShaderCaps->floatPrecisionVaries()) { fScaleUniform = uniformHandler->addUniform(kFragment_GrShaderFlag, kVec2f_GrSLType, kDefault_GrSLPrecision, "scale", &scaleName); } // The uniforms with the inv squared radii are highp to prevent underflow. switch (erre.getRRect().getType()) { case SkRRect::kSimple_Type: { const char *invRadiiXYSqdName; fInvRadiiSqdUniform = uniformHandler->addUniform(kFragment_GrShaderFlag, kVec2f_GrSLType, kDefault_GrSLPrecision, "invRadiiXY", &invRadiiXYSqdName); fragBuilder->codeAppend("vec2 dxy = max(max(dxy0, dxy1), 0.0);"); if (scaleName) { fragBuilder->codeAppendf("dxy *= %s.y;", scaleName); } // Z is the x/y offsets divided by squared radii. fragBuilder->codeAppendf("vec2 Z = dxy * %s.xy;", invRadiiXYSqdName); break; } case SkRRect::kNinePatch_Type: { const char *invRadiiLTRBSqdName; fInvRadiiSqdUniform = uniformHandler->addUniform(kFragment_GrShaderFlag, kVec4f_GrSLType, kDefault_GrSLPrecision, "invRadiiLTRB", &invRadiiLTRBSqdName); if (scaleName) { fragBuilder->codeAppendf("dxy0 *= %s.y;", scaleName); fragBuilder->codeAppendf("dxy1 *= %s.y;", scaleName); } fragBuilder->codeAppend("vec2 dxy = max(max(dxy0, dxy1), 0.0);"); // Z is the x/y offsets divided by squared radii. We only care about the (at most) one // corner where both the x and y offsets are positive, hence the maxes. (The inverse // squared radii will always be positive.) fragBuilder->codeAppendf("vec2 Z = max(max(dxy0 * %s.xy, dxy1 * %s.zw), 0.0);", invRadiiLTRBSqdName, invRadiiLTRBSqdName); break; } default: SkFAIL("RRect should always be simple or nine-patch."); } // implicit is the evaluation of (x/a)^2 + (y/b)^2 - 1. fragBuilder->codeAppend("float implicit = dot(Z, dxy) - 1.0;"); // grad_dot is the squared length of the gradient of the implicit. fragBuilder->codeAppend("float grad_dot = 4.0 * dot(Z, Z);"); // avoid calling inversesqrt on zero. fragBuilder->codeAppend("grad_dot = max(grad_dot, 1.0e-4);"); fragBuilder->codeAppend("float approx_dist = implicit * inversesqrt(grad_dot);"); if (scaleName) { fragBuilder->codeAppendf("approx_dist *= %s.x;", scaleName); } if (kFillAA_GrProcessorEdgeType == erre.getEdgeType()) { fragBuilder->codeAppend("float alpha = clamp(0.5 - approx_dist, 0.0, 1.0);"); } else { fragBuilder->codeAppend("float alpha = clamp(0.5 + approx_dist, 0.0, 1.0);"); } fragBuilder->codeAppendf("%s = %s;", args.fOutputColor, (GrGLSLExpr4(args.fInputColor) * GrGLSLExpr1("alpha")).c_str()); } void GLEllipticalRRectEffect::GenKey(const GrProcessor& effect, const GrShaderCaps&, GrProcessorKeyBuilder* b) { const EllipticalRRectEffect& erre = effect.cast(); GR_STATIC_ASSERT(kLast_GrProcessorEdgeType < (1 << 3)); b->add32(erre.getRRect().getType() | erre.getEdgeType() << 3); } void GLEllipticalRRectEffect::onSetData(const GrGLSLProgramDataManager& pdman, const GrProcessor& effect) { const EllipticalRRectEffect& erre = effect.cast(); const SkRRect& rrect = erre.getRRect(); // If we're using a scale factor to work around precision issues, choose the largest radius // as the scale factor. The inv radii need to be pre-adjusted by the scale factor. if (rrect != fPrevRRect) { SkRect rect = rrect.getBounds(); const SkVector& r0 = rrect.radii(SkRRect::kUpperLeft_Corner); SkASSERT(r0.fX >= kRadiusMin); SkASSERT(r0.fY >= kRadiusMin); switch (erre.getRRect().getType()) { case SkRRect::kSimple_Type: rect.inset(r0.fX, r0.fY); if (fScaleUniform.isValid()) { if (r0.fX > r0.fY) { pdman.set2f(fInvRadiiSqdUniform, 1.f, (r0.fX * r0.fX) / (r0.fY * r0.fY)); pdman.set2f(fScaleUniform, r0.fX, 1.f / r0.fX); } else { pdman.set2f(fInvRadiiSqdUniform, (r0.fY * r0.fY) / (r0.fX * r0.fX), 1.f); pdman.set2f(fScaleUniform, r0.fY, 1.f / r0.fY); } } else { pdman.set2f(fInvRadiiSqdUniform, 1.f / (r0.fX * r0.fX), 1.f / (r0.fY * r0.fY)); } break; case SkRRect::kNinePatch_Type: { const SkVector& r1 = rrect.radii(SkRRect::kLowerRight_Corner); SkASSERT(r1.fX >= kRadiusMin); SkASSERT(r1.fY >= kRadiusMin); rect.fLeft += r0.fX; rect.fTop += r0.fY; rect.fRight -= r1.fX; rect.fBottom -= r1.fY; if (fScaleUniform.isValid()) { float scale = SkTMax(SkTMax(r0.fX, r0.fY), SkTMax(r1.fX, r1.fY)); float scaleSqd = scale * scale; pdman.set4f(fInvRadiiSqdUniform, scaleSqd / (r0.fX * r0.fX), scaleSqd / (r0.fY * r0.fY), scaleSqd / (r1.fX * r1.fX), scaleSqd / (r1.fY * r1.fY)); pdman.set2f(fScaleUniform, scale, 1.f / scale); } else { pdman.set4f(fInvRadiiSqdUniform, 1.f / (r0.fX * r0.fX), 1.f / (r0.fY * r0.fY), 1.f / (r1.fX * r1.fX), 1.f / (r1.fY * r1.fY)); } break; } default: SkFAIL("RRect should always be simple or nine-patch."); } pdman.set4f(fInnerRectUniform, rect.fLeft, rect.fTop, rect.fRight, rect.fBottom); fPrevRRect = rrect; } } //////////////////////////////////////////////////////////////////////////////////////////////////// void EllipticalRRectEffect::onGetGLSLProcessorKey(const GrShaderCaps& caps, GrProcessorKeyBuilder* b) const { GLEllipticalRRectEffect::GenKey(*this, caps, b); } GrGLSLFragmentProcessor* EllipticalRRectEffect::onCreateGLSLInstance() const { return new GLEllipticalRRectEffect; } ////////////////////////////////////////////////////////////////////////////// sk_sp GrRRectEffect::Make(GrPrimitiveEdgeType edgeType, const SkRRect& rrect) { if (rrect.isRect()) { return GrConvexPolyEffect::Make(edgeType, rrect.getBounds()); } if (rrect.isOval()) { return GrOvalEffect::Make(edgeType, rrect.getBounds()); } if (rrect.isSimple()) { if (rrect.getSimpleRadii().fX < kRadiusMin || rrect.getSimpleRadii().fY < kRadiusMin) { // In this case the corners are extremely close to rectangular and we collapse the // clip to a rectangular clip. return GrConvexPolyEffect::Make(edgeType, rrect.getBounds()); } if (rrect.getSimpleRadii().fX == rrect.getSimpleRadii().fY) { return CircularRRectEffect::Make(edgeType, CircularRRectEffect::kAll_CornerFlags, rrect); } else { return EllipticalRRectEffect::Make(edgeType, rrect); } } if (rrect.isComplex() || rrect.isNinePatch()) { // Check for the "tab" cases - two adjacent circular corners and two square corners. SkScalar circularRadius = 0; uint32_t cornerFlags = 0; SkVector radii[4]; bool squashedRadii = false; for (int c = 0; c < 4; ++c) { radii[c] = rrect.radii((SkRRect::Corner)c); SkASSERT((0 == radii[c].fX) == (0 == radii[c].fY)); if (0 == radii[c].fX) { // The corner is square, so no need to squash or flag as circular. continue; } if (radii[c].fX < kRadiusMin || radii[c].fY < kRadiusMin) { radii[c].set(0, 0); squashedRadii = true; continue; } if (radii[c].fX != radii[c].fY) { cornerFlags = ~0U; break; } if (!cornerFlags) { circularRadius = radii[c].fX; cornerFlags = 1 << c; } else { if (radii[c].fX != circularRadius) { cornerFlags = ~0U; break; } cornerFlags |= 1 << c; } } switch (cornerFlags) { case CircularRRectEffect::kAll_CornerFlags: // This rrect should have been caught in the simple case above. Though, it would // be correctly handled in the fallthrough code. SkASSERT(false); case CircularRRectEffect::kTopLeft_CornerFlag: case CircularRRectEffect::kTopRight_CornerFlag: case CircularRRectEffect::kBottomRight_CornerFlag: case CircularRRectEffect::kBottomLeft_CornerFlag: case CircularRRectEffect::kLeft_CornerFlags: case CircularRRectEffect::kTop_CornerFlags: case CircularRRectEffect::kRight_CornerFlags: case CircularRRectEffect::kBottom_CornerFlags: { SkTCopyOnFirstWrite rr(rrect); if (squashedRadii) { rr.writable()->setRectRadii(rrect.getBounds(), radii); } return CircularRRectEffect::Make(edgeType, cornerFlags, *rr); } case CircularRRectEffect::kNone_CornerFlags: return GrConvexPolyEffect::Make(edgeType, rrect.getBounds()); default: { if (squashedRadii) { // If we got here then we squashed some but not all the radii to zero. (If all // had been squashed cornerFlags would be 0.) The elliptical effect doesn't // support some rounded and some square corners. return nullptr; } if (rrect.isNinePatch()) { return EllipticalRRectEffect::Make(edgeType, rrect); } return nullptr; } } } return nullptr; }