/* * Copyright 2012 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "GrGradientEffects.h" #include "gl/GrGLProgramStage.h" #include "GrProgramStageFactory.h" #include "SkGr.h" // Base class for GL gradient custom stages class GrGLGradientStage : public GrGLProgramStage { public: GrGLGradientStage(const GrProgramStageFactory& factory); virtual ~GrGLGradientStage(); // emit code that gets a fragment's color from an expression for t; for now // this always uses the texture, but for simpler cases we'll be able to lerp void emitColorLookup(GrGLShaderBuilder* builder, const char* t, const char* outputColor, const char* samplerName); private: typedef GrGLProgramStage INHERITED; }; GrGLGradientStage::GrGLGradientStage(const GrProgramStageFactory& factory) : INHERITED(factory) { } GrGLGradientStage::~GrGLGradientStage() { } void GrGLGradientStage::emitColorLookup(GrGLShaderBuilder* builder, const char* tName, const char* outputColor, const char* samplerName) { // Texture is effectively 1D so the y coordinate is 0.5, if we pack multiple // gradients into a texture, we could instead pick the appropriate row here builder->fSampleCoords.printf("vec2(%s, 0.5)", tName); builder->fComplexCoord = true; builder->emitDefaultFetch(outputColor, samplerName); } ///////////////////////////////////////////////////////////////////// GrGradientEffect::GrGradientEffect(GrTexture* texture) : fTexture (texture) , fUseTexture(true) { SkSafeRef(fTexture); } GrGradientEffect::GrGradientEffect(GrContext* ctx, const SkShader& shader) : fTexture (NULL) , fUseTexture (false) { // TODO: check for simple cases where we don't need a texture: //GradientInfo info; //shader.asAGradient(&info); //if (info.fColorCount == 2) { ... SkBitmap bitmap; shader.asABitmap(&bitmap, NULL, NULL, NULL); // Note: we just construct a default sampler state here, which isn't great, // however, as long as the bitmap has power-of-two dimensions, which should // be the case for gradient bitmaps, it should be fine GrAssert(SkIsPow2(bitmap.width()) && SkIsPow2(bitmap.height())); GrSamplerState sampler; GrContext::TextureCacheEntry entry = GrLockCachedBitmapTexture(ctx, bitmap, &sampler); fTexture = entry.texture(); SkSafeRef(fTexture); fUseTexture = true; // Unlock immediately, this is not great, but we don't have a way of // knowing when else to unlock it currently, so it may get purged from // the cache, but it'll still be ref'd until it's no longer being used. GrUnlockCachedBitmapTexture(ctx, entry); } GrGradientEffect::~GrGradientEffect() { SkSafeUnref(fTexture); } unsigned int GrGradientEffect::numTextures() const { return fUseTexture ? 1 : 0; } GrTexture* GrGradientEffect::texture(unsigned int index) const { GrAssert(fUseTexture && 0 == index); return fTexture; } ///////////////////////////////////////////////////////////////////// class GrGLLinearGradient : public GrGLGradientStage { public: GrGLLinearGradient(const GrProgramStageFactory& factory, const GrCustomStage&) : INHERITED (factory) { } virtual ~GrGLLinearGradient() { } virtual void emitVS(GrGLShaderBuilder* builder, const char* vertexCoords) SK_OVERRIDE { } virtual void emitFS(GrGLShaderBuilder* builder, const char* outputColor, const char* inputColor, const char* samplerName) SK_OVERRIDE; static StageKey GenKey(const GrCustomStage& s) { return 0; } private: typedef GrGLGradientStage INHERITED; }; void GrGLLinearGradient::emitFS(GrGLShaderBuilder* builder, const char* outputColor, const char* inputColor, const char* samplerName) { SkString