/* * Copyright 2014 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "GrOvalEffect.h" #include "GrFragmentProcessor.h" #include "GrInvariantOutput.h" #include "SkRect.h" #include "glsl/GrGLSLFragmentProcessor.h" #include "glsl/GrGLSLFragmentShaderBuilder.h" #include "glsl/GrGLSLProgramDataManager.h" #include "glsl/GrGLSLUniformHandler.h" ////////////////////////////////////////////////////////////////////////////// class CircleEffect : public GrFragmentProcessor { public: static sk_sp Make(GrPrimitiveEdgeType, const SkPoint& center, SkScalar radius); virtual ~CircleEffect() {}; const char* name() const override { return "Circle"; } const SkPoint& getCenter() const { return fCenter; } SkScalar getRadius() const { return fRadius; } GrPrimitiveEdgeType getEdgeType() const { return fEdgeType; } private: CircleEffect(GrPrimitiveEdgeType, const SkPoint& center, SkScalar radius); GrGLSLFragmentProcessor* onCreateGLSLInstance() const override; void onGetGLSLProcessorKey(const GrGLSLCaps&, GrProcessorKeyBuilder*) const override; bool onIsEqual(const GrFragmentProcessor&) const override; void onComputeInvariantOutput(GrInvariantOutput* inout) const override; SkPoint fCenter; SkScalar fRadius; GrPrimitiveEdgeType fEdgeType; GR_DECLARE_FRAGMENT_PROCESSOR_TEST; typedef GrFragmentProcessor INHERITED; }; sk_sp CircleEffect::Make(GrPrimitiveEdgeType edgeType, const SkPoint& center, SkScalar radius) { SkASSERT(radius >= 0); return sk_sp(new CircleEffect(edgeType, center, radius)); } void CircleEffect::onComputeInvariantOutput(GrInvariantOutput* inout) const { inout->mulByUnknownSingleComponent(); } CircleEffect::CircleEffect(GrPrimitiveEdgeType edgeType, const SkPoint& c, SkScalar r) : fCenter(c) , fRadius(r) , fEdgeType(edgeType) { this->initClassID(); this->setWillReadFragmentPosition(); } bool CircleEffect::onIsEqual(const GrFragmentProcessor& other) const { const CircleEffect& ce = other.cast(); return fEdgeType == ce.fEdgeType && fCenter == ce.fCenter && fRadius == ce.fRadius; } ////////////////////////////////////////////////////////////////////////////// GR_DEFINE_FRAGMENT_PROCESSOR_TEST(CircleEffect); sk_sp CircleEffect::TestCreate(GrProcessorTestData* d) { SkPoint center; center.fX = d->fRandom->nextRangeScalar(0.f, 1000.f); center.fY = d->fRandom->nextRangeScalar(0.f, 1000.f); SkScalar radius = d->fRandom->nextRangeF(0.f, 1000.f); GrPrimitiveEdgeType et; do { et = (GrPrimitiveEdgeType)d->fRandom->nextULessThan(kGrProcessorEdgeTypeCnt); } while (kHairlineAA_GrProcessorEdgeType == et); return CircleEffect::Make(et, center, radius); } ////////////////////////////////////////////////////////////////////////////// class GLCircleEffect : public GrGLSLFragmentProcessor { public: GLCircleEffect() : fPrevRadius(-1.0f) { } virtual void emitCode(EmitArgs&) override; static inline void GenKey(const GrProcessor&, const GrGLSLCaps&, GrProcessorKeyBuilder*); protected: void onSetData(const GrGLSLProgramDataManager&, const GrProcessor&) override; private: GrGLSLProgramDataManager::UniformHandle fCircleUniform; SkPoint fPrevCenter; SkScalar fPrevRadius; typedef GrGLSLFragmentProcessor INHERITED; }; void GLCircleEffect::emitCode(EmitArgs& args) { const CircleEffect& ce = args.fFp.cast(); const char *circleName; // The circle uniform is (center.x, center.y, radius + 0.5, 1 / (radius + 