/* * Copyright 2014 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "gl/builders/GrGLProgramBuilder.h" #include "GrMatrixConvolutionEffect.h" #include "gl/GrGLProcessor.h" #include "gl/GrGLSL.h" #include "gl/GrGLTexture.h" #include "GrTBackendProcessorFactory.h" class GrGLMatrixConvolutionEffect : public GrGLFragmentProcessor { public: GrGLMatrixConvolutionEffect(const GrBackendProcessorFactory& factory, const GrProcessor&); virtual void emitCode(GrGLProgramBuilder*, const GrFragmentProcessor&, const GrProcessorKey&, const char* outputColor, const char* inputColor, const TransformedCoordsArray&, const TextureSamplerArray&) SK_OVERRIDE; static inline void GenKey(const GrProcessor&, const GrGLCaps&, GrProcessorKeyBuilder*); virtual void setData(const GrGLProgramDataManager&, const GrProcessor&) SK_OVERRIDE; private: typedef GrGLProgramDataManager::UniformHandle UniformHandle; SkISize fKernelSize; bool fConvolveAlpha; UniformHandle fBoundsUni; UniformHandle fKernelUni; UniformHandle fImageIncrementUni; UniformHandle fKernelOffsetUni; UniformHandle fGainUni; UniformHandle fBiasUni; GrTextureDomain::GLDomain fDomain; typedef GrGLFragmentProcessor INHERITED; }; GrGLMatrixConvolutionEffect::GrGLMatrixConvolutionEffect(const GrBackendProcessorFactory& factory, const GrProcessor& processor) : INHERITED(factory) { const GrMatrixConvolutionEffect& m = processor.cast(); fKernelSize = m.kernelSize(); fConvolveAlpha = m.convolveAlpha(); } void GrGLMatrixConvolutionEffect::emitCode(GrGLProgramBuilder* builder, const GrFragmentProcessor& fp, const GrProcessorKey& key, const char* outputColor, const char* inputColor, const TransformedCoordsArray& coords, const TextureSamplerArray& samplers) { sk_ignore_unused_variable(inputColor); const GrTextureDomain& domain = fp.cast().domain(); fBoundsUni = builder->addUniform(GrGLProgramBuilder::kFragment_Visibility, kVec4f_GrSLType, "Bounds"); fImageIncrementUni = builder->addUniform(GrGLProgramBuilder::kFragment_Visibility, kVec2f_GrSLType, "ImageIncrement"); fKernelUni = builder->addUniformArray(GrGLProgramBuilder::kFragment_Visibility, kFloat_GrSLType, "Kernel", fKernelSize.width() * fKernelSize.height()); fKernelOffsetUni = builder->addUniform(GrGLProgramBuilder::kFragment_Visibility, kVec2f_GrSLType, "KernelOffset"); fGainUni = builder->addUniform(GrGLProgramBuilder::kFragment_Visibility, kFloat_GrSLType, "Gain"); fBiasUni = builder->addUniform(GrGLProgramBuilder::kFragment_Visibility, kFloat_GrSLType, "Bias"); const char* kernelOffset = builder->getUniformCStr(fKernelOffsetUni); const char* imgInc = builder->getUniformCStr(fImageIncrementUni); const char* kernel = builder->getUniformCStr(fKernelUni); const char* gain = builder->getUniformCStr(fGainUni); const char* bias = builder->getUniformCStr(fBiasUni); int kWidth = fKernelSize.width(); int kHeight = fKernelSize.height(); GrGLFragmentShaderBuilder* fsBuilder = builder->getFragmentShaderBuilder(); SkString coords2D = fsBuilder->ensureFSCoords2D(coords, 0); fsBuilder->codeAppend("vec4 sum = vec4(0, 0, 0, 0);"); fsBuilder->codeAppendf("vec2 coord = %s - %s * %s;", coords2D.c_str(), kernelOffset, imgInc); fsBuilder->codeAppend("vec4 c;"); for (int y = 0; y < kHeight; y++) { for (int x = 0; x < kWidth; x++) { GrGLShaderBuilder::ShaderBlock block(fsBuilder); fsBuilder->codeAppendf("float k = %s[%d * %d + %d];", kernel, y, kWidth, x); SkString coord; coord.printf("coord + vec2(%d, %d) * %s", x, y, imgInc); fDomain.sampleTexture(fsBuilder, domain, "c", coord, samplers[0]); if (!fConvolveAlpha) { fsBuilder->codeAppend("c.rgb /= c.a;"); } fsBuilder->codeAppend("sum += c * k;"); } } if (fConvolveAlpha) { fsBuilder->codeAppendf("%s = sum * %s + %s;", outputColor, gain, bias); fsBuilder->codeAppendf("%s.rgb = clamp(%s.rgb, 0.0, %s.a);", outputColor, outputColor, outputColor); } else { fDomain.sampleTexture(fsBuilder, domain, "c", coords2D, samplers[0]); fsBuilder->codeAppendf("%s.a = c.a;", outputColor); fsBuilder->codeAppendf("%s.rgb = sum.rgb * %s + %s;", outputColor, gain, bias); fsBuilder->codeAppendf("%s.rgb *= %s.a;", outputColor, outputColor); } SkString modulate; GrGLSLMulVarBy4f(&modulate, outputColor, inputColor); fsBuilder->codeAppend(modulate.c_str()); } void GrGLMatrixConvolutionEffect::GenKey(const GrProcessor& processor, const GrGLCaps&, GrProcessorKeyBuilder* b) { const GrMatrixConvolutionEffect& m = processor.cast(); SkASSERT(m.kernelSize().width() <= 0x7FFF && m.kernelSize().height() <= 0xFFFF); uint32_t key = m.kernelSize().width() << 16 | m.kernelSize().height(); key |= m.convolveAlpha() ? 1 << 31 : 0; b->add32(key); b->add32(GrTextureDomain::GLDomain::DomainKey(m.domain())); } void GrGLMatrixConvolutionEffect::setData(const GrGLProgramDataManager& pdman, const GrProcessor& processor) { const GrMatrixConvolutionEffect& conv = processor.cast(); GrTexture& texture = *conv.texture(0); // the code we generated was for a specific kernel size SkASSERT(conv.kernelSize() == fKernelSize); float imageIncrement[2]; float ySign = texture.origin() == kTopLeft_GrSurfaceOrigin ? 1.0f : -1.0f; imageIncrement[0] = 1.0f / texture.width(); imageIncrement[1] = ySign / texture.height(); pdman.set2fv(fImageIncrementUni, 1, imageIncrement); pdman.set2fv(fKernelOffsetUni, 1, conv.kernelOffset()); pdman.set1fv(fKernelUni, fKernelSize.width() * fKernelSize.height(), conv.kernel()); pdman.set1f(fGainUni, conv.gain()); pdman.set1f(fBiasUni, conv.bias()); fDomain.setData(pdman, conv.domain(), texture.origin()); } GrMatrixConvolutionEffect::GrMatrixConvolutionEffect(GrTexture* texture, const SkIRect& bounds, const SkISize& kernelSize, const SkScalar* kernel, SkScalar gain, SkScalar bias, const SkIPoint& kernelOffset, GrTextureDomain::Mode tileMode, bool convolveAlpha) : INHERITED(texture, GrCoordTransform::MakeDivByTextureWHMatrix(texture)), fKernelSize(kernelSize), fGain(SkScalarToFloat(gain)), fBias(SkScalarToFloat(bias) / 255.0f), fConvolveAlpha(convolveAlpha), fDomain(GrTextureDomain::MakeTexelDomain(texture, bounds), tileMode) { for (int i = 0; i < kernelSize.width() * kernelSize.height(); i++) { fKernel[i] = SkScalarToFloat(kernel[i]); } fKernelOffset[0] = static_cast(kernelOffset.x()); fKernelOffset[1] = static_cast(kernelOffset.y()); } GrMatrixConvolutionEffect::~GrMatrixConvolutionEffect() { } const GrBackendFragmentProcessorFactory& GrMatrixConvolutionEffect::getFactory() const { return