t; t.printf("%s.x", builder->fSampleCoords.c_str()); this->emitColorLookup(builder, t.c_str(), outputColor, samplerName); } ///////////////////////////////////////////////////////////////////// GrLinearGradient::GrLinearGradient(GrTexture* texture) : INHERITED(texture) { } GrLinearGradient::GrLinearGradient(GrContext* ctx, const SkShader& shader) : INHERITED(ctx, shader) { } GrLinearGradient::~GrLinearGradient() { } const GrProgramStageFactory& GrLinearGradient::getFactory() const { return GrTProgramStageFactory::getInstance(); } ///////////////////////////////////////////////////////////////////// class GrGLRadialGradient : public GrGLGradientStage { public: GrGLRadialGradient(const GrProgramStageFactory& factory, const GrCustomStage&) : INHERITED (factory) { } virtual ~GrGLRadialGradient() { } virtual void emitVS(GrGLShaderBuilder* builder, const char* vertexCoords) SK_OVERRIDE { } virtual void emitFS(GrGLShaderBuilder* builder, const char* outputColor, const char* inputColor, const char* samplerName) SK_OVERRIDE; static StageKey GenKey(const GrCustomStage& s) { return 0; } private: typedef GrGLGradientStage INHERITED; }; void GrGLRadialGradient::emitFS(GrGLShaderBuilder* builder, const char* outputColor, const char* inputColor, const char* samplerName) { SkString t; t.printf("length(%s.xy)", builder->fSampleCoords.c_str()); this->emitColorLookup(builder, t.c_str(), outputColor, samplerName); } ///////////////////////////////////////////////////////////////////// GrRadialGradient::GrRadialGradient(GrTexture* texture) : INHERITED(texture) { } GrRadialGradient::GrRadialGradient(GrContext* ctx, const SkShader& shader) : INHERITED(ctx, shader) { } GrRadialGradient::~GrRadialGradient() { } const GrProgramStageFactory& GrRadialGradient::getFactory() const { return GrTProgramStageFactory::getInstance(); } ///////////////////////////////////////////////////////////////////// // For brevity, and these definitions are likely to move to a different class soon. typedef GrGLShaderBuilder::UniformHandle UniformHandle; static const UniformHandle kInvalidUniformHandle = GrGLShaderBuilder::kInvalidUniformHandle; class GrGLRadial2Gradient : public GrGLGradientStage { public: GrGLRadial2Gradient(const GrProgramStageFactory& factory, const GrCustomStage&); virtual ~GrGLRadial2Gradient() { } virtual void setupVariables(GrGLShaderBuilder* builder, int stage) SK_OVERRIDE; virtual void emitVS(GrGLShaderBuilder* builder, const char* vertexCoords) SK_OVERRIDE; virtual void emitFS(GrGLShaderBuilder* builder, const char* outputColor, const char* inputColor, const char* samplerName) SK_OVERRIDE; virtual void initUniforms(const GrGLShaderBuilder* builder, const GrGLInterface*, int programID) SK_OVERRIDE; virtual void setData(const GrGLInterface*, const GrCustomStage&, const GrRenderTarget*, int stageNum) SK_OVERRIDE; static StageKey GenKey(const GrCustomStage& s) { return (static_cast(s).isDegenerate()); } protected: UniformHandle fVSParamUni; GrGLint fVSParamLocation; UniformHandle fFSParamUni; GrGLint fFSParamLocation; const char* fVSVaryingName; const char* fFSVaryingName; bool fIsDegenerate; // @{ /// Values last uploaded as uniforms GrScalar fCachedCenter; GrScalar fCachedRadius; bool fCachedPosRoot; // @} private: typedef GrGLGradientStage INHERITED; }; GrGLRadial2Gradient::GrGLRadial2Gradient( const GrProgramStageFactory& factory, const GrCustomStage& baseData) : INHERITED(factory) , fVSParamUni(kInvalidUniformHandle) , fFSParamUni(kInvalidUniformHandle) , fVSVaryingName(NULL) , fFSVaryingName(NULL) , fCachedCenter(GR_ScalarMax) , fCachedRadius(-GR_ScalarMax) , fCachedPosRoot(0) { const