0.5)) for regular // fills and (..., radius - 0.5, 1 / (radius - 0.5)) for inverse fills. fCircleUniform = args.fUniformHandler->addUniform(kFragment_GrShaderFlag, kVec4f_GrSLType, kDefault_GrSLPrecision, "circle", &circleName); GrGLSLFPFragmentBuilder* fragBuilder = args.fFragBuilder; const char* fragmentPos = fragBuilder->fragmentPosition(); SkASSERT(kHairlineAA_GrProcessorEdgeType != ce.getEdgeType()); // TODO: Right now the distance to circle caclulation is performed in a space normalized to the // radius and then denormalized. This is to prevent overflow on devices that have a "real" // mediump. It'd be nice to only to this on mediump devices but we currently don't have the // caps here. if (GrProcessorEdgeTypeIsInverseFill(ce.getEdgeType())) { fragBuilder->codeAppendf("float d = (length((%s.xy - %s.xy) * %s.w) - 1.0) * %s.z;", circleName, fragmentPos, circleName, circleName); } else { fragBuilder->codeAppendf("float d = (1.0 - length((%s.xy - %s.xy) * %s.w)) * %s.z;", circleName, fragmentPos, circleName, circleName); } if (GrProcessorEdgeTypeIsAA(ce.getEdgeType())) { fragBuilder->codeAppend("d = clamp(d, 0.0, 1.0);"); } else { fragBuilder->codeAppend("d = d > 0.5 ? 1.0 : 0.0;"); } fragBuilder->codeAppendf("%s = %s;", args.fOutputColor, (GrGLSLExpr4(args.fInputColor) * GrGLSLExpr1("d")).c_str()); } void GLCircleEffect::GenKey(const GrProcessor& processor, const GrGLSLCaps&, GrProcessorKeyBuilder* b) { const CircleEffect& ce = processor.cast(); b->add32(ce.getEdgeType()); } void GLCircleEffect::onSetData(const GrGLSLProgramDataManager& pdman, const GrProcessor& processor) { const CircleEffect& ce = processor.cast(); if (ce.getRadius() != fPrevRadius || ce.getCenter() != fPrevCenter) { SkScalar radius = ce.getRadius(); if (GrProcessorEdgeTypeIsInverseFill(ce.getEdgeType())) { radius -= 0.5f; } else { radius += 0.5f; } pdman.set4f(fCircleUniform, ce.getCenter().fX, ce.getCenter().fY, radius, SkScalarInvert(radius)); fPrevCenter = ce.getCenter(); fPrevRadius = ce.getRadius(); } } /////////////////////////////////////////////////////////////////////////////////////////////////// void CircleEffect::onGetGLSLProcessorKey(const GrGLSLCaps& caps, GrProcessorKeyBuilder* b) const { GLCircleEffect::GenKey(*this, caps, b); } GrGLSLFragmentProcessor* CircleEffect::onCreateGLSLInstance() const { return new GLCircleEffect; } ////////////////////////////////////////////////////////////////////////////// class EllipseEffect : public GrFragmentProcessor { public: static sk_sp Make(GrPrimitiveEdgeType, const SkPoint& center, SkScalar rx, SkScalar ry); virtual ~EllipseEffect() {}; const char* name() const override { return "Ellipse"; } const SkPoint& getCenter() const { return fCenter; } SkVector getRadii() const { return fRadii; } GrPrimitiveEdgeType getEdgeType() const { return fEdgeType; } private: EllipseEffect(GrPrimitiveEdgeType, const SkPoint& center, SkScalar rx, SkScalar ry); GrGLSLFragmentProcessor* onCreateGLSLInstance() const override; void onGetGLSLProcessorKey(const GrGLSLCaps&, GrProcessorKeyBuilder*) const override; bool onIsEqual(const GrFragmentProcessor&) const override; void onComputeInvariantOutput(GrInvariantOutput* inout) const override; SkPoint fCenter; SkVector fRadii; GrPrimitiveEdgeType fEdgeType; GR_DECLARE_FRAGMENT_PROCESSOR_TEST; typedef GrFragmentProcessor