/* * Copyright 2014 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "GrRRectEffect.h" #include "GrConvexPolyEffect.h" #include "GrFragmentProcessor.h" #include "GrInvariantOutput.h" #include "GrOvalEffect.h" #include "SkRRect.h" #include "gl/GrGLProcessor.h" #include "gl/builders/GrGLProgramBuilder.h" // The effects defined here only handle rrect radii >= kRadiusMin. static const SkScalar kRadiusMin = SK_ScalarHalf; ////////////////////////////////////////////////////////////////////////////// class CircularRRectEffect : public GrFragmentProcessor { public: enum CornerFlags { kTopLeft_CornerFlag = (1 << SkRRect::kUpperLeft_Corner), kTopRight_CornerFlag = (1 << SkRRect::kUpperRight_Corner), kBottomRight_CornerFlag = (1 << SkRRect::kLowerRight_Corner), kBottomLeft_CornerFlag = (1 << SkRRect::kLowerLeft_Corner), kLeft_CornerFlags = kTopLeft_CornerFlag | kBottomLeft_CornerFlag, kTop_CornerFlags = kTopLeft_CornerFlag | kTopRight_CornerFlag, kRight_CornerFlags = kTopRight_CornerFlag | kBottomRight_CornerFlag, kBottom_CornerFlags = kBottomLeft_CornerFlag | kBottomRight_CornerFlag, kAll_CornerFlags = kTopLeft_CornerFlag | kTopRight_CornerFlag | kBottomLeft_CornerFlag | kBottomRight_CornerFlag, kNone_CornerFlags = 0 }; // The flags are used to indicate which corners are circluar (unflagged corners are assumed to // be square). static GrFragmentProcessor* Create(GrPrimitiveEdgeType, uint32_t circularCornerFlags, const SkRRect&); virtual ~CircularRRectEffect() {}; const char* name() const override { return "CircularRRect"; } void getGLProcessorKey(const GrGLSLCaps&, GrProcessorKeyBuilder*) const override; GrGLFragmentProcessor* createGLInstance() const override; const SkRRect& getRRect() const { return fRRect; } uint32_t getCircularCornerFlags() const { return fCircularCornerFlags; } GrPrimitiveEdgeType getEdgeType() const { return fEdgeType; } private: CircularRRectEffect(GrPrimitiveEdgeType, uint32_t circularCornerFlags, const SkRRect&); bool onIsEqual(const GrFragmentProcessor& other) const override; void onComputeInvariantOutput(GrInvariantOutput* inout) const override; SkRRect fRRect; GrPrimitiveEdgeType fEdgeType; uint32_t fCircularCornerFlags; GR_DECLARE_FRAGMENT_PROCESSOR_TEST; typedef GrFragmentProcessor INHERITED; }; GrFragmentProcessor* CircularRRectEffect::Create(GrPrimitiveEdgeType edgeType, uint32_t circularCornerFlags, const SkRRect& rrect) { if (kFillAA_GrProcessorEdgeType != edgeType && kInverseFillAA_GrProcessorEdgeType != edgeType) { return NULL; } return SkNEW_ARGS(CircularRRectEffect, (edgeType, circularCornerFlags, rrect)); } void CircularRRectEffect::onComputeInvariantOutput(GrInvariantOutput* inout) const { inout->mulByUnknownSingleComponent(); } CircularRRectEffect::CircularRRectEffect(GrPrimitiveEdgeType edgeType, uint32_t circularCornerFlags, const SkRRect& rrect) : fRRect(rrect) , fEdgeType(edgeType) , fCircularCornerFlags(circularCornerFlags) { this->initClassID(); this->setWillReadFragmentPosition(); } bool CircularRRectEffect::onIsEqual(const GrFragmentProcessor& other) const { const CircularRRectEffect& crre = other.cast(); // The corner flags are derived from fRRect, so no need to check them. return fEdgeType == crre.fEdgeType && fRRect == crre.fRRect; } ////////////////////////////////////////////////////////////////////////////// GR_DEFINE_FRAGMENT_PROCESSOR_TEST(CircularRRectEffect); GrFragmentProcessor* CircularRRectEffect::TestCreate(GrProcessorTestData* d) { SkScalar