GrRadial2Gradient& data = static_cast(baseData); fIsDegenerate = data.isDegenerate(); } void GrGLRadial2Gradient::setupVariables(GrGLShaderBuilder* builder, int stage) { // 2 copies of uniform array, 1 for each of vertex & fragment shader, // to work around Xoom bug. Doesn't seem to cause performance decrease // in test apps, but need to keep an eye on it. fVSParamUni = builder->addUniform(GrGLShaderBuilder::kVertex_ShaderType, kFloat_GrSLType, "uRadial2VSParams", stage, 6); fFSParamUni = builder->addUniform(GrGLShaderBuilder::kFragment_ShaderType, kFloat_GrSLType, "uRadial2FSParams", stage, 6); fVSParamLocation = GrGLProgramStage::kUseUniform; fFSParamLocation = GrGLProgramStage::kUseUniform; // For radial gradients without perspective we can pass the linear // part of the quadratic as a varying. if (builder->fVaryingDims == builder->fCoordDims) { builder->addVarying(kFloat_GrSLType, "Radial2BCoeff", stage, &fVSVaryingName, &fFSVaryingName); } } void GrGLRadial2Gradient::emitVS(GrGLShaderBuilder* builder, const char* vertexCoords) { SkString* code = &builder->fVSCode; SkString p2; SkString p3; builder->getUniformVariable(fVSParamUni).appendArrayAccess(2, &p2); builder->getUniformVariable(fVSParamUni).appendArrayAccess(3, &p3); // For radial gradients without perspective we can pass the linear // part of the quadratic as a varying. if (builder->fVaryingDims == builder->fCoordDims) { // r2Var = 2 * (r2Parm[2] * varCoord.x - r2Param[3]) code->appendf("\t%s = 2.0 *(%s * %s.x - %s);\n", fVSVaryingName, p2.c_str(), vertexCoords, p3.c_str()); } } void GrGLRadial2Gradient::emitFS(GrGLShaderBuilder* builder, const char* outputColor, const char* inputColor, const char* samplerName) { SkString* code = &builder->fFSCode; SkString cName("c"); SkString ac4Name("ac4"); SkString rootName("root"); SkString t; SkString p0; SkString p1; SkString p2; SkString p3; SkString p4; SkString p5; builder->getUniformVariable(fFSParamUni).appendArrayAccess(0, &p0); builder->getUniformVariable(fFSParamUni).appendArrayAccess(1, &p1); builder->getUniformVariable(fFSParamUni).appendArrayAccess(2, &p2); builder->getUniformVariable(fFSParamUni).appendArrayAccess(3, &p3); builder->getUniformVariable(fFSParamUni).appendArrayAccess(4, &p4); builder->getUniformVariable(fFSParamUni).appendArrayAccess(5, &p5); // If we we're able to interpolate the linear component, // bVar is the varying; otherwise compute it SkString bVar; if (builder->fCoordDims == builder->fVaryingDims) { bVar = fFSVaryingName; GrAssert(2 == builder->fVaryingDims); } else { GrAssert(3 == builder->fVaryingDims); bVar = "b"; //bVar.appendS32(stageNum); code->appendf("\tfloat %s = 2.0 * (%s * %s.x - %s);\n", bVar.c_str(), p2.c_str(), builder->fSampleCoords.c_str(), p3.c_str()); } // c = (x^2)+(y^2) - params[4] code->appendf("\tfloat %s = dot(%s, %s) - %s;\n", cName.c_str(), builder->fSampleCoords.c_str(), builder->fSampleCoords.c_str(), p4.c_str()); // If we aren't degenerate, emit some extra code, and accept a slightly // more complex coord. if (!fIsDegenerate) { // ac4 = 4.0 * params[0] * c code->appendf("\tfloat %s = %s * 4.0 * %s;\n", ac4Name.c_str(), p0.c_str(), cName.c_str()); // root = sqrt(b^2-4ac) // (abs to avoid exception due to fp precision) code->appendf("\tfloat %s = sqrt(abs(%s*%s - %s));\n", rootName.c_str(), bVar.c_str(), bVar.c_str(), ac4Name.c_str()); // t is: (-b + params[5] * sqrt(b^2-4ac)) * params[1] t.printf("(-%s + %s * %s) * %s", bVar.c_str(), p5.c_str(), rootName.c_str(), p1.c_str()); } else { // t is: -c/b t.printf("-%s / %s", cName.c_str(), bVar.c_str()); } this->emitColorLookup(builder, t.c_str(), outputColor, samplerName); } void GrGLRadial2Gradient::initUniforms(const GrGLShaderBuilder* builder, const GrGLInterface* gl, int programID) { const char* vsParam = builder->getUniformCStr(fVSParamUni); const char* fsParam = builder->getUniformCStr(fFSParamUni); GR_GL_CALL_RET(gl, fVSParamLocation, GetUniformLocation(programID, vsParam)); GR_GL_CALL_RET(gl, fFSParamLocation, GetUniformLocation(programID, fsParam)); } void GrGLRadial2Gradient::setData(const GrGLInterface* gl, const GrCustomStage& baseData, const GrRenderTarget*, int stageNum) { const GrRadial2Gradient& data = static_cast(baseData); GrAssert(data.isDegenerate() == fIsDegenerate); GrScalar centerX1 = data.center(); GrScalar radius0 = data.radius(); if (fCachedCenter != centerX1 || fCachedRadius != radius0 || fCachedPosRoot != data.isPosRoot()) { GrScalar a = GrMul(centerX1, centerX1) - GR_Scalar1; // When we're in the degenerate (linear) case, the second // value will be INF but the program doesn't read it. (We // use the same 6 uniforms even though we don't need them // all in the linear case just to keep the code complexity // down). float values[6] = { GrScalarToFloat(a), 1 / (2.f * GrScalarToFloat(a)), GrScalarToFloat(centerX1), GrScalarToFloat(radius0), GrScalarToFloat(GrMul(radius0, radius0)), data.isPosRoot() ? 1.f : -1.f }; GR_GL_CALL(gl, Uniform1fv(fVSParamLocation, 6, values)); GR_GL_CALL(gl, Uniform1fv(fFSParamLocation, 6, values)); fCachedCenter = centerX1; fCachedRadius = radius0; fCachedPosRoot = data.isPosRoot(); } } ///////////////////////////////////////////////////////////////////// GrRadial2Gradient::GrRadial2Gradient(GrTexture* texture, GrScalar center, GrScalar radius, bool posRoot) : INHERITED(texture) , fCenterX1 (center) , fRadius0 (radius) , fPosRoot (posRoot) { } GrRadial2Gradient::GrRadial2Gradient(GrContext* ctx, const SkShader& shader) : INHERITED(ctx, shader) { SkShader::GradientInfo info; info.fColorCount = 0; shader.asAGradient(&info); fCenterX1 = SkPoint::Distance(info.fPoint[0], info.fPoint[1]); SkScalar diffRadius = info.fRadius[1] - info.fRadius[0]; fPosRoot = diffRadius < 0; SkScalar inv = 0 == diffRadius ? 0 : SkScalarInvert(diffRadius); fRadius0 = SkScalarMul(info.fRadius[0], inv); fCenterX1 = SkScalarMul(fCenterX1, inv); } GrRadial2Gradient::~GrRadial2Gradient() { } const GrProgramStageFactory& GrRadial2Gradient::getFactory() const { return GrTProgramStageFactory::getInstance(); } bool GrRadial2Gradient::isEqual(const GrCustomStage& sBase) const { const GrRadial2Gradient& s = static_cast(sBase); return (INHERITED::isEqual(sBase) && this->fCenterX1 == s.fCenterX1 && this->fRadius0 == s.fRadius0 && this->fPosRoot == s.fPosRoot); } ///////////////////////////////////////////////////////////////////// class GrGLConical2Gradient : public GrGLGradientStage { public: GrGLConical2Gradient(const GrProgramStageFactory& factory, const GrCustomStage&); virtual ~GrGLConical2Gradient() { } virtual void setupVariables(GrGLShaderBuilder* builder, int stage) SK_OVERRIDE; virtual void emitVS(GrGLShaderBuilder* builder, const char* vertexCoords) SK_OVERRIDE; virtual void emitFS(GrGLShaderBuilder* builder, const char* outputColor, const char* inputColor, const char* samplerName) SK_OVERRIDE; virtual void initUniforms(const GrGLShaderBuilder* builder, const GrGLInterface*, int programID) SK_OVERRIDE; virtual void setData(const GrGLInterface*, const GrCustomStage&, const GrRenderTarget*, int