GrTBackendFragmentProcessorFactory::getInstance(); } bool GrMatrixConvolutionEffect::onIsEqual(const GrProcessor& sBase) const { const GrMatrixConvolutionEffect& s = sBase.cast(); return this->texture(0) == s.texture(0) && fKernelSize == s.kernelSize() && !memcmp(fKernel, s.kernel(), fKernelSize.width() * fKernelSize.height() * sizeof(float)) && fGain == s.gain() && fBias == s.bias() && fKernelOffset == s.kernelOffset() && fConvolveAlpha == s.convolveAlpha() && fDomain == s.domain(); } // Static function to create a 2D convolution GrFragmentProcessor* GrMatrixConvolutionEffect::CreateGaussian(GrTexture* texture, const SkIRect& bounds, const SkISize& kernelSize, SkScalar gain, SkScalar bias, const SkIPoint& kernelOffset, GrTextureDomain::Mode tileMode, bool convolveAlpha, SkScalar sigmaX, SkScalar sigmaY) { float kernel[MAX_KERNEL_SIZE]; int width = kernelSize.width(); int height = kernelSize.height(); SkASSERT(width * height <= MAX_KERNEL_SIZE); float sum = 0.0f; float sigmaXDenom = 1.0f / (2.0f * SkScalarToFloat(SkScalarSquare(sigmaX))); float sigmaYDenom = 1.0f / (2.0f * SkScalarToFloat(SkScalarSquare(sigmaY))); int xRadius = width / 2; int yRadius = height / 2; for (int x = 0; x < width; x++) { float xTerm = static_cast(x - xRadius); xTerm = xTerm * xTerm * sigmaXDenom; for (int y = 0; y < height; y++) { float yTerm = static_cast(y - yRadius); float xyTerm = sk_float_exp(-(xTerm + yTerm * yTerm * sigmaYDenom)); // Note that the constant term (1/(sqrt(2*pi*sigma^2)) of the Gaussian // is dropped here, since we renormalize the kernel below. kernel[y * width + x] = xyTerm; sum += xyTerm; } } // Normalize the kernel float scale = 1.0f / sum; for (int i = 0; i < width * height; ++i) { kernel[i] *= scale; } return SkNEW_ARGS(GrMatrixConvolutionEffect, (texture, bounds, kernelSize, kernel, gain, bias, kernelOffset, tileMode, convolveAlpha)); } GR_DEFINE_FRAGMENT_PROCESSOR_TEST(GrMatrixConvolutionEffect); GrFragmentProcessor* GrMatrixConvolutionEffect::TestCreate(SkRandom* random, GrContext* context, const GrDrawTargetCaps&, GrTexture* textures[]) { int texIdx = random->nextBool() ? GrProcessorUnitTest::kSkiaPMTextureIdx : GrProcessorUnitTest::kAlphaTextureIdx; int width = random->nextRangeU(1, MAX_KERNEL_SIZE); int height = random->nextRangeU(1, MAX_KERNEL_SIZE / width); SkISize kernelSize = SkISize::Make(width, height); SkAutoTDeleteArray kernel(new SkScalar[width * height]); for (int i = 0; i < width * height; i++) { kernel.get()[i] = random->nextSScalar1(); } SkScalar gain = random->nextSScalar1(); SkScalar bias = random->nextSScalar1(); SkIPoint kernelOffset = SkIPoint::Make(random->nextRangeU(0, kernelSize.width()), random->nextRangeU(0, kernelSize.height())); SkIRect bounds = SkIRect::MakeXYWH(random->nextRangeU(0, textures[texIdx]->width()), random->nextRangeU(0, textures[texIdx]->height()), random->nextRangeU(0, textures[texIdx]->width()), random->nextRangeU(0, textures[texIdx]->height())); GrTextureDomain::Mode tileMode = static_cast(random->nextRangeU(0, 2)); bool convolveAlpha = random->nextBool(); return GrMatrixConvolutionEffect::Create(textures[texIdx], bounds, kernelSize, kernel.get(), gain, bias, kernelOffset, tileMode, convolveAlpha); }