w = d->fRandom->nextRangeScalar(20.f, 1000.f); SkScalar h = d->fRandom->nextRangeScalar(20.f, 1000.f); SkScalar r = d->fRandom->nextRangeF(kRadiusMin, 9.f); SkRRect rrect; rrect.setRectXY(SkRect::MakeWH(w, h), r, r); GrFragmentProcessor* fp; do { GrPrimitiveEdgeType et = (GrPrimitiveEdgeType)d->fRandom->nextULessThan(kGrProcessorEdgeTypeCnt); fp = GrRRectEffect::Create(et, rrect); } while (NULL == fp); return fp; } ////////////////////////////////////////////////////////////////////////////// class GLCircularRRectEffect : public GrGLFragmentProcessor { public: GLCircularRRectEffect(const GrProcessor&); virtual void emitCode(GrGLFPBuilder* builder, const GrFragmentProcessor& fp, const char* outputColor, const char* inputColor, const TransformedCoordsArray&, const TextureSamplerArray&) override; static inline void GenKey(const GrProcessor&, const GrGLSLCaps&, GrProcessorKeyBuilder*); void setData(const GrGLProgramDataManager&, const GrProcessor&) override; private: GrGLProgramDataManager::UniformHandle fInnerRectUniform; GrGLProgramDataManager::UniformHandle fRadiusPlusHalfUniform; SkRRect fPrevRRect; typedef GrGLFragmentProcessor INHERITED; }; GLCircularRRectEffect::GLCircularRRectEffect(const GrProcessor& ) { fPrevRRect.setEmpty(); } void GLCircularRRectEffect::emitCode(GrGLFPBuilder* builder, const GrFragmentProcessor& fp, const char* outputColor, const char* inputColor, const TransformedCoordsArray&, const TextureSamplerArray& samplers) { const CircularRRectEffect& crre = fp.cast(); const char *rectName; const char *radiusPlusHalfName; // The inner rect is the rrect bounds inset by the radius. Its left, top, right, and bottom // edges correspond to components x, y, z, and w, respectively. When a side of the rrect has // only rectangular corners, that side's value corresponds to the rect edge's value outset by // half a pixel. fInnerRectUniform = builder->addUniform(GrGLProgramBuilder::kFragment_Visibility, kVec4f_GrSLType, kDefault_GrSLPrecision, "innerRect", &rectName); fRadiusPlusHalfUniform = builder->addUniform(GrGLProgramBuilder::kFragment_Visibility, kFloat_GrSLType, kDefault_GrSLPrecision, "radiusPlusHalf", &radiusPlusHalfName); GrGLFragmentBuilder* fsBuilder = builder->getFragmentShaderBuilder(); const char* fragmentPos = fsBuilder->fragmentPosition(); // At each quarter-circle corner we compute a vector that is the offset of the fragment position // from the circle center. The vector is pinned in x and y to be in the quarter-plane relevant // to that corner. This means that points near the interior near the rrect top edge will have // a vector that points straight up for both the TL left and TR corners. Computing an // alpha from this vector at either the TR or TL corner will give the correct result. Similarly, // fragments near the other three edges will get the correct AA. Fragments in the interior of // the rrect will have a (0,0) vector at all four corners. So long as the radius > 0.5 they will // correctly produce an alpha value of 1 at all four corners. We take the min of all the alphas. // The code below is a simplified version of the above that performs maxs on the vector // components before computing distances and alpha values so that only one distance computation // need be computed to determine the min alpha. // // For the cases where one half of