stageNum) SK_OVERRIDE; static StageKey GenKey(const GrCustomStage& s) { return (static_cast(s).isDegenerate()); } protected: UniformHandle fVSParamUni; GrGLint fVSParamLocation; UniformHandle fFSParamUni; GrGLint fFSParamLocation; const char* fVSVaryingName; const char* fFSVaryingName; bool fIsDegenerate; // @{ /// Values last uploaded as uniforms GrScalar fCachedCenter; GrScalar fCachedRadius; GrScalar fCachedDiffRadius; // @} private: typedef GrGLGradientStage INHERITED; }; GrGLConical2Gradient::GrGLConical2Gradient( const GrProgramStageFactory& factory, const GrCustomStage& baseData) : INHERITED(factory) , fVSParamUni(kInvalidUniformHandle) , fFSParamUni(kInvalidUniformHandle) , fVSVaryingName(NULL) , fFSVaryingName(NULL) , fCachedCenter(GR_ScalarMax) , fCachedRadius(-GR_ScalarMax) , fCachedDiffRadius(-GR_ScalarMax) { const GrConical2Gradient& data = static_cast(baseData); fIsDegenerate = data.isDegenerate(); } void GrGLConical2Gradient::setupVariables(GrGLShaderBuilder* builder, int stage) { // 2 copies of uniform array, 1 for each of vertex & fragment shader, // to work around Xoom bug. Doesn't seem to cause performance decrease // in test apps, but need to keep an eye on it. fVSParamUni = builder->addUniform(GrGLShaderBuilder::kVertex_ShaderType, kFloat_GrSLType, "uConical2VSParams", stage, 6); fFSParamUni = builder->addUniform(GrGLShaderBuilder::kFragment_ShaderType, kFloat_GrSLType, "uConical2FSParams", stage, 6); fVSParamLocation = GrGLProgramStage::kUseUniform; fFSParamLocation = GrGLProgramStage::kUseUniform; // For radial gradients without perspective we can pass the linear // part of the quadratic as a varying. if (builder->fVaryingDims == builder->fCoordDims) { builder->addVarying(kFloat_GrSLType, "Conical2BCoeff", stage, &fVSVaryingName, &fFSVaryingName); } } void GrGLConical2Gradient::emitVS(GrGLShaderBuilder* builder, const char* vertexCoords) { SkString* code = &builder->fVSCode; SkString p2; // distance between centers SkString p3; // start radius SkString p5; // difference in radii (r1 - r0) builder->getUniformVariable(fVSParamUni).appendArrayAccess(2, &p2); builder->getUniformVariable(fVSParamUni).appendArrayAccess(3, &p3); builder->getUniformVariable(fVSParamUni).appendArrayAccess(5, &p5); // For radial gradients without perspective we can pass the linear // part of the quadratic as a varying. if (builder->fVaryingDims == builder->fCoordDims) { // r2Var = -2 * (r2Parm[2] * varCoord.x - r2Param[3] * r2Param[5]) code->appendf("\t%s = -2.0 * (%s * %s.x + %s * %s);\n", fVSVaryingName, p2.c_str(), vertexCoords, p3.c_str(), p5.c_str()); } } void GrGLConical2Gradient::emitFS(GrGLShaderBuilder* builder, const char* outputColor, const char* inputColor, const char* samplerName) { SkString* code = &builder->fFSCode; SkString cName("c"); SkString ac4Name("ac4"); SkString dName("d"); SkString qName("q"); SkString r0Name("r0"); SkString r1Name("r1"); SkString tName("t"); SkString p0; // 4a SkString p1; // 1/a SkString p2; // distance between centers SkString p3; // start radius SkString p4; // start radius squared SkString p5; // difference in radii (r1 - r0) builder->getUniformVariable(fFSParamUni).appendArrayAccess(0, &p0); builder->getUniformVariable(fFSParamUni).appendArrayAccess(1, &p1); builder->getUniformVariable(fFSParamUni).appendArrayAccess(2, &p2); builder->getUniformVariable(fFSParamUni).appendArrayAccess(3, &p3); builder->getUniformVariable(fFSParamUni).appendArrayAccess(4, &p4); builder->getUniformVariable(fFSParamUni).appendArrayAccess(5, &p5); // If we we're