INHERITED; }; sk_sp EllipseEffect::Make(GrPrimitiveEdgeType edgeType, const SkPoint& center, SkScalar rx, SkScalar ry) { SkASSERT(rx >= 0 && ry >= 0); return sk_sp(new EllipseEffect(edgeType, center, rx, ry)); } void EllipseEffect::onComputeInvariantOutput(GrInvariantOutput* inout) const { inout->mulByUnknownSingleComponent(); } EllipseEffect::EllipseEffect(GrPrimitiveEdgeType edgeType, const SkPoint& c, SkScalar rx, SkScalar ry) : fCenter(c) , fRadii(SkVector::Make(rx, ry)) , fEdgeType(edgeType) { this->initClassID(); this->setWillReadFragmentPosition(); } bool EllipseEffect::onIsEqual(const GrFragmentProcessor& other) const { const EllipseEffect& ee = other.cast(); return fEdgeType == ee.fEdgeType && fCenter == ee.fCenter && fRadii == ee.fRadii; } ////////////////////////////////////////////////////////////////////////////// GR_DEFINE_FRAGMENT_PROCESSOR_TEST(EllipseEffect); sk_sp EllipseEffect::TestCreate(GrProcessorTestData* d) { SkPoint center; center.fX = d->fRandom->nextRangeScalar(0.f, 1000.f); center.fY = d->fRandom->nextRangeScalar(0.f, 1000.f); SkScalar rx = d->fRandom->nextRangeF(0.f, 1000.f); SkScalar ry = d->fRandom->nextRangeF(0.f, 1000.f); GrPrimitiveEdgeType et; do { et = (GrPrimitiveEdgeType)d->fRandom->nextULessThan(kGrProcessorEdgeTypeCnt); } while (kHairlineAA_GrProcessorEdgeType == et); return EllipseEffect::Make(et, center, rx, ry); } ////////////////////////////////////////////////////////////////////////////// class GLEllipseEffect : public GrGLSLFragmentProcessor { public: GLEllipseEffect() { fPrevRadii.fX = -1.0f; } void emitCode(EmitArgs&) override; static inline void GenKey(const GrProcessor&, const GrGLSLCaps&, GrProcessorKeyBuilder*); protected: void onSetData(const GrGLSLProgramDataManager&, const GrProcessor&) override; private: GrGLSLProgramDataManager::UniformHandle fEllipseUniform; GrGLSLProgramDataManager::UniformHandle fScaleUniform; SkPoint fPrevCenter; SkVector fPrevRadii; typedef GrGLSLFragmentProcessor INHERITED; }; void GLEllipseEffect::emitCode(EmitArgs& args) { const EllipseEffect& ee = args.fFp.cast(); const char *ellipseName; // The ellipse uniform is (center.x, center.y, 1 / rx^2, 1 / ry^2) // The last two terms can underflow on mediump, so we use highp. fEllipseUniform = args.fUniformHandler->addUniform(kFragment_GrShaderFlag, kVec4f_GrSLType, kHigh_GrSLPrecision, "ellipse", &ellipseName); // If we're on a device with a "real" mediump then we'll do the distance computation in a space // that is normalized by the larger radius. The scale uniform will be scale, 1/scale. The // inverse squared radii uniform values are already in this normalized space. The center is // not. const char* scaleName = nullptr; if (args.fGLSLCaps->floatPrecisionVaries()) { fScaleUniform = args.fUniformHandler->addUniform( kFragment_GrShaderFlag, kVec2f_GrSLType, kDefault_GrSLPrecision, "scale", &scaleName); } GrGLSLFPFragmentBuilder* fragBuilder = args.fFragBuilder; const char* fragmentPos = fragBuilder->fragmentPosition(); // d is the offset to the ellipse center fragBuilder->codeAppendf("vec2 d = %s.xy - %s.xy;", fragmentPos, ellipseName); if (scaleName) { fragBuilder->codeAppendf("d *= %s.y;", scaleName); } fragBuilder->codeAppendf("vec2 Z = d * %s.zw;", ellipseName); // implicit is the evaluation of (x/rx)^2 + (y/ry)^2 - 1. fragBuilder->codeAppend("float