the rrect is rectangular we drop one of the x or y // computations, compute a separate rect edge alpha for the rect side, and mul the two computed // alphas together. switch (crre.getCircularCornerFlags()) { case CircularRRectEffect::kAll_CornerFlags: fsBuilder->codeAppendf("\t\tvec2 dxy0 = %s.xy - %s.xy;\n", rectName, fragmentPos); fsBuilder->codeAppendf("\t\tvec2 dxy1 = %s.xy - %s.zw;\n", fragmentPos, rectName); fsBuilder->codeAppend("\t\tvec2 dxy = max(max(dxy0, dxy1), 0.0);\n"); fsBuilder->codeAppendf("\t\tfloat alpha = clamp(%s - length(dxy), 0.0, 1.0);\n", radiusPlusHalfName); break; case CircularRRectEffect::kTopLeft_CornerFlag: fsBuilder->codeAppendf("\t\tvec2 dxy = max(%s.xy - %s.xy, 0.0);\n", rectName, fragmentPos); fsBuilder->codeAppendf("\t\tfloat rightAlpha = clamp(%s.z - %s.x, 0.0, 1.0);\n", rectName, fragmentPos); fsBuilder->codeAppendf("\t\tfloat bottomAlpha = clamp(%s.w - %s.y, 0.0, 1.0);\n", rectName, fragmentPos); fsBuilder->codeAppendf("\t\tfloat alpha = bottomAlpha * rightAlpha * clamp(%s - length(dxy), 0.0, 1.0);\n", radiusPlusHalfName); break; case CircularRRectEffect::kTopRight_CornerFlag: fsBuilder->codeAppendf("\t\tvec2 dxy = max(vec2(%s.x - %s.z, %s.y - %s.y), 0.0);\n", fragmentPos, rectName, rectName, fragmentPos); fsBuilder->codeAppendf("\t\tfloat leftAlpha = clamp(%s.x - %s.x, 0.0, 1.0);\n", fragmentPos, rectName); fsBuilder->codeAppendf("\t\tfloat bottomAlpha = clamp(%s.w - %s.y, 0.0, 1.0);\n", rectName, fragmentPos); fsBuilder->codeAppendf("\t\tfloat alpha = bottomAlpha * leftAlpha * clamp(%s - length(dxy), 0.0, 1.0);\n", radiusPlusHalfName); break; case CircularRRectEffect::kBottomRight_CornerFlag: fsBuilder->codeAppendf("\t\tvec2 dxy = max(%s.xy - %s.zw, 0.0);\n", fragmentPos, rectName); fsBuilder->codeAppendf("\t\tfloat leftAlpha = clamp(%s.x - %s.x, 0.0, 1.0);\n", fragmentPos, rectName); fsBuilder->codeAppendf("\t\tfloat topAlpha = clamp(%s.y - %s.y, 0.0, 1.0);\n", fragmentPos, rectName); fsBuilder->codeAppendf("\t\tfloat alpha = topAlpha * leftAlpha * clamp(%s - length(dxy), 0.0, 1.0);\n", radiusPlusHalfName); break; case CircularRRectEffect::kBottomLeft_CornerFlag: fsBuilder->codeAppendf("\t\tvec2 dxy = max(vec2(%s.x - %s.x, %s.y - %s.w), 0.0);\n", rectName, fragmentPos, fragmentPos, rectName); fsBuilder->codeAppendf("\t\tfloat rightAlpha = clamp(%s.z - %s.x, 0.0, 1.0);\n", rectName, fragmentPos); fsBuilder->codeAppendf("\t\tfloat topAlpha = clamp(%s.y - %s.y, 0.0, 1.0);\n", fragmentPos, rectName); fsBuilder->codeAppendf("\t\tfloat alpha = topAlpha * rightAlpha * clamp(%s - length(dxy), 0.0, 1.0);\n", radiusPlusHalfName); break; case CircularRRectEffect::kLeft_CornerFlags: fsBuilder->codeAppendf("\t\tvec2 dxy0 = %s.xy - %s.xy;\n", rectName, fragmentPos); fsBuilder->codeAppendf("\t\tfloat dy1 = %s.y - %s.w;\n", fragmentPos, rectName); fsBuilder->codeAppend("\t\tvec2 dxy = max(vec2(dxy0.x, max(dxy0.y, dy1)), 0.0);\n"); fsBuilder->codeAppendf("\t\tfloat rightAlpha = clamp(%s.z - %s.x, 0.0, 1.0);\n", rectName, fragmentPos); fsBuilder->codeAppendf("\t\tfloat alpha = rightAlpha * clamp(%s - length(dxy), 0.0, 1.0);\n", radiusPlusHalfName); break; case CircularRRectEffect::kTop_CornerFlags: fsBuilder->codeAppendf("\t\tvec2 dxy0 = %s.xy - %s.xy;\n", rectName, fragmentPos); fsBuilder->codeAppendf("\t\tfloat dx1 = %s.x - %s.z;\n", fragmentPos, rectName); fsBuilder->codeAppend("\t\tvec2 dxy = max(vec2(max(dxy0.x, dx1), dxy0.y), 