able to interpolate the linear component, // bVar is the varying; otherwise compute it SkString bVar; if (builder->fCoordDims == builder->fVaryingDims) { bVar = fFSVaryingName; GrAssert(2 == builder->fVaryingDims); } else { GrAssert(3 == builder->fVaryingDims); bVar = "b"; code->appendf("\tfloat %s = -2.0 * (%s * %s.x + %s * %s);\n", bVar.c_str(), p2.c_str(), builder->fSampleCoords.c_str(), p3.c_str(), p5.c_str()); } // output will default to transparent black (we simply won't write anything // else to it if invalid, instead of discarding or returning prematurely) code->appendf("\t%s = vec4(0.0,0.0,0.0,0.0);\n", outputColor); // c = (x^2)+(y^2) - params[4] code->appendf("\tfloat %s = dot(%s, %s) - %s;\n", cName.c_str(), builder->fSampleCoords.c_str(), builder->fSampleCoords.c_str(), p4.c_str()); // Non-degenerate case (quadratic) if (!fIsDegenerate) { // ac4 = params[0] * c code->appendf("\tfloat %s = %s * %s;\n", ac4Name.c_str(), p0.c_str(), cName.c_str()); // d = b^2 - ac4 code->appendf("\tfloat %s = %s * %s - %s;\n", dName.c_str(), bVar.c_str(), bVar.c_str(), ac4Name.c_str()); // only proceed if discriminant is >= 0 code->appendf("\tif (%s >= 0.0) {\n", dName.c_str()); // intermediate value we'll use to compute the roots // q = -0.5 * (b +/- sqrt(d)) code->appendf("\t\tfloat %s = -0.5 * (%s + (%s < 0.0 ? -1.0 : 1.0)" " * sqrt(%s));\n", qName.c_str(), bVar.c_str(), bVar.c_str(), dName.c_str()); // compute both roots // r0 = q * params[1] code->appendf("\t\tfloat %s = %s * %s;\n", r0Name.c_str(), qName.c_str(), p1.c_str()); // r1 = c / q code->appendf("\t\tfloat %s = %s / %s;\n", r1Name.c_str(), cName.c_str(), qName.c_str()); // Note: If there are two roots that both generate radius(t) > 0, the // Canvas spec says to choose the larger t. // so we'll look at the larger one first: code->appendf("\t\tfloat %s = max(%s, %s);\n", tName.c_str(), r0Name.c_str(), r1Name.c_str()); // if r(t) > 0, then we're done; t will be our x coordinate code->appendf("\t\tif (%s * %s + %s > 0.0) {\n", tName.c_str(), p5.c_str(), p3.c_str()); code->appendf("\t\t"); this->emitColorLookup(builder, tName.c_str(), outputColor, samplerName); // otherwise, if r(t) for the larger root was <= 0, try the other root code->appendf("\t\t} else {\n"); code->appendf("\t\t\t%s = min(%s, %s);\n", tName.c_str(), r0Name.c_str(), r1Name.c_str()); // if r(t) > 0 for the smaller root, then t will be our x coordinate code->appendf("\t\t\tif (%s * %s + %s > 0.0) {\n", tName.c_str(), p5.c_str(), p3.c_str()); code->appendf("\t\t\t"); this->emitColorLookup(builder, tName.c_str(), outputColor, samplerName); // end if (r(t) > 0) for smaller root code->appendf("\t\t\t}\n"); // end if (r(t) > 0), else, for larger root code->appendf("\t\t}\n"); // end if (discriminant >= 0) code->appendf("\t}\n"); } else { // linear case: t = -c/b code->appendf("\tfloat %s = -(%s / %s);\n", tName.c_str(), cName.c_str(), bVar.c_str()); // if r(t) > 0, then t will be the x coordinate code->appendf("\tif (%s * %s + %s > 0.0) {\n", tName.c_str(), p5.c_str(), p3.c_str()); code->appendf("\t"); this->emitColorLookup(builder, tName.c_str(), outputColor, samplerName); code->appendf("\t}\n"); } } void GrGLConical2Gradient::initUniforms(const GrGLShaderBuilder* builder, const GrGLInterface* gl, int programID) { const char* vsParam = builder->getUniformCStr(fVSParamUni); const char* fsParam = builder->getUniformCStr(fFSParamUni); GR_GL_CALL_RET(gl, fVSParamLocation, GetUniformLocation(programID, vsParam)); GR_GL_CALL_RET(gl, fFSParamLocation, GetUniformLocation(programID, fsParam)); } void