implicit = dot(Z, d) - 1.0;"); // grad_dot is the squared length of the gradient of the implicit. fragBuilder->codeAppendf("float grad_dot = 4.0 * dot(Z, Z);"); // Avoid calling inversesqrt on zero. fragBuilder->codeAppend("grad_dot = max(grad_dot, 1.0e-4);"); fragBuilder->codeAppendf("float approx_dist = implicit * inversesqrt(grad_dot);"); if (scaleName) { fragBuilder->codeAppendf("approx_dist *= %s.x;", scaleName); } switch (ee.getEdgeType()) { case kFillAA_GrProcessorEdgeType: fragBuilder->codeAppend("float alpha = clamp(0.5 - approx_dist, 0.0, 1.0);"); break; case kInverseFillAA_GrProcessorEdgeType: fragBuilder->codeAppend("float alpha = clamp(0.5 + approx_dist, 0.0, 1.0);"); break; case kFillBW_GrProcessorEdgeType: fragBuilder->codeAppend("float alpha = approx_dist > 0.0 ? 0.0 : 1.0;"); break; case kInverseFillBW_GrProcessorEdgeType: fragBuilder->codeAppend("float alpha = approx_dist > 0.0 ? 1.0 : 0.0;"); break; case kHairlineAA_GrProcessorEdgeType: SkFAIL("Hairline not expected here."); } fragBuilder->codeAppendf("%s = %s;", args.fOutputColor, (GrGLSLExpr4(args.fInputColor) * GrGLSLExpr1("alpha")).c_str()); } void GLEllipseEffect::GenKey(const GrProcessor& effect, const GrGLSLCaps&, GrProcessorKeyBuilder* b) { const EllipseEffect& ee = effect.cast(); b->add32(ee.getEdgeType()); } void GLEllipseEffect::onSetData(const GrGLSLProgramDataManager& pdman, const GrProcessor& effect) { const EllipseEffect& ee = effect.cast(); if (ee.getRadii() != fPrevRadii || ee.getCenter() != fPrevCenter) { float invRXSqd; float invRYSqd; // If we're using a scale factor to work around precision issues, choose the larger radius // as the scale factor. The inv radii need to be pre-adjusted by the scale factor. if (fScaleUniform.isValid()) { if (ee.getRadii().fX > ee.getRadii().fY) { invRXSqd = 1.f; invRYSqd = (ee.getRadii().fX * ee.getRadii().fX) / (ee.getRadii().fY * ee.getRadii().fY); pdman.set2f(fScaleUniform, ee.getRadii().fX, 1.f / ee.getRadii().fX); } else { invRXSqd = (ee.getRadii().fY * ee.getRadii().fY) / (ee.getRadii().fX * ee.getRadii().fX); invRYSqd = 1.f; pdman.set2f(fScaleUniform, ee.getRadii().fY, 1.f / ee.getRadii().fY); } } else { invRXSqd = 1.f / (ee.getRadii().fX * ee.getRadii().fX); invRYSqd = 1.f / (ee.getRadii().fY * ee.getRadii().fY); } pdman.set4f(fEllipseUniform, ee.getCenter().fX, ee.getCenter().fY, invRXSqd, invRYSqd); fPrevCenter = ee.getCenter(); fPrevRadii = ee.getRadii(); } } /////////////////////////////////////////////////////////////////////////////////////////////////// void EllipseEffect::onGetGLSLProcessorKey(const GrGLSLCaps& caps, GrProcessorKeyBuilder* b) const { GLEllipseEffect::GenKey(*this, caps, b); } GrGLSLFragmentProcessor* EllipseEffect::onCreateGLSLInstance() const { return new GLEllipseEffect; } ////////////////////////////////////////////////////////////////////////////// sk_sp GrOvalEffect::Make(GrPrimitiveEdgeType edgeType, const SkRect& oval) { if (kHairlineAA_GrProcessorEdgeType == edgeType) { return nullptr; } SkScalar w = oval.width(); SkScalar h = oval.height(); if (SkScalarNearlyEqual(w, h)) { w /= 2; return CircleEffect::Make(edgeType, SkPoint::Make(oval.fLeft + w, oval.fTop + w), w); } else { w /= 2; h /= 2; return EllipseEffect::Make(edgeType, SkPoint::Make(oval.fLeft + w, oval.fTop + h), w, h); } return nullptr; }