0.0);\n"); fsBuilder->codeAppendf("\t\tfloat bottomAlpha = clamp(%s.w - %s.y, 0.0, 1.0);\n", rectName, fragmentPos); fsBuilder->codeAppendf("\t\tfloat alpha = bottomAlpha * clamp(%s - length(dxy), 0.0, 1.0);\n", radiusPlusHalfName); break; case CircularRRectEffect::kRight_CornerFlags: fsBuilder->codeAppendf("\t\tfloat dy0 = %s.y - %s.y;\n", rectName, fragmentPos); fsBuilder->codeAppendf("\t\tvec2 dxy1 = %s.xy - %s.zw;\n", fragmentPos, rectName); fsBuilder->codeAppend("\t\tvec2 dxy = max(vec2(dxy1.x, max(dy0, dxy1.y)), 0.0);\n"); fsBuilder->codeAppendf("\t\tfloat leftAlpha = clamp(%s.x - %s.x, 0.0, 1.0);\n", fragmentPos, rectName); fsBuilder->codeAppendf("\t\tfloat alpha = leftAlpha * clamp(%s - length(dxy), 0.0, 1.0);\n", radiusPlusHalfName); break; case CircularRRectEffect::kBottom_CornerFlags: fsBuilder->codeAppendf("\t\tfloat dx0 = %s.x - %s.x;\n", rectName, fragmentPos); fsBuilder->codeAppendf("\t\tvec2 dxy1 = %s.xy - %s.zw;\n", fragmentPos, rectName); fsBuilder->codeAppend("\t\tvec2 dxy = max(vec2(max(dx0, dxy1.x), dxy1.y), 0.0);\n"); fsBuilder->codeAppendf("\t\tfloat topAlpha = clamp(%s.y - %s.y, 0.0, 1.0);\n", fragmentPos, rectName); fsBuilder->codeAppendf("\t\tfloat alpha = topAlpha * clamp(%s - length(dxy), 0.0, 1.0);\n", radiusPlusHalfName); break; } if (kInverseFillAA_GrProcessorEdgeType == crre.getEdgeType()) { fsBuilder->codeAppend("\t\talpha = 1.0 - alpha;\n"); } fsBuilder->codeAppendf("\t\t%s = %s;\n", outputColor, (GrGLSLExpr4(inputColor) * GrGLSLExpr1("alpha")).c_str()); } void GLCircularRRectEffect::GenKey(const GrProcessor& processor, const GrGLSLCaps&, GrProcessorKeyBuilder* b) { const CircularRRectEffect& crre = processor.cast(); GR_STATIC_ASSERT(kGrProcessorEdgeTypeCnt <= 8); b->add32((crre.getCircularCornerFlags() << 3) | crre.getEdgeType()); } void GLCircularRRectEffect::setData(const GrGLProgramDataManager& pdman, const GrProcessor& processor) { const CircularRRectEffect& crre = processor.cast(); const SkRRect& rrect = crre.getRRect(); if (rrect != fPrevRRect) { SkRect rect = rrect.getBounds(); SkScalar radius = 0; switch (crre.getCircularCornerFlags()) { case CircularRRectEffect::kAll_CornerFlags: SkASSERT(rrect.isSimpleCircular()); radius = rrect.getSimpleRadii().fX; SkASSERT(radius >= kRadiusMin); rect.inset(radius, radius); break; case CircularRRectEffect::kTopLeft_CornerFlag: radius = rrect.radii(SkRRect::kUpperLeft_Corner).fX; rect.fLeft += radius; rect.fTop += radius; rect.fRight += 0.5f; rect.fBottom += 0.5f; break; case CircularRRectEffect::kTopRight_CornerFlag: radius = rrect.radii(SkRRect::kUpperRight_Corner).fX; rect.fLeft -= 0.5f; rect.fTop += radius; rect.fRight -= radius; rect.fBottom += 0.5f; break; case CircularRRectEffect::kBottomRight_CornerFlag: radius = rrect.radii(SkRRect::kLowerRight_Corner).fX; rect.fLeft -= 0.5f; rect.fTop -= 0.5f; rect.fRight -= radius; rect.fBottom -= radius; break; case CircularRRectEffect::kBottomLeft_CornerFlag: radius = rrect.radii(SkRRect::kLowerLeft_Corner).fX; rect.fLeft += radius; rect.fTop -= 0.5f; rect.fRight += 0.5f; rect.fBottom -= radius; break; case CircularRRectEffect::kLeft_CornerFlags: radius = rrect.radii(SkRRect::kUpperLeft_Corner).fX; rect.fLeft += radius; rect.fTop += radius; rect.fRight += 0.5f; rect.fBottom -= radius; break; case CircularRRectEffect::kTop_CornerFlags: radius = rrect.radii(SkRRect::kUpperLeft_Corner).fX; rect.fLeft += radius; rect.fTop += radius; rect.fRight -= radius; rect.fBottom += 0.5f; break; case CircularRRectEffect::kRight_CornerFlags: radius = rrect.radii(SkRRect::kUpperRight_Corner).fX; rect.fLeft -= 0.5f; rect.fTop += radius; rect.fRight -= radius; rect.fBottom -= radius; break; case CircularRRectEffect::kBottom_CornerFlags: radius = rrect.radii(SkRRect::kLowerLeft_Corner).fX; rect.fLeft += radius; rect.fTop -= 0.5f; rect.fRight -= radius; rect.fBottom -= radius; break; default: SkFAIL("Should have been one of the above cases."); } pdman.set4f(fInnerRectUniform, rect.fLeft, rect.fTop, rect.fRight, rect.fBottom); pdman.set1f(fRadiusPlusHalfUniform, radius + 0.5f); fPrevRRect = rrect; } } //////////////////////////////////////////////////////////////////////////////////////////////////// void CircularRRectEffect::getGLProcessorKey(const GrGLSLCaps& caps, GrProcessorKeyBuilder* b) const { GLCircularRRectEffect::GenKey(*this, caps, b); } GrGLFragmentProcessor* CircularRRectEffect::createGLInstance() const { return SkNEW_ARGS(GLCircularRRectEffect, (*this)); } ////////////////////////////////////////////////////////////////////////////// class EllipticalRRectEffect : public GrFragmentProcessor { public: static GrFragmentProcessor* Create(GrPrimitiveEdgeType, const SkRRect&); virtual ~EllipticalRRectEffect() {}; const char* name() const override { return "EllipticalRRect"; } void getGLProcessorKey(const GrGLSLCaps&, GrProcessorKeyBuilder*) const override; GrGLFragmentProcessor* createGLInstance() const override; const SkRRect& getRRect() const { return fRRect; } GrPrimitiveEdgeType getEdgeType() const { return fEdgeType; } private: EllipticalRRectEffect(GrPrimitiveEdgeType, const SkRRect&); bool onIsEqual(const GrFragmentProcessor& other) const override; void onComputeInvariantOutput(GrInvariantOutput* inout) const override; SkRRect fRRect; GrPrimitiveEdgeType fEdgeType; GR_DECLARE_FRAGMENT_PROCESSOR_TEST; typedef GrFragmentProcessor INHERITED; }; GrFragmentProcessor* EllipticalRRectEffect::Create(GrPrimitiveEdgeType edgeType, const SkRRect& rrect) { if (kFillAA_GrProcessorEdgeType != edgeType && kInverseFillAA_GrProcessorEdgeType != edgeType) { return NULL; } return SkNEW_ARGS(EllipticalRRectEffect, (edgeType, rrect)); } void EllipticalRRectEffect::onComputeInvariantOutput(GrInvariantOutput* inout) const { inout->mulByUnknownSingleComponent(); } EllipticalRRectEffect::EllipticalRRectEffect(GrPrimitiveEdgeType edgeType, const SkRRect& rrect) : fRRect(rrect) , fEdgeType(edgeType) { this->initClassID(); this->setWillReadFragmentPosition(); } bool EllipticalRRectEffect::onIsEqual(const GrFragmentProcessor& other) const { const EllipticalRRectEffect& erre = other.cast(); return fEdgeType == erre.fEdgeType && fRRect == erre.fRRect; } ////////////////////////////////////////////////////////////////////////////// GR_DEFINE_FRAGMENT_PROCESSOR_TEST(EllipticalRRectEffect); GrFragmentProcessor* EllipticalRRectEffect::TestCreate(GrProcessorTestData* d) { SkScalar w = d->fRandom->nextRangeScalar(20.f, 1000.f); SkScalar h = d->fRandom->nextRangeScalar(20.f, 1000.f); SkVector r[4]; r[SkRRect::kUpperLeft_Corner].fX = d->fRandom->nextRangeF(kRadiusMin, 9.f); // ensure at least one corner really is elliptical do { r[SkRRect::kUpperLeft_Corner].fY = d->fRandom->nextRangeF(kRadiusMin, 9.f); } while (r[SkRRect::kUpperLeft_Corner].fY == r[SkRRect::kUpperLeft_Corner].fX); SkRRect