GrGLConical2Gradient::setData(const GrGLInterface* gl, const GrCustomStage& baseData, const GrRenderTarget*, int stageNum) { const GrConical2Gradient& data = static_cast(baseData); GrAssert(data.isDegenerate() == fIsDegenerate); GrScalar centerX1 = data.center(); GrScalar radius0 = data.radius(); GrScalar diffRadius = data.diffRadius(); if (fCachedCenter != centerX1 || fCachedRadius != radius0 || fCachedDiffRadius != diffRadius) { GrScalar a = GrMul(centerX1, centerX1) - diffRadius * diffRadius; // When we're in the degenerate (linear) case, the second // value will be INF but the program doesn't read it. (We // use the same 6 uniforms even though we don't need them // all in the linear case just to keep the code complexity // down). float values[6] = { GrScalarToFloat(a * 4), 1.f / (GrScalarToFloat(a)), GrScalarToFloat(centerX1), GrScalarToFloat(radius0), GrScalarToFloat(SkScalarMul(radius0, radius0)), GrScalarToFloat(diffRadius) }; GR_GL_CALL(gl, Uniform1fv(fVSParamLocation, 6, values)); GR_GL_CALL(gl, Uniform1fv(fFSParamLocation, 6, values)); fCachedCenter = centerX1; fCachedRadius = radius0; fCachedDiffRadius = diffRadius; } } ///////////////////////////////////////////////////////////////////// GrConical2Gradient::GrConical2Gradient(GrTexture* texture, GrScalar center, GrScalar radius, GrScalar diffRadius) : INHERITED (texture) , fCenterX1 (center) , fRadius0 (radius) , fDiffRadius (diffRadius) { } GrConical2Gradient::GrConical2Gradient(GrContext* ctx, const SkShader& shader) : INHERITED(ctx, shader) { SkShader::GradientInfo info; info.fColorCount = 0; shader.asAGradient(&info); fCenterX1 = SkPoint::Distance(info.fPoint[0], info.fPoint[1]); fRadius0 = info.fRadius[0]; fDiffRadius = info.fRadius[1] - info.fRadius[0]; } GrConical2Gradient::~GrConical2Gradient() { } const GrProgramStageFactory& GrConical2Gradient::getFactory() const { return GrTProgramStageFactory::getInstance(); } bool GrConical2Gradient::isEqual(const GrCustomStage& sBase) const { const GrConical2Gradient& s = static_cast(sBase); return (INHERITED::isEqual(sBase) && this->fCenterX1 == s.fCenterX1 && this->fRadius0 == s.fRadius0 && this->fDiffRadius == s.fDiffRadius); } ///////////////////////////////////////////////////////////////////// class GrGLSweepGradient : public GrGLGradientStage { public: GrGLSweepGradient(const GrProgramStageFactory& factory, const GrCustomStage&) : INHERITED (factory) { } virtual ~GrGLSweepGradient() { } virtual void emitVS(GrGLShaderBuilder* builder, const char* vertexCoords) SK_OVERRIDE { } virtual void emitFS(GrGLShaderBuilder* builder, const char* outputColor, const char* inputColor, const char* samplerName) SK_OVERRIDE; static StageKey GenKey(const GrCustomStage& s) { return 0; } private: typedef GrGLGradientStage INHERITED; }; void GrGLSweepGradient::emitFS(GrGLShaderBuilder* builder, const char* outputColor, const char* inputColor, const char* samplerName) { SkString t; t.printf("atan(- %s.y, - %s.x) * 0.1591549430918 + 0.5", builder->fSampleCoords.c_str(), builder->fSampleCoords.c_str()); this->emitColorLookup(builder, t.c_str(), outputColor, samplerName); } ///////////////////////////////////////////////////////////////////// GrSweepGradient::GrSweepGradient(GrTexture* texture) : INHERITED(texture) { } GrSweepGradient::GrSweepGradient(GrContext* ctx, const SkShader& shader) : INHERITED(ctx, shader) { } GrSweepGradient::~GrSweepGradient() { } const GrProgramStageFactory& GrSweepGradient::getFactory() const { return GrTProgramStageFactory::getInstance(); }