rrect; if (d->fRandom->nextBool()) { // half the time create a four-radii rrect. r[SkRRect::kLowerRight_Corner].fX = d->fRandom->nextRangeF(kRadiusMin, 9.f); r[SkRRect::kLowerRight_Corner].fY = d->fRandom->nextRangeF(kRadiusMin, 9.f); r[SkRRect::kUpperRight_Corner].fX = r[SkRRect::kLowerRight_Corner].fX; r[SkRRect::kUpperRight_Corner].fY = r[SkRRect::kUpperLeft_Corner].fY; r[SkRRect::kLowerLeft_Corner].fX = r[SkRRect::kUpperLeft_Corner].fX; r[SkRRect::kLowerLeft_Corner].fY = r[SkRRect::kLowerRight_Corner].fY; rrect.setRectRadii(SkRect::MakeWH(w, h), r); } else { rrect.setRectXY(SkRect::MakeWH(w, h), r[SkRRect::kUpperLeft_Corner].fX, r[SkRRect::kUpperLeft_Corner].fY); } GrFragmentProcessor* fp; do { GrPrimitiveEdgeType et = (GrPrimitiveEdgeType)d->fRandom->nextULessThan(kGrProcessorEdgeTypeCnt); fp = GrRRectEffect::Create(et, rrect); } while (NULL == fp); return fp; } ////////////////////////////////////////////////////////////////////////////// class GLEllipticalRRectEffect : public GrGLFragmentProcessor { public: GLEllipticalRRectEffect(const GrProcessor&); virtual void emitCode(GrGLFPBuilder* builder, const GrFragmentProcessor& effect, const char* outputColor, const char* inputColor, const TransformedCoordsArray&, const TextureSamplerArray&) override; static inline void GenKey(const GrProcessor&, const GrGLSLCaps&, GrProcessorKeyBuilder*); void setData(const GrGLProgramDataManager&, const GrProcessor&) override; private: GrGLProgramDataManager::UniformHandle fInnerRectUniform; GrGLProgramDataManager::UniformHandle fInvRadiiSqdUniform; SkRRect fPrevRRect; typedef GrGLFragmentProcessor INHERITED; }; GLEllipticalRRectEffect::GLEllipticalRRectEffect(const GrProcessor& effect) { fPrevRRect.setEmpty(); } void GLEllipticalRRectEffect::emitCode(GrGLFPBuilder* builder, const GrFragmentProcessor& effect, const char* outputColor, const char* inputColor, const TransformedCoordsArray&, const TextureSamplerArray& samplers) { const EllipticalRRectEffect& erre = effect.cast(); const char *rectName; // The inner rect is the rrect bounds inset by the x/y radii fInnerRectUniform = builder->addUniform(GrGLProgramBuilder::kFragment_Visibility, kVec4f_GrSLType, kDefault_GrSLPrecision, "innerRect", &rectName); GrGLFragmentBuilder* fsBuilder = builder->getFragmentShaderBuilder(); const char* fragmentPos = fsBuilder->fragmentPosition(); // At each quarter-ellipse corner we compute a vector that is the offset of the fragment pos // to the ellipse center. The vector is pinned in x and y to be in the quarter-plane relevant // to that corner. This means that points near the interior near the rrect top edge will have // a vector that points straight up for both the TL left and TR corners. Computing an // alpha from this vector at either the TR or TL corner will give the correct result. Similarly, // fragments near the other three edges will get the correct AA. Fragments in the interior of // the rrect will have a (0,0) vector at all four corners. So long as the radii > 0.5 they will // correctly produce an alpha value of 1 at all four corners. We take the min of all the alphas. // The code below is a simplified version of the above that performs maxs on the vector // components before computing distances and alpha values so that only one distance computation // need be computed to determine the min alpha. fsBuilder->codeAppendf("\t\tvec2 dxy0 = %s.xy - %s.xy;\n", rectName, fragmentPos); fsBuilder->codeAppendf("\t\tvec2 dxy1 = %s.xy - %s.zw;\n", fragmentPos, rectName); switch (erre.getRRect().getType()) { case SkRRect::kSimple_Type: { const char *invRadiiXYSqdName; fInvRadiiSqdUniform = builder->addUniform(GrGLProgramBuilder::kFragment_Visibility, kVec2f_GrSLType, kDefault_GrSLPrecision, "invRadiiXY", &invRadiiXYSqdName); fsBuilder->codeAppend("\t\tvec2 dxy = max(max(dxy0, dxy1), 0.0);\n"); // Z is the x/y offsets divided by squared radii. fsBuilder->codeAppendf("\t\tvec2 Z = dxy * %s;\n", invRadiiXYSqdName); break; } case SkRRect::kNinePatch_Type: { const char *invRadiiLTRBSqdName; fInvRadiiSqdUniform = builder->addUniform(GrGLProgramBuilder::kFragment_Visibility, kVec4f_GrSLType, kDefault_GrSLPrecision, "invRadiiLTRB", &invRadiiLTRBSqdName); fsBuilder->codeAppend("\t\tvec2 dxy = max(max(dxy0, dxy1), 0.0);\n"); // Z is the x/y offsets divided by squared radii. We only care about the (at most) one // corner where both the x and y offsets are positive, hence the maxes. (The inverse // squared radii will always be positive.) fsBuilder->codeAppendf("\t\tvec2 Z = max(max(dxy0 * %s.xy, dxy1 * %s.zw), 0.0);\n", invRadiiLTRBSqdName, invRadiiLTRBSqdName); break; } default: SkFAIL("RRect should always be simple or nine-patch."); } // implicit is the evaluation of (x/a)^2 + (y/b)^2 - 1. fsBuilder->codeAppend("\t\tfloat implicit = dot(Z, dxy) - 1.0;\n"); // grad_dot is the squared length of the gradient of the implicit. fsBuilder->codeAppendf("\t\tfloat grad_dot = 4.0 * dot(Z, Z);\n"); // avoid calling inversesqrt on zero. fsBuilder->codeAppend("\t\tgrad_dot = max(grad_dot, 1.0e-4);\n"); fsBuilder->codeAppendf("\t\tfloat approx_dist = implicit * inversesqrt(grad_dot);\n"); if (kFillAA_GrProcessorEdgeType == erre.getEdgeType()) { fsBuilder->codeAppend("\t\tfloat alpha = clamp(0.5 - approx_dist, 0.0, 1.0);\n"); } else { fsBuilder->codeAppend("\t\tfloat alpha = clamp(0.5 + approx_dist, 0.0, 1.0);\n"); } fsBuilder->codeAppendf("\t\t%s = %s;\n", outputColor, (GrGLSLExpr4(inputColor) * GrGLSLExpr1("alpha")).c_str()); } void GLEllipticalRRectEffect::GenKey(const GrProcessor& effect, const GrGLSLCaps&, GrProcessorKeyBuilder* b) { const EllipticalRRectEffect& erre = effect.cast(); GR_STATIC_ASSERT(kLast_GrProcessorEdgeType < (1 << 3)); b->add32(erre.getRRect().getType() | erre.getEdgeType() << 3); } void GLEllipticalRRectEffect::setData(const GrGLProgramDataManager& pdman, const GrProcessor& effect) { const EllipticalRRectEffect& erre = effect.cast(); const SkRRect& rrect = erre.getRRect(); if (rrect != fPrevRRect) { SkRect rect = rrect.getBounds(); const SkVector& r0 = rrect.radii(SkRRect::kUpperLeft_Corner); SkASSERT(r0.fX >= kRadiusMin); SkASSERT(r0.fY >= kRadiusMin); switch (erre.getRRect().getType()) { case SkRRect::kSimple_Type: rect.inset(r0.fX, r0.fY); pdman.set2f(fInvRadiiSqdUniform, 1.f / (r0.fX * r0.fX), 1.f / (r0.fY * r0.fY)); break; case SkRRect::kNinePatch_Type: { const SkVector& r1 = rrect.radii(SkRRect::kLowerRight_Corner); SkASSERT(r1.fX >= kRadiusMin); SkASSERT(r1.fY >= kRadiusMin); rect.fLeft += r0.fX; rect.fTop += r0.fY; rect.fRight -= r1.fX; rect.fBottom -= r1.fY; pdman.set4f(fInvRadiiSqdUniform, 1.f / (r0.fX * r0.fX), 1.f / (r0.fY * r0.fY), 1.f / (r1.fX * r1.fX), 1.f / (r1.fY * r1.fY)); break; } default: SkFAIL("RRect should always be simple or nine-patch."); } pdman.set4f(fInnerRectUniform, rect.fLeft, rect.fTop, rect.fRight, rect.fBottom); fPrevRRect = rrect; } } //////////////////////////////////////////////////////////////////////////////////////////////////// void EllipticalRRectEffect::getGLProcessorKey(const GrGLSLCaps& caps, GrProcessorKeyBuilder* b) const { GLEllipticalRRectEffect::GenKey(*this, caps, b); } GrGLFragmentProcessor* EllipticalRRectEffect::createGLInstance() const { return SkNEW_ARGS(GLEllipticalRRectEffect, (*this)); } ////////////////////////////////////////////////////////////////////////////// GrFragmentProcessor* GrRRectEffect::Create(GrPrimitiveEdgeType edgeType, const SkRRect& rrect) { if (rrect.isRect()) { return GrConvexPolyEffect::Create(edgeType, rrect.getBounds()); } if (rrect.isOval()) { return GrOvalEffect::Create(edgeType, rrect.getBounds()); } if (rrect.isSimple()) { if (rrect.getSimpleRadii().fX < kRadiusMin || rrect.getSimpleRadii().fY < kRadiusMin) { // In this case the corners are extremely close to rectangular and we collapse the // clip to a rectangular clip. return GrConvexPolyEffect::Create(edgeType, rrect.getBounds()); } if (rrect.getSimpleRadii().fX == rrect.getSimpleRadii().fY) { return CircularRRectEffect::Create(edgeType, CircularRRectEffect::kAll_CornerFlags, rrect); } else { return EllipticalRRectEffect::Create(edgeType, rrect); } } if (rrect.isComplex() || rrect.isNinePatch()) { // Check for the "tab" cases - two adjacent circular corners and two square corners. SkScalar circularRadius = 0; uint32_t cornerFlags = 0; SkVector radii[4]; bool squashedRadii = false; for (int c = 0; c < 4; ++c) { radii[c] = rrect.radii((SkRRect::Corner)c); SkASSERT((0 == radii[c].fX) == (0 == radii[c].fY)); if (0 == radii[c].fX) { // The corner is square, so no need to squash or flag as circular. continue; } if (radii[c].fX < kRadiusMin || radii[c].fY < kRadiusMin) { radii[c].set(0, 0); squashedRadii = true; continue; } if (radii[c].fX != radii[c].fY) { cornerFlags = ~0U; break; } if (!cornerFlags) { circularRadius = radii[c].fX; cornerFlags = 1 << c; } else { if (radii[c].fX != circularRadius) { cornerFlags = ~0U; break; } cornerFlags |= 1 << c; } } switch (cornerFlags) { case CircularRRectEffect::kAll_CornerFlags: // This rrect should have been caught in the simple case above. Though, it would // be correctly handled in the fallthrough code. SkASSERT(false); case CircularRRectEffect::kTopLeft_CornerFlag: case CircularRRectEffect::kTopRight_CornerFlag: case CircularRRectEffect::kBottomRight_CornerFlag: case CircularRRectEffect::kBottomLeft_CornerFlag: case CircularRRectEffect::kLeft_CornerFlags: case CircularRRectEffect::kTop_CornerFlags: case CircularRRectEffect::kRight_CornerFlags: case CircularRRectEffect::kBottom_CornerFlags: { SkTCopyOnFirstWrite rr(rrect); if (squashedRadii) { rr.writable()->setRectRadii(rrect.getBounds(), radii); } return CircularRRectEffect::Create(edgeType, cornerFlags, *rr); } case CircularRRectEffect::kNone_CornerFlags: return GrConvexPolyEffect::Create(edgeType, rrect.getBounds()); default: { if (squashedRadii) { // If we got here then we squashed some but not all the radii to zero. (If all // had been squashed cornerFlags would be 0.) The elliptical effect doesn't // support some rounded and some square corners. return NULL; } if (rrect.isNinePatch()) { return EllipticalRRectEffect::Create(edgeType, rrect); } return